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ABSTRACT

We study thermalization of weakly nonintegrable nonlinear unitary lattice dynamics. We identify two distinct thermalization regimes close
to the integrable limits of either linear dynamics or disconnected lattice dynamics. For weak nonlinearity, the almost conserved actions
correspond to extended observables which are coupled into a long-range network. For weakly connected lattices, the corresponding local
observables are coupled into a short-range network. We compute the evolution of the variance σ 2(T) of finite time average distributions for
extended and local observables. We extract the ergodization time scale TE which marks the onset of thermalization, and determine the type of
network through the subsequent decay of σ 2(T). We use the complementary analysis of Lyapunov spectra [M. Malishava and S. Flach, Phys.
Rev. Lett. 128, 134102 (2022)] and compare the Lyapunov time T3 with TE. We characterize the spatial properties of the tangent vector and
arrive at a complete classification picture of weakly nonintegrable macroscopic thermalization dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0092032

Recent studies of the thermalization of macroscopic weakly non-
integrable dynamical lattice systems revealed the existence of
two qualitatively different system classes. Thermalization can
be analyzed by testing ergodicity or mixing. From a practical
perspective, ergodicity and finite time average studies are pre-
ferred. This calls for a choice of the observables, and we need to
keep in mind that the outcome may be choice-dependent. Two
typical observable sets are local observables (LOs) (local norm,
charge, energy, etc.) and extended observables (EOs) (normal
modes). The LOs become the actions of an integrable limit in
the limit of vanishing coupling constant. The EOs correspond
to actions in the case of vanishing nonlinearity. The relation
between the thermalization time scales of both types of observ-
ables is rarely studied. Moreover, we lack tools to identify the
weak nonintegrability class. In this paper, we will utilize a highly
efficient numeric scheme—unitary maps—to address the ther-
malization properties of each choice of observables in close
proximity to the corresponding integrable limits. We demon-
strate that a thermalization study using both LOs and EOs
allows us to unambiguously determine the right system class.
We supplement our studies with additional studies of mixing
properties by computing the scaling properties of Lyapunov
spectra.

I. INTRODUCTION

The study of thermalization of macroscopically large systems
is one of the main goals of statistical mechanics. Thermal behav-
ior assumes the equal a priori probability for the states with equal
energy.2 This notion is tied to the concepts of ergodicity and mix-
ing. Ergodicity assumes the equality between phase space and time
averages of observables on one trajectory and is in principle a suffi-
cient condition for a system to demonstrate thermal properties for
specifically chosen observables. A stronger property of mixing in
addition to ergodicity demands the decay of correlations in time.
From the standpoint of evolution in phase space, the concept of
integrability plays a crucial role. In integrable dynamics, trajectories
in the phase space are confined to multidimensional tori character-
ized by sets of actions and angles. Such a motion may be ergodic
but not mixing. Investigating realistic physical setups with decay-
ing correlations and mixing dynamics begins with deviating from
integrability. In one of the first works on the matter, Poincaré con-
sidered a three-body problem which turned out to be impossible to
solve analytically but could be brought to a form of a weakly per-
turbed integrable system.3,4 Later, the celebrated theoretical work of
Kolmogorov5 in 1954 and extended by Arnold6 and Moser,7 now
known as the Kolmogorov-Arnold-Moser (KAM) theory, provided
a proof for quasiperiodic dynamics for weakly nonintegrable sys-
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tems with a finite number of degrees of freedom (DoF). The pioneer-
ing numerical studies in weakly perturbed integrable dynamics were
performed by Fermi, Pasta, Ulam, and Tsingou on a harmonic chain
model with weak nonlinear perturbation.8 Instead of the expected
equipartition of energy across the normal modes of a harmonic
chain, Fermi, Pasta, Ulam and Tsingou (FPUT) observed recur-
rent seemingly quasiperiodic dynamics which is now known as the
FPUT paradox.9–11 The unexpected nonthermal behavior sparked
a plethora of research to investigate the absence of thermalization.
This led to the discovery of exact energy localizing solutions in terms
of solitons12,13 and absence of thermalization in low-dimensional14 as
well as macroscopic non-linear systems.15–17

Most importantly, the KAM regime is valid up to a critical
strength of the nonintegrable perturbation and replaced by seem-
ingly homogeneous chaotic dynamics for stronger perturbations.
The critical strength is highly sensitive to the number of partici-
pating DoF and expected to rapidly deteriorate already for modest
system size.18 This observation is indirectly confirmed by a plethora
of computational studies and simply by everyday life and serves as
the backbone of the validity of the core assumptions of statistical
physics. Tuning a macroscopic system close to an integrable limit
will nevertheless lead to an increase and divergence of its thermal-
ization time scales. One of the most intriguing questions then is
whether the slowing down of thermalization for macroscopic weakly
nonintegrable systems is unique or whether there are different
classes of such systems beyond the limits set by KAM theory.

To extract ergodic thermalization timescales, one usually
chooses a set of observables whose dynamics will be followed
through the evolution. For weakly non-integrable systems, the
choice typically falls on the actions of the integrable limit as those
are conserved once the perturbation is switched off. Thus, as stated
above, FPUT chose the normal modes of a linear system as a set
of relevant observables. However, this is not the only possibility. In
recent studies, variants of the FPUT model were associated with the
Toda chain and the equilibration of Toda actions was studied.19 At
the same time, the equipartition of observables weakly correlated
to the actions of an integrable limit may show fast equilibration, as
studied, e.g., for local energies of an FPUT model.20 Thus, the choice
of observables impacts the thermalization timescale analysis. More-
over, by choosing a specific set of observables, the ergodic (but not
mixing) dynamics may show thermal behavior.21,22 In such cases,
the action-angle dynamics are characterized by incommensurate
frequencies and fill the available phase space of multidimensional
tori densely, thus displaying ergodic thermal-like behavior without
mixing and chaoticity.

