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We propose a novel framework to characterize the thermalization of many-body dynamical systems
close to integrable limits using the scaling properties of the full Lyapunov spectrum. We use a classical
unitary map model to investigate macroscopic weakly nonintegrable dynamics beyond the limits set by the
KAM regime. We perform our analysis in two fundamentally distinct long-range and short-range integrable
limits which stem from the type of nonintegrable perturbations. Long-range limits result in a single
parameter scaling of the Lyapunov spectrum, with the inverse largest Lyapunov exponent being the only
diverging control parameter and the rescaled spectrum approaching an analytical function. Short-range
limits result in a dramatic slowing down of thermalization which manifests through the rescaled Lyapunov
spectrum approaching a non-analytic function. An additional diverging length scale controls the
exponential suppression of all Lyapunov exponents relative to the largest one.
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Thermalization is a universal property of the long-time
dynamics of generic nonintegrable many-body systems.
Thermal equilibrium is characterized by stationary distri-
butions and assumes ergodicity and mixing in the phase
space [1]. The thermalization dynamics will in general slow
down close to integrability, and may even cease to be
observed [2–8], which was also noted in earlier studies of
dynamical systems [9–12]. The theory of weak nonintegr-
able perturbations for finite Hamiltonian systems H ¼
H0 þ εH1 was pioneered by Kolmogorov in 1954 [13]
and later by Arnold [14] and Moser [15], here H0 and H1

refers to integrable and nonintegrable parts of the
Hamiltonian, respectively. The corresponding KAM theory
demonstrates the violation of the ergodic hypothesis for
sufficiently weak perturbations due to the emergence of a
mixed phase space with a finite fraction of points belonging
to regular trajectories on tori. At a critical strength of the
nonintegrable perturbation ε, all tori disappear, and the
dynamics become fully chaotic allowing for thermalization.
But what exactly is meant by “sufficiently weak” and
“critical strength”? As it turns out the magnitude of the
critical perturbation ε decays rapidly with the growth of the
number of degrees of freedom. Namely, ε ≤ aN−b with b ¼
160 has been shown as an upper bound for applicability of
KAM theory in lattice systems with short-range inter-
actions (for example, an array of Josephson junctions) [16].
This result suggests that it is practically impossible to
witness quasiperiodic motion suggested by KAM in mac-
roscopically large systems close to integrability. What is
then the expected behavior of systems with a large number
of degrees of freedom in proximity to an integrable limit?
How does one characterize it? Does it have universality
classes? Is there a KAM-like regime for macroscopic

models? If not, what lies beyond the KAM horizon spanned
by finite systems?
To quantify the thermalization of a system one typi-

cally chooses a specific set of observables and studies

FIG. 1. (a) A schematic representation of the unitary circuits
map. Large yellow blocks indicate Ĉ unitary matrices parametrized
by the angle θ. Small green blocks indicate local nonlinearity
generating map Ĝ parametrized by the nonlinearity strength g. The
black arrow on the right indicates the time flow. (b) Control
parameter space fθ; gg with the highlighted area corresponding to
the induced networks. Integrable limits are reached for g ¼ 0
(linear evolution of extended normal modes) or θ ¼ 0 (decoupled
nonlinear map). Small nonzero g values induce LRNs, small
nonzero θ values induce SRNs. The network images indicate
actions (filled circles) and couplings induced by the nonintegrable
perturbation (straight lines). Left image, SRN; right image, LRN.
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equipartition and ergodicity for those specific observables.
In their pioneering work Fermi, Pasta, Ulam, and Tsingou
attempted to showcase equipartition using the normalmodes
of a linear chain as their choice of observables for a weakly
nonlinear chain [17]. In the absence of nonlinearity, the
normal modes are “frozen,” i.e., they become the actions of
the integrable system.
Recent studies attempted to broaden the ergodicity

analysis by computing convergence of finite-time average
distributions of observables to their phase space averages.
They revealed that most physical systems belong to two
distinct classes when it comes to thermalization in prox-
imity to integrable limits [18–20]. Systems with weak
nonlinear perturbations such as FPUT chains, Josephson
junction networks in the limit of small energy density,
discrete nonlinear Schrödinger equations all belong to the
class of long range networks (LRN). On the other hand, a
broad range of lattice systems allowing for proximity to an
integrable limit of vanishing lattice coupling belongs to a
class of short range networks (SRN). Examples of SRN
include coupled anharmonic oscillator chains in the limit of
weak coupling [18], Josephson junction chains in the limit
of weak Josephson coupling [19], etc.
There are serious limitations of studying thermalization