In order to study the slowing down of thermalization of
a macroscopic system upon approaching an integrable limit, it
appears reasonable to choose the actions of the integrable limit as
the relevant observables. Recent studies unraveled that the way these
actions are coupled into a dynamical network by the nonintegrable
perturbation depends on the perturbation itself.23–25 Translation-
ally invariant linear dynamics results in actions corresponding to
extended observables (EOs) such as normal modes. Nonlinear per-
turbations result from approximations of two-body interactions,
which are local in real space but couple all modes with each other
due to the fact that the modes are extended. The outcome is a class
of Long-Range Networks (LRNs). Typical examples include FPUT,

FIG. 1. A schematic representation of the unitary circuits map and the parameter
space {g, θ}. The black arrow on the right indicates the flow of time. The state is
represented by blue and pink dots for ψA

n and ψB
n , respectively, with subsequent

applications of unitary matrices Ĉ (large green blocks) parameterized by the angle

θ , and local nonlinearity generating maps Ĝ (small yellow blocks) parameterized
by the nonlinearity strength coefficient g. In the parameter space, the highlighted
areas correspond to the networks of coupled actions induced by respective weak
nonintegrable perturbation. Integrable limits are reached for g = 0 (linear evo-
lution of extended normal modes) or θ = 0 (decoupled nonlinear map lattice).
Small nonzero g values induce LRNs, and small nonzero θ values induce SRNs.
The network images indicate actions (filled circles) coupled due to nonintegrable
perturbation (straight lines).

chains of anharmonic oscillators in the limit of weak nonlinearity,
Josephson junction arrays in the limit of low energy density, etc. On
the other hand, models where the proximity to integrable limit is
controlled by a weak lattice coupling constant belong to the class
of Short-Range Networks (SRNs). In this type of scenario, the inte-
grable limit is characterized by a set of local observables (LOs), such
as a local energy, norm, charge, etc. Models such as coupled anhar-
monic oscillators in the limit of weak coupling, Josephson junction
arrays in the limit of weak coupling, etc. belong to the class of SRN.23

In this work, we pose the question whether there is a unique
protocol that allows us to predict the network type of a weakly non-
integrable system, which is tuned closer to integrability. In principle,
the type of network and integrable limit is already encoded in the
structure of equations of motion (EoM) that generates the trajecto-
ries. We investigate the reverse problem of an observer attempting
to deduce the structure of the underlying dynamics while only being
able to follow some observables of choice—a typical laboratory sce-
nario when the precise EoM is unknown. We intend to analyze
the slowing down of ergodicity by following finite time averages of
observables, in spite of the sensitivity of thermalization studies to
the observable choice. We aim to fully characterize the ergodic ther-
malization dynamics of weakly nonintegrable systems by studying
the statistical properties of the full set of finite time averages of local
and extended observables. We study the ergodic properties of LOs
and EOs in both SRN and LRN settings. We demonstrate that this
approach allows for a full and unique characterization of the ther-
malization dynamics. When complemented by the computation of
the Lyapunov spectrum and the tangent eigenvectors, we conclude
that a one to one correspondence leads to an unambiguous detection
of either the SRN or LRN networks. We note that ergodic thermal-
ization tests are realizable in experimental setups (up to technical
issues), while the Lyapunov spectrum computation appears to have
no easy analog on the experimental measurement side.
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The computational complexity of the above task is challeng-
ing. The thermalization times grow quickly as the system approaches
the integrable limit, which requires one to perform large timescale
computations. Further, in typical time-continuous cases, the numer-
ics discretizes time and leads to additional errors that have to be
kept at a reasonable level using sophisticated integration schemes.
Therefore, our strategy is to use a novel framework of unitary maps.
The key feature of the map dynamics is a discrete-time evolu-
tion, which is free from the aforementioned errors. Unitary maps
emerged as a concept for efficient quantum computations and quan-
tum algorithms.26,27 Recently, they have been also successfully used
to simulate classical or nonlinear physical processes: achieve record
breaking evolution times in nonlinear wave-packet spreading28 and
use a quantized nonlinearity to observe even slower logarithmic
spreading of the wavepackets,29 Anderson Localization,30,31 soliton
dynamics,32 and topological states of matter,33 among others. We
aim to use the numerical advantages offered by unitary maps to sim-
ulate the thermalization dynamics of systems with up to N = 105

sites (DoF) on timescales of up to Tmax = 109 time steps in close
proximity to integrable limits.

II. MODEL AND METHODS

A. Setup

We take inspiration from quantum Unitary Circuit (UC)
systems. Unitary circuits serve as basis models for quantum
computing34,35 and as a platform for studies of quantum chaos36 and
operator spreading.37 Typically, a state in quantum UCs is repre-
sented in terms of a one-dimensional wave function with multiple
components per site (usually in terms of qubits), which are then
coupled by unitary operations.

Our classical version of unitary circuits (UCs) is a map acting
on a state represented by a one-dimensional complex valued vector

of size N consisting of N/2 unit cells with sites A and B,

E9(t) = {ψA
n (t),ψ

B
n (t)}

N/2

n=1. (1)

The time evolution of the system is governed by a discrete unitary

map consisting of several transformations of E9 ,

Û =
∑

n

Ĝn

∑

n

ĈB,A

∑

n

ĈA,B, (2)

where maps ĈA,B and ĈB,A are given by unitary matrices acting on

the neighboring sites (ψA
n ,ψB

n )
T
,

∑

n

ĈA,B
E9(t) =

∑

n

(

cos θ sin θ
− sin θ cos θ

) (

ψA
n (t)
ψB

n (t)

)

,

∑

n

ĈB,A
E9(t) =

∑

n

(

cos θ sin θ
− sin θ cos θ

) (

ψB
n (t)

ψA
n+1(t)

)

,

(3)

and Ĝn induces a nonlinearity proportional to the strength coeffi-
cient g,

Ĝnψ
A,B
n (t) = eig|ψA,B

n (t)|2ψA,B
n (t). (4)

The local transformations Ĉ can be, in general, represented
as arbitrary 2 × 2 unitary matrices. Our particular choice is
parameterized with a single angle θ , which plays the role of
a hopping parameter strength in Hamiltonian systems. At the
same time, the nonlinearity g|ψn|

2 is an analog of an effec-
tive mean-field potential. The maps of this type can be con-
structed experimentally with periodic application of magnetic field
pulses.38–41

The evolution [Eq. (2)] results in the following equations of
motion:

ψA
n (t + 1) = eig|ϕA

n (t)|
2
ϕA

n (t) ϕA
n (t) =

[

cos2 θψA
n (t)− cos θ sin θψB

n−1(t)+ sin2 θψA
n+1(t)+ cos θ sin θψB

n (t)
]

,

ψB
n (t + 1) = eig|ϕB

n (t)|
2
ϕB

n (t) ϕB
n (t) =

[

sin2 θψB
n−1(t)− cos θ sin θψA

n (t)+ cos2 θψB
n (t)+ cos θ sin θψA

n+1(t)
]

,
(5)

where ϕA,B
n (t) are the components of state vector E9 after the appli-

cation of mixing maps Ĉ (see Fig. 1).

B. Integrable limits

We consider two integrable limits in the parameter space {g, θ}
of the classical unitary circuits map: vanishing coupling: {θ = 0,
g 6= 0}, and vanishing nonlinearity: {g = 0, θ 6= 0} (see Fig. 1). In
each case, the integrable limit is characterized by a corresponding
set of N observables (actions), which are decoupled and, thus, are
conserved in time during the evolution. In what follows, we will
investigate each of the integrable limits in detail by deviating from it
slightly, thus inducing a coupling between the actions.

1. Short-range network

In the limit of vanishing coupling θ = 0, the local transforma-

tions Ĉ turn into identity matrices resulting in a trivial evolution of
the state components with just an accumulation of phase [see Eq. (5)
for details],

ψA,B
n (t) = eig|ψA,B

n (t)|2tψA,B
n (0). (6)

The amplitudes |ψA,B
n | are time independent and correspond to the

actions of the integrable limit. Introducing a small but nonzero value
of θ 6= 0 results in a coupling of the actions. Approximating Eq. (5)
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for small values of θ , we obtain

ψA
n (t + 1) = eig|ϕA

n (t)|
2
ϕA

n (t),

ϕA
n (t) =

[

ψA
n (t)− θ(ψB

n−1(t)− ψB
n (t))

]

,

ψB
n (t + 1) = eig|ϕB

n (t)|
2
ϕB

n (t),

ϕB
n (t) =

[

ψB
n (t)+ θ(ψA

n+1(t)− ψA
n (t))

]

.

(7)

These equations of motion couple the actions through nearest
neighbor terms and fall under the definition of a short-range net-
work (see Fig. 1).

2. Long-range network

In the linear case g = 0, the evolution of the state vector E9(t)

can be determined exactly from standard ansatz
(

ψA
n (t),ψ

B
n (t)

)T

= e−i(ωkt−kn)
(

ψA
k ,ψB

k

)T
. The eigenfrequencies ωk obey the following

dispersion relation, which can be determined from Eq. (5):

ω(k) = ± arccos
(

cos2 θ + sin2 θ cos k
)

, (8)

with two dispersive bands ωαk (α = 1, 2) and corresponding normal

modes E9α
k =

∑

n eiknψ
α,p

k (p = A, B), which form a complete set.

Generally, a state vector E9(t) may be decomposed in terms of
normal modes of a linear system,

E9(t) =
∑

k

cαk (t) E9
α
k . (9)

In the linear case g = 0, the evolution of the coefficients cαk (t) is

given by a phase rotation eiωα
k

t; the absolute values |cαk | are conserved
in time, they are the actions of the integrable limit. Introducing a
small but nonzero value of g 6= 0 results in a coupling of the actions.
Approximating Eq. (5) for small values of g, we obtain

cαk (t + 1) = eiωkcαk (t)+
ig

N

×
∑

α1 ,α2 ,α3
k1 ,k2 ,k3

e
i(ω

α1
k1

+ω
α2
k2

−ω
α3
k3
)
I
α,α1 ,α2 ,α3
k,k1 ,k2 ,k3

c
α1
k1
(t)c

α2
k2
(t)

(

c
α3
k3
(t)

)∗

,

(10)

I
α,α1 ,α2 ,α3
k,k1 ,k2 ,k3

= δk1+k2−k3−k,0

∑

p

ψ
α1 ,p

k1
ψ
α2 ,p

k2
(ψ

α3 ,p

k3
)
∗
(ψ

α,p

k )
∗
. (11)

All cαk are intercoupled according to the second term in Eq. (10). For
each action cαk , the number of elements in the sum is proportional
to N2 due to the constraints enforced by the overlap integrals in
Eq. (11). This case falls under our definition of a long-range network.