through observable dynamics. The choice of observables is
ambiguous [21,22], and even for integrable systems spe-
cifically chosen observables show ergodic thermal-like
behavior [23]. Observable dynamics address ergodicity,
but not mixing. However, nonintegrable dynamics are
necessarily mixing, show typically exponential decay of
correlations with a macroscopic set of correlation times.
In this Letter, we overcome the above limitations by

computing the entire Lyapunov spectrum [24]. Lyapunov

spectra were previously used for diagnosing phase tran-
sitions [25] and energy localization [26]. Here we show that
the scaling properties of the Lyapunov spectrum offer a
conceptual novel way for the description of weakly non-
integrable dynamics in a generic model setup. We consider
a macroscopically large system beyond the limits set by
KAM and characterize thermalization in both SRN and
LRN regimes, thus drawing a very general picture that
encapsulates a great number of physically realizable
scenarios and is directly applicable to most weakly non-
integrable classical systems.
Resolving the entire Lyapunov spectrum for a large

system is a numerically challenging task. It relies on the
simultaneous evolution of a large number of trajectories,
[27]. The proximity to integrable limits makes this task
even harder due to an increase of the thermalization times.
In view of these challenges, we need models which possess
all physically relevant features to achieve thermalization
and are extremely efficient for the numerical evolution—
unitary maps. The fast, exact, error-free discrete-time
evolution is a key feature of unitary maps which makes
them advantageous for heavy numerical tasks. These
properties were on display in recent studies, where discrete
unitary maps were used to achieve record-breaking evolu-
tion times for nonlinear wave-packet spreading tasks [28],
Anderson localization [29,30], and soliton dynamics [31].
Model.—We use classical unitary circuit maps. We

define a 1D lattice of size N with one complex component
ψn per site n. The classical dynamics evolves the vector
Ψ⃗ ¼ fψng in a corresponding phase space of dimension 2N
on a deterministic trajectory specified by an initial con-
dition. The evolution is performed by subsequent applica-
tions of the map:

Û ¼
X

n∈Z
Ĝn

X

n∈2Zþ1

Ĉn;nþ1

X

n∈2Z
Ĉn;nþ1: ð1Þ

The unitary matrices Ĉn;nþ1 are parametrized by the
rotation angle θ and act as hoppings on pairs of neighboring
sites:

Ĉn;nþ1

�
ψnðtÞ
ψnþ1ðtÞ

�
¼

�
cos θ sin θ

− sin θ cos θ

��
ψnðtÞ
ψnþ1ðtÞ

�
; ð2Þ

and the local map Ĝn induces nonlinearity:

Ĝnψn ¼ eigjψnj2ψn: ð3Þ
The classical unitary circuit dynamics is schematically
represented in Fig. 1.
The evolution given by unitary matrix maps may be

viewed as a generalization of canonical transformations to
complex phase-space coordinates. The map dynamics of
classical unitary circuits is mixing and therefore ergodic.
During the evolution the norm of the state vector Ψ⃗ðtÞ is
conserved, which leads to the Gibbs distributed absolute

FIG. 2. The largest Lyapunov exponents Λmax in SRN (blue
small circles, top) and LRN (orange small circles, bottom) regime
versus the corresponding deviation from integrable limit g, θ.
Solid lines connect the data points and guide the eye. For the SRN
case, the parameter nonlinearity is fixed g ¼ 1.0, while for the
LRN case the angle θ is fixed at 0.33π. For both cases system size
N ¼ 200. The large black circles connected by dashed lines
correspond to data for system size N ¼ 100.
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values of local components jψnj2. This is analogous to the
energy conserving Hamiltonian dynamics with Gibbs
distributed local energies. The map possesses two distinct
LRN and SRN integrable limits. We checked that the
thermalization properties of observables in unitary circuits
are in line with previous observations for Hamiltonian
systems [18,19].
SRN integrable limit.—We consider the limiting case

θ ¼ 0 with a fixed nonzero value of nonlinearity strength g.
In this setup the matrices Ĉn;nþ1 become unity, thus
decoupling the sites. The unitary evolution applies a
nonlinear norm dependent phase shift at each site:

ÛSRN
int Ψ⃗ ¼

X

n∈Z
eigjψnj2ψn: ð4Þ

The system turns integrable with the norm at each site
jψnj being a constant of motion. By introducing a weak
deviation from the limit 0 < θ ≪ 1 one induces a network
with next-to-nearest-neighbor hopping—an SRN (see
Supplemental Material for more details [32]). We sche-
matically represent the parameter space and corresponding
network in Fig. 1(b).
LRN integrable limit.—Vanishing nonlinearity strength

g ¼ 0 results in a linear evolution with corresponding

eigenvalue problem eiωΨ⃗ðtÞ ¼ ÛLRN
int Ψ⃗ðtÞ (see details in

Supplemental Material [32]). The evolution corresponding
to this integrable limit is given by

ÛLRN
int Ψ⃗ ¼

X

k

ûkψ⃗k; ð5Þ

where ψ⃗k are the normal modes of the system and uk is
the evolution map in reciprocal space corresponding to the
wave number k. In this limit the absolute values of the

normal mode amplitudes jckj ¼ jψ⃗†
k · Ψ⃗ðtÞj are the con-

stants of motion. The deviation from this limit g ≠ 0
induces an all-to-all coupling among the normal modes
of the system which respects translational invariance
through selection rules [32]. This by definition constitutes
an LRN. The green region in the control parameter space in
Fig. 1(b) corresponds to that LRN with the schematic
representation of the network sketched right to it.
We compute the Lyapunov spectrum of unitary circuits

in proximity to integrable limits in order to resolve the
entire set of characteristic timescales. We follow the
evolution of a set of orthogonal tangent vectors fw⃗ig in
the 2N dimensional phase space and compute the incre-
ment γiðtÞ ¼ jw⃗iðtÞj. Details on the approach can be
found in Sec. V of the Supplemental Material [32]. For
each vector we compute the transient value XiðtÞ ¼
1=t

P
t
τ log γðτÞ which in the infinite time limit turns into

the Lyapunov characteristic exponent (LCE) Λi ¼
limt→∞ XiðtÞ. The numerically computed LCEs are the
values of XðtÞ extracted at the last step of the dynamics.
The LCEs are ordered from largest to smallest value upon
incrementing the index i. Because of the symplectic nature
of the map the spectrum is symmetric with LCEs coming in
pairs Λi ¼ −Λ2N−iþ1. Norm conservation ensures two
vanishing LCEs ΛN ¼ ΛNþ1 ¼ 0 [33]. According to the
numerical setup, however, it is impossible to achieve exact
Λi ¼ 0 values, with bounds on the smallest computed
Lyapunov exponents Λmin ∼ 1=t.
The evolution of the phase space vector Ψ⃗ is obtained

from subsequent applications of the map Û. We use
periodic boundary conditions ψNþ1 ¼ ψ1. The initial con-
ditions for the amplitudes of the local complex components
are drawn from an exponential distribution pðxÞ ¼ e−x,
while their phases were generated as uncorrelated and
random numbers chosen uniformly from the interval
½0; 2π�. The state vector is then uniformly rescaled
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FIG. 4. Renormalized Lyapunov spectrum fΛ̄g against the
rescaled index ρ for SRN in log scale (corresponding to the
parameters and data of Fig. 3). The dashed line is to guide the eye
for the fit of exponential decay.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10–3 10–2 10–1

101

102

FIG. 3. Renormalized Lyapunov spectrum fΛ̄g against the
rescaled index ρ for SRN in proximity to the integrable limit. The
nonlinearity strength is fixed at g ¼ 1.0. Angle θ varies from 10−1

(blue, top) to 5 × 10−4 (red, bottom). The inset shows the
coefficient 1=β of the exponential decay (see also Fig. 4) of
the curves as a function of θ. System size N ¼ 200.
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such that the norm density ð1=NÞP jψnj2 ¼ 1. The largest
integration time varied between tmax ¼ 108 and tmax ¼ 109.
We have performed computations for a set of initial
conditions to ensure the independence of results on the
choice of initial state. Unless stated otherwise the system
size is set to N ¼ 200.
First, we show the dependence of the largest Lyapunov