C. Finite time averages

Our goal is to study the ergodization of local and extended
observables in two distinct integrable limits. Ergodization is a pro-
cess of time averages of observables approaching their phase space
averages. In line with this definition, we will define sets of finite time
averages of observables and study the statistical properties of these
sets, in particular, their variance. In both SRN and LRN regimes,

we study the statistical properties of sets of finite time averages of
observables. For a time-dependent observable o(t), we define a finite
time average as

oT =
1

T

t=T
∑

t=0

o(t). (12)

We construct a set of finite time averages {oT}M by following M tra-
jectories. This set is characterized by a distribution with probability
density function ρ(ōT). From the ergodization hypothesis, we expect
each ōT→∞ = 〈o〉, where 〈o〉 is an average taken over the phase space.
The distribution ρ is, therefore, expected to peak around the phase
space average, reducing its variance to zero and, thus, approaching
a delta-function for infinite averaging times: ρ(ōT→∞) = δ(ōT→∞

− 〈o〉). We study the convergence by following the variance σ 2(T)
of the distribution ρ(ōT). We perform the analysis for two dis-
tinct observables—local observables |ψn| and extended observ-
ables |cαk |, which are the amplitudes of normal modes coeffi-
cients.

D. Lyapunov times and tangent vectors

To characterize chaoticity related timescales of non-integrable
dynamics, we compute the full spectrum of Lyapunov characteristic
exponents (LCEs). An advantage of LCE spectra is that they are inde-
pendent of any coordinate basis choice. Nonzero Lyapunov spectra
necessarily imply chaotic mixing dynamics (while the converse is not
necessarily the case). On the downside, we note that while the largest
LCE can be experimentally assessed, the entire Lyapunov spectrum
appears to be not experimentally measurable.

We compute the full LCE spectra using methods described in
Ref. 42 in both SRN and LRN limits upon variation of θ and g,
respectively. We evolve a set of deviation vectors in the phase space
and extract the Lyapunov exponents corresponding to their growth
(see Appendix for more details). The number of Lyapunov char-
acteristic exponents equals the dimensionality of the phase space,
in our case 4N. Lyapunov exponents come ordered from largest to
smallest value upon incrementing the index i. Due to the symplectic
nature of the unitary circuits map, the spectrum is symmetric with
LCEs coming in pairs 3i = −32N−i+1. Norm conservation ensures
two vanishing LCEs3N = 3N+1 = 0.

Without loss of generality, we consider only positive LCEs.
We renormalize Lyapunov spectra 3i = 3i/3max and rescale the
index ρ = i/2N so that all positive LCEs 3(ρ) correspond to ρ ∈
[0, 1].

An in-depth investigation of Lyapunov spectra scaling of
weakly nonintegrable dynamics has been performed in Ref. 1.

Further, we perform a characterization of the tangent vector
corresponding to the largest LCE (for definition of tangent vectors,
see Appendix). At any given time, the normalized tangent vector
points in the direction of the strongest chaotization. We compute
the time average of the participation number PN of the normalized
tangent vector Ew(t),

PN(t) =
1

∑

i |wi(t)|4
. (13)

The tangent vectors depend on the coordinate basis choice. Once the
basis is fixed, a delocalized tangent vector results in PN ∼ N while a
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localized tangent vector yields a system size independent value of
PN.

E. Evolution

We perform the evolution of the state vector E9(t) in coordinate
space using the unitary map defined in Eq. (2). Before measuring
the observables, the system is prerun to ensure thermalization. The
initial conditions for each component of the state vector are set
as ψA,B

n = rneiγn . For each of the M initial conditions (trajectories),
we generate the amplitudes rn as uncorrelated random numbers to
be distributed according to an exponential distribution with prob-

ability density function f(x) ∼ x e−x2
in accordance with the Gibbs

distribution for the norm densities. We then renormalize the state
vector such that the norm density is set to unity. The phases γn are
distributed uniformly on the interval [0, 2π].

F. Observables

LOs: Due to the translational invariance in the system, we
assume the local observables (LOs) to be statistically identical and
independent. This leads to the possibility of obtaining a set of finite
time averages of LOs from a single trajectory. This way an output of
a single run will generate the variance σ 2(T) of a set of finite time
averages of N observables.

EOs: In contrast to LOs, the normal mode coefficients
cαk —which are the extended observables (EOs)—are not statisti-
cally identical. Thus, we choose a specific value of the wave vector
k = π/2 and perform M trajectory runs. We extract the time average

cm
k (T) to obtain the set of M finite time averages {cm

k (T)}
M
m=1 whose

variance σ 2(T) is then computed.

G. Time scales

For the sake of clarity, we briefly list and define the time scales
involved in our studies. The ergodization time TE is the time scaleup
to which the actions which turn integrals of motion at the very
integrable limit stay essentially constant for a weakly nonintegrable
system. It follows that TE must diverge upon approaching the very
integrable limit. We study systems with short-range coupling in real
space, which co-exists with any of the nonintegrable network ranges
(short and long), as the latter are defined in the corresponding action
space of actions which turn integrals of motion at the very integrable
limit. Therefore, regardless of the type of nonintegrable network,
once the time scale T > TE is reached, diffusion in real space will
set in. A second diffusion time TD ∼ N2 marks the time at which
the diffusion in real space reaches the boundaries of the finite sys-
tem. Note that for an infinite system size, TD diverges for any weakly
nonintegrable system, which still has a finite (though potentially
very large) ergodization time TE. Finally, we will compare the above
time scales with the Lyapunov time T3 = 1/3max, which is given
by the inverse of the largest Lyapunov exponent 3max. In all cases,
T3 ≤ TE, which is an expected result—there can be no ergodization
and thermalization before any chaos sets in. However, we find that

the ratio TE/T3 diverges much faster with increasing TE for SRNs
while staying almost constant for LRNs.

III. EXPECTED RESULTS

A. Short-range network

In the integrable limit θ = 0, the LOs are decoupled and the
variance of the set of finite time averages of LOs will stay con-
stant over time σ 2(T) = constant. Once the small deviation θ 6= 0
has been introduced, the LOs are coupled and the dynamics shows
nonintegrable behavior. The weak coupling of LOs will manifest
in nearly frozen actions with rare resonant spots in the system,
where chaotic dynamics takes place.24 The mean distance between
the chaotic spots grows upon approaching the integrable limit.
The strength of chaotic dynamics (largest Lyapunov exponent)
diminishes upon approaching the integrable limit. This interplay
between chaotic and non-chaotic parts of the system will result
in the ergodization time TE—a time scale on which the chaotic
spots diffuse over a distance of the order of the average spacing
between the resonances. It follows that σ 2(T < TE) stays approx-
imately constant up to TE. That time scale TE will diverge upon
approaching the integrable limit. At finite distance from the inte-
grable limit, the resonances continue to diffuse through the system
resulting in σ 2(T) ∼ T−1/2 for TE < T < TD.25 Once the excitations
diffuse across the entire system, all correlations vanish and we expect
σ 2(T) ∼ T−1 due to finite size effects. The time scale of the transition
from σ 2(T) ∼ T−1/2 to σ 2(T) ∼ T−1 is denoted as TD ∼ N2.25 The
schematic representation of expected behavior of σ 2(T) is presented
in Fig. 2.

The EOs are not conserved even at the very integrable limit.
They will show fast fluctuations and quick pseudo-thermalization in
analogy with Ref. 21. Thus, we expect an immediate σ 2(T) ∼ T−1

decay starting from the shortest time scales (see Fig. 2).

B. Long-range network

In the integrable limit g = 0, the system dynamics is linear,
and we expect σ 2(T) = constant for EOs. Upon the deviation from
the limit, the variance is expected to decay σ(T)2 ∼ T−1 after some
ergodization time TE required for the spread of chaos into the net-
work (see Fig. 3). We expect time TE to be of the order of Lyapunov
time T3 as there appears to be no other time scale governing the
dynamics (see Fig. 3).

LOs will show a more involved outcome. First, even at the inte-
grable limit, they are not conserved and will show fast fluctuation
and quick pseudo-thermalization in analogy with Ref. 21. Thus, we
expect an immediate σ 2(T) ∼ T−1 decay starting from the shortest
time scales. However, this only holds up to TE if the system is large
enough. Indeed, the EOs are preserved up to TE and correspond to
ballistically propagating modes (waves) in real space having a largest
finite group velocity vg. If the system size N � vgTE, the modes
will start to interact and ballistic propagation is replaced by diffu-
sive propagation in real space for T > TE. Correspondingly, the LO
dynamics results in a crossover from σ 2(T) ∼ T−1 to σ 2(T) ∼ T−1/2

for T > TE. At a time scale TD ∼ N2, the diffusion reaches the system
boundaries, and the LO dynamics crosses over back to a final asymp-
totic σ 2(T) ∼ T−1 decay. We show the expected behavior in Fig. 3.
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FIG. 2. Schematic representation of the expected behavior of the variance σ 2(T)
in the SRN case in log–log scale. (a) The variance of finite time averages of EOs is
expected to show the decay σ 2(T) ∼ T−1 according to the central limit theorem
as they behave as independent uncorrelated observables. (b) The variance of
finite time averages of LOs stays constant until TE (which will diverge at the inte-
grable limit). For T > TE , we expect σ 2 ∼ T−1/2 due to diffusive propagation
of resonances in the system. Once diffusion reaches the system boundary at
TD ∼ N2, we expect σ 2 ∼ T−1.

IV. NUMERICAL RESULTS

A. Short-range network

In the SRN case, we fix the nonlinearity strength g = 1 without
loss of generality. The system size N = 104. At θ = 0, the LOs are
frozen—the system is at the integrable limit. Upon increasing the
parameter θ , the LOs get intercoupled with nearest neighbors into a
SRN. We study the statistics of local and extended observables in the
SRN in close proximity to the corresponding integrable limit.

1. Extended observables

In Fig. 4(a), we plot the variance σ 2(T) for finite time averages
of EOs for various values of θ approaching zero. All curves show
the same result—an immediate decay σ 2(T) ∼ T−1 from the short-
est averaging times on. This holds even in the integrable limit itself
for θ = 0. Similar results have been shown by Ref. 21—due to the
central limit theorem, a random transformation of the set of action
variables shows statistical properties similar to those of a mixing sys-
tem when indeed it is not. Such a measurement does not necessarily

FIG. 3. Schematic representation of the expected behavior of the variance σ 2(T)
in the LRN case in log–log scale. (a) The variance of finite time averages of EOs
stays constant up to TE . For T > TE , we expect σ

2 ∼ T−1. (b) The variance of
finite time averages of LOs is expected to show the decay∼ T−1 according to the
central limit theorem as they behave as independent uncorrelated observables.
Past the ergodization time T > TE , we expect a transition to σ

2 ∼ T−1/2 due to
normal diffusion in real space up to TD ∼ N2. For large times T > TD, a return to
truly uncorrelated decay σ 2 ∼ T−1 is expected.

imply true ergodicity, as follows from what comes next. It also does
not allow for a measurement of the large but finite ergodization time
scale TE. The observed thermalization is in good agreement with the
prediction in Fig. 2(a).

2. Local observables

In Fig. 4(b), we show the variance σ 2(T) for finite time averages
of LOs. At times T < TE, we see approximately constant behav-
ior σ 2(T) ≈ σ 2(0). For T > TE we observe the diffusive decay
σ(T) ∼ T−1/2. For even larger averaging times T > TD, we observe
a transition to σ 2(T) ∼ T−1 due to finite size effects.25 Clearly, the
ergodization time TE grows upon approaching the integrable limit.
Together with the fast thermalization of EOs, we arrive at a very
good agreement of our observations with the prediction in Fig. 2(b).

B. Long-range network

In the LRN case, we fix θ = 0.33π without loss of generality.
The system size N = 105. For g = 0, the normal mode coefficients
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FIG. 4. Variance σ 2(T) of the set of time averages of EOs (a) and LOs (b) in
the SRN for different θ . Here, N = 10 000 and g = 1. (a) Extended observables
EOs with k = π/2. Three cases with θ = 0.1, 0.01, 0.001 are shown and are
practically not distinguishable. The dashed line indicates a T−1 decay. The inset
shows the local derivatives of all three curves. (b) Local observables LOs and addi-
tional averaging over ten trajectories (realizations). The parameter θ takes val-
ues {0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001}
from bottom blue to top red. The two dashed lines indicate T−1/2 and T−1

decay, respectively. The transition from T−1/2 to T−1 decay is observed for θ
= 0.5, 0.25, 0.1 (blue, orange, and green curves, respectively). The inset shows
the local derivatives of all curves.

|ck| are constant in time. The EOs are frozen, indicating another
integrable limit. Upon increasing g 6= 0, the EOs get intercoupled
with an all-to-all coupling into a LRN. We study the statistics of
local and extended observables in the LRN in close proximity to the
corresponding integrable limit.

1. Extended observables

In Fig. 5(a), we show the variance σ 2(T) for finite time averages
of EOs for various values of g. At times T < TE, we see approx-
imately constant behavior σ 2(T) ≈ σ 2(0). For times T > TE we
observe a σ 2(T) ∼ T−1 decay. Clearly, the ergodization time TE

grows upon approaching the integrable limit g → 0. We arrive at

FIG. 5. Variance σ 2(T) of the set of time averages of EOs (a) and
LOs (b) in the LRN for different g. Here N = 100 000 and θ = 0.33π .
(a) Extended observables EOs with k = π/2. The parameter g takes values
{0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001} from
bottom blue to top red. The dashed line indicates a T−1 decay. The inset shows the
local derivatives of all curves. (b) Local observables LOs and additional averaging
over 10 trajectories (realizations). Four cases with g = 0.5, 0.1, 0.005, 0.0025.
Three dashed lines indicate T−1, T−1/2 and again T−1 decay, respectively. The
transition from T−1 to T−1/2 and back to T−1 decay is observed for g = 0.5, 0.1
(blue and green curves, respectively). The inset shows the local derivatives of all
curves.

a very good agreement of our observations with the prediction in
Fig. 3(a).

2. Local observables

In Fig. 4(b), we plot the variance σ 2(T) for finite time averages
of LOs for various values of g approaching zero. All curves show
the same result—an immediate decay σ 2(T) ∼ T−1 from the short-
est averaging times on. This holds even in the integrable limit itself
for g = 0. Similar results have been shown by Ref. 21—due to the
central limit theorem, a random transformation of the set of action
variables shows statistical properties similar to those of a mixing sys-
tem when indeed it is not. Such a measurement does not imply true

Chaos 32, 063113 (2022); doi: 10.1063/5.0092032 32, 063113-7

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 6. Short-range network case. Lyapunov time T3 (blue circles) and ergodiza-
tion time TE (orange rectangles) extracted from Fig. 4(b) against the control
parameter θ . We determine TE from local derivatives as the first time when
dσ 2 = −0.25.

ergodicity, as follows from what comes next. We also notice a transi-
tion to σ 2(T) ∼ T−1/2 starting at roughly T ≈ TE at which EOs start
to thermalize, therefore inducing diffusion in real space. A subse-
quent transition to σ 2(T) ∼ T−1 happens for T > TD due to finite
size effects. The observed thermalization is in good agreement with
the prediction in Fig. 3(b).

C. Time scales

In both SRN and LRN cases, we compare the ergodization
times TE with the characteristic Lyapunov time scales T3 of chaotic
dynamics. As the variance of finite time averages of actions σ 2(T)
is expected to transition from nearly constant behavior to σ 2(T) ∼
T−1/2 in SRN and σ 2(T) ∼ T−1 in LRN, we follow the local deriva-
tives dσ 2 of the variance curves σ 2(T) (see insets of Figs. 4 and 5).
The ergodization time TE is extracted as the time when dσ 2 = −0.25
in SRN and dσ 2 = −0.75 in LRN for the first time. The Lyapunov
times T3 are computed for the same parameter values and plotted
against TE in Fig. 6 for SRN and Fig. 7 for LRN. In the SRN, we notice
TE � T3 such that the ratio TE/T3 grows quickly as the system
approaches integrable limit θ → 0. In the LRN case, T3 ∼ TE and
their ratio is practically constant upon approaching the integrable
limit g → 0.

D. Lyapunov spectra and tangent vectors

In Figs. 8 and 9, we show the rescaled Lyapunov spectra
3̄(ρ) = 3(ρ)/3max corresponding to the SRN and the LRN, respec-
tively.

The rescaled spectrum tends to a non-analytic function in the
SRN upon approaching the integrable limit in Fig. 8. Close to the
limit, the spectrum shows exponential decay with a (length scale)
exponent, which diverges at the very integrable limit.1 The slowing
down of thermalization is characterized by two diverging scales—a
time scale and a length scale.

FIG. 7. Long-range network case. Lyapunov time T3 (blue circles) and ergodiza-
tion time TE (orange rectangles) extracted from Fig. 5(a) against the control
parameter g. We obtain TE from local derivatives as the first time when dσ 2
= −0.75.

The rescaled spectrum tends to an analytic function in the LRN
upon approaching the integrable limit in Fig. 9. The slowing down
of thermalization is characterized by one diverging time scale only.

In the insets of Figs. 8 and 9, we plot the participation PN num-
ber of the tangent vector corresponding to the largest Lyapunov
exponent as a function of system size. For the SRN case, the param-
eters are g = 1 and θ = 0.001. For the LRN case, the parameters are
θ = 0.33π and g = 0.001. The participation numbers depend on the
basis choice of the tangent vector. Thus, we compute the PN in both
LO and EO representations.

In the SRN case (inset in Fig. 8), the tangent vectors in LO rep-
resentation are localized due to rare chaotic resonances in real space.
Therefore, the PN number in LO representation is predicted to be
system size independent. Since a localized distribution in real space
turns delocalized in reciprocal space, the EO representation results
in a PN, which grows and scales with the system size.

In the LRN case (inset in Fig. 9), resonances are expected to
appear almost everywhere in the EO representation. Thus, we expect
the PN number in EO representation to grow and scale with the
system size. This is in accordance with our numerical observation.
Interestingly, the delocalized nature of the tangent vector in the EO
representation does not imply that the LO representation will result
in localized structures. Indeed, the numerical computation shows
that the PN number in LO representation also grows and scales with
the system size.

V. DISCUSSION AND CONCLUSION

One of our main findings is that the choice of observables for
a thermalization study can lead to ambiguous conclusions. In par-
ticular, we consider macroscopic systems, which are tuned close
to an integrable limit. Their slow adiabatic invariants are given by
the conserved actions at the very integrable limit. Making these
actions the observables of choice will obviously result in the cor-
rect thermalization analysis. We study two different classes of weakly
nonintegrable lattice systems with discrete translational invariance,
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FIG. 8. The rescaled Lyapunov spectra 3̄(ρ) in the SRN regime. Param-
eters are N = 200 and g = 1. Different curves correspond to θ = {0.1,
0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001, 0.000 75, 0.0005} from top
to bottom. Data are used from Ref. 1. Inset: PN of tangent vector vs N for
θ = 0.001. Cyan circles: LO representation. Magenta squares: EO
representation.

in which the actions are interacting through either a long-range net-
work or a short-range network. For LRNs, the actions are extended
in real space, so the relevant observables are extended. For SRNs,
the actions are local in real space; thus, the relevant observables are
local. As we show in particular, the choice of the “wrong” observ-
ables—LOs for LRNs or EOs for SRNs—will result in a seemingly
quick thermalization without any slowing down upon approach-
ing the integrable limit, including the limit itself. At the same
time, the correctly chosen observables—EOs for LRNs and LOs for
SRNs—will show a dramatic slowing down of thermalization. We
also show that a simultaneous study of both LO and EO thermaliza-
tion allows us to unambiguously identify the slowing down and even
conclude which class—LRN or SRN—is under study.

As a result of our study, we extract the ergodization time scale
TE as a function of the control parameter, which tunes the distance
from the integrable limit. We also compute the largest Lyapunov
exponent and its inverse—the Lyapunov time T3. It follows that
the LRN class is characterized by only one time scale as TE ∼ T3.
At variance to the above, the SRN class must be characterized
by other diverging scales, as we observe that TE � T3 in accor-
dance with previous observations for Josephson junction arrays24

and Klein–Gordon chains.23 This second time or length scale was
predicted to arise from low densities of rare resonances in real space
and the need for these resonances to migrate over the increasing and
diverging average distance between them.24

For times larger than the ergodization time scale TE, the finite
time average distributions of LOs will show a diffusive convergence
of their variance σ 2 ∼ T−1/2. The impact of a finite size N of the
system results in a diffusion time scale TD ∼ N2 when the variance
crosses over to σ 2 ∼ T−1. These findings are in line with studies
on Hamiltonian dynamics such as Josephson junctions.25 The above
scheme of identifying the correct network class relies on measur-
ing both LOs and EOs and on varying the control parameter of the
distance to the integrable limit. Interestingly, we can tell the right

FIG. 9. The rescaled Lyapunov spectra 3̄(ρ) in the LRN regime. Param-
eters are N = 200 and θ = 0.33. Different curves correspond to g = {0.1,
0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001, 0.000 75, 0.0005} from top
to bottom. Data are used from Ref. 1. Inset: PN of tangent vector vs N for g
= 0.001. Cyan circles: LO representation. Magenta squares: EO representation.

network class also if we do not vary that control parameter but
instead vary the system size N. For that, we note that the computa-
tion of the largest Lyapunov exponent comes with its corresponding
tangent vector information. We use this information to compute
its average participation number PN in both the direct local space
and in reciprocal space. For the SRN, we already expect the tangent
vector to be highly local in real space, thus delocalizing in recipro-
cal space. Indeed, PN is essentially independent of N in direct space
but scales PN ∼ N in reciprocal space. At variance to that, the LRN
results in a PN ∼ N scaling for both spaces. Therefore, we can tell the
network class from a finite size analysis of the participation number
of the tangent vector without varying the distance to the integrable
limit.

In a recent study, we computed the entire Lyapunov spec-
trum and analyzed its scaling properties upon varying the control
parameter of the distance to the integrable limit.1 For LRNs, the
rescaled Lyapunov spectra converge to an analytic function, leav-
ing us with only one characteristic time scale T3, which is close
to TE. At variance, for SRN, the rescaled Lyapunov spectrum con-
verges to a non-analytic function, and on that route, one can extract
a second diverging length scale,1 in agreement with this work and
previous studies. An advantage of Lyapunov spectra computation is
that they are independent of any coordinate basis choice. Nonzero
Lyapunov spectra necessarily imply chaotic mixing dynamics. On
the downside, we note that while the largest LCE can be experi-
mentally assessed, the entire Lyapunov spectrum appears to be not
experimentally measurable.

One of the most interesting open questions is whether there
are other network classes which have experimental relevance. This
can happen for lattice systems in the limit of weak coupling with
algebraic coupling decay along the lattice. Another interesting case
concerns weak two-body interactions and, thus, weak nonlinearities
in the presence of disorder such that the actions at the integrable
limit are either Anderson localized or extended but fractal or multi-
fractal. From a more mathematical perspective, it would be interest-
ing to study weak perturbations of such known integrable systems as
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the Toda chain15 or the Ablowitz–Ladik system.43 Last but not least,
all studies need to be done for higher lattice dimensionality.
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APPENDIX: COMPUTING LYAPUNOV TIMES

To compute Lyapunov exponents, we follow the prescription
given in Ref. 42. We introduce an orthogonal set of vectors {Ewi} as a
deviation from some unperturbed trajectory Ex,

E9i(t) = Ex(t)+ Ewi(t). (A1)

The direction of each vector {wi} corresponds to a direction
of an exponential growth or contraction of the distance between

unperturbed trajectory Ex and the perturbed E9 . The evolution of
tangent vectors is performed using the corresponding equations
of motion derived below. We measure the magnitude of growth
γ (t) = |Ew(t)| of each tangent vector and compute transient Lya-
punov exponents Xi(t) = 1/t

∑t
τ log γ (τ) after which the tangent

vectors are orthonormalized using a Gram–Schmidt procedure. The
evolution of positive transient Lyapunov exponents X(t) is shown
in Fig. 10. After an initial decay, the transient Lyapunov exponents
saturate. The saturated values are taken as final values for Lyapunov
exponents 3. Due to the conservation of the norm, two exponents
are expected to attain zero value. In the figure, we see one of them
(bottom most purple line) tending to zero with increasing time and
no saturation.

Before deriving equations for deviation vectors Ewi, we first
define the linear part of evolution,

αA
n [ E9(t)] ≡ cos2 θψA

n (t)− cos θ sin θψB
n−1(t)

+ sin2 θψA
n+1(t)+ cos θ sin θψB

n (t),

αB
n [ E9(t)] ≡ sin2 θψB

n−1(t)− cos θ sin θψA
n (t)

+ cos2 θψB
n (t)+ cos θ sin θψA

n+1(t).

(A2)

We start from the nonlinear EoM Eq. (5) and substitute in Eq. (A2),

ψA
n (t + 1) = eig|αA

n [Ex(t)+Ew(t)]|2αA
n

[

(Ex(t)+ Ew(t))
]

,

ψB
n (t + 1) = eig|αB

n [Ex(t)+Ew(t)]|2αB
n

[

(Ex(t)+ Ew(t))
]

.
(A3)

FIG. 10. The evolution of positive transient Lyapunov exponents. (a) SRN case
with angle θ = 0.1 and nonlinearity g = 1.0, (b) LRN case with angle θ = 0.33π
and g = 0.1. For both cases, system size N = 200.

Expanding the nonlinear term and keeping terms only in the first
order of Ew results in

|αp
n[Ex(t)+ Ew(t)]|2 = |αp

n[Ex(t)] + αp
n[Ew(t)]|2

= αp
n[Ex(t)]αp

n[Ex(t)]∗ + αp
n[Ew(t)][αp

n[Ew(t)]∗

+ αp
n[Ew(t)]αp

n[Ex(t)]∗ + αp
n[Ex(t)]αp

n[Ew(t)]∗

≈ |αp
n[Ex(t)]|2 +1p

n(t), (A4)

where

1p
n(t) = αp

n[Ex(t)]αp
n[Ew(t)]∗ + c.c. (A5)

Thus, we can rewrite the exponential term in Eq. (A3),

eig|α
p
n[Ex(t)+Eε(t)]|2 = eig|α

p
n[Ex(t)]|2

[

1 + ig1p
n(t)

]

, (A6)

and using the linearity of α
p
n[ E9(t)] we finally arrive at the following

linear equations:

wp(t + 1) = eig|α
p
n[Ex(t)]|2

{

αp
n[Ew(t)] + ig1p

n(t)α
p
n[Ex(t)]

}

. (A7)
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