exponent Λmax on the distance g or θ to the integrable limit
in Fig. 2 for both networks. Both curves show a dependence
which might resemble a power law Λmax ∼ gν and Λmax ∼
θμ with ν ≈ 1=2 and μ ≈ 3=2. Remarkably the SRN case
shows a much slower diminishing of Λmax upon approach-
ing the integrable limit as compared to the LRN. This is
similar to the study of a Hamiltonian system dynamics
[18,34,35]. Our data in Fig. 2 are obtained for two different
system sizes N ¼ 100, 200 and show very good agreement,
therefore we can exclude finite-size corrections. We now
proceed to the analysis of the entire Lyapunov spectrum. In
Figs. 3 and 5 we show the renormalized Lyapunov
spectrum Λ̄i ¼ Λi=Λmax for SRN and LRN respectively.
The index of Lyapunov exponents is rescaled ρ ¼ i=N so
that all positive LCEs Λ̄ðρÞ correspond to ρ ∈ ½0; 1�. We
notice a dramatic qualitative difference between the two
regimes. For the LRN case the renormalized Lyapunov
spectrum Λ̄ðρÞ converges to a limiting smooth curve for
g → 0. For the SRN instead that curve vanishes in an
exponential way. We will explain these observations in
detail below.
For the SRN an increasing number of Lyapunov expo-

nents seems to be vanishing upon approaching the inte-
grable limit as seen in Fig. 3. We replot the same spectrum
in log scale in Fig. 4 and notice an exponential decay of the
renormalized spectrum:

ΛSRN
ρ ¼ Λmaxe−ρ=β: ð6Þ

We fit the exponential decay and plot the exponent 1=β
versus θ in the inset in Fig. 3. We observe that the exponent
is rapidly diverging upon approaching the integrable limit
such that βðθ → 0Þ → 0. The entire Lyapunov spectrum
of the SRN is therefore characterized by two scaling
parameters—the largest Lyapunov exponent Λmax which
is an inverse timescale, and the parameter β which is an
inverse length scale. This result explains and agrees with
previous studies on dynamical glass in Hamiltonian systems
[18,19] where the largest Lyapunov exponent stems from
local resonances with rapidly increasing distance between
them upon approaching the integrable limit. Our results
show that the Lyapunov spectrum contains the quantitative
scaling parameters of that dynamical glass theory.
In contrast, the LRN spectrum is characterized by single

parameter scaling. The renormalized Lyapunov spectrum
approaches a smooth limiting curve Λ̄ðρÞ as seen in Fig. 5.
We compute the limiting curves by a linear fit of Λ̄ρðgÞ at
each value of ρj. Thus in the LRN regime, the final form of
the spectrum is given by

ΛLRN
ρ ¼ Λmaxfðρ; θÞ: ð7Þ

The limiting curves for different values of θ are plotted in
the inset of Fig. 5 and show little if any variation. It appears
that the limiting curve fðρÞ is universal for all LRN
parameter choices.
To further characterize the chaotic dynamics and show-

case the difference between SR and LR networks we
compute the Kolmogorov-Sinai entropy KKS ¼

R
1
0 Λ̄ρdρ.

In the SRN case, from Eq. (6) follows

KSRN
KS ¼ Λmaxβð1 − e−1=βÞ: ð8Þ

Therefore, the renormalized Kolmogorov-Sinai entropy
kKS ¼ KKS=Λmax will tend to zero in the integrable
limit kKS ≈ β.
In the LRN regime the integral over the asymptotic

function fðρ; θÞ [see Eq. (7)] will lead to finite values of the
renormalized KS entropy kKS ¼

R
1
0 fðρÞdρ > 0 at the very

integrable limit.
To conclude, we identified the Lyapunov spectrum as a

universal characteristic descriptor of the complex phase
space dynamics of a macroscopic system in proximity to an
integrable limit. The limit is characterized by a macro-
scopic number of conserved actions. We identify two
classes of nonintegrable perturbation networks—short
and long-range ones. Long-range networks are character-
ized by a single parameter scaling of the Lyapunov
spectrum—knowing the largest Lyapunov exponent
allows to reconstruct the entire spectrum. Consequently,
all Lyapunov exponents scale as the largest one upon
approaching the integrable limit. Typical long-range
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FIG. 5. Renormalized Lyapunov spectrum fΛ̄g against the
rescaled index ρ for LRN in proximity to the integrable limit. The
angle θ ¼ 0.33π is fixed. The deviation from the integrable limit
g varies from 10−1 (blue) to 10−3 (purple). The dashed line is to
show the asymptotic curve as g → 0. In the inset we showcase the
asymptotic curve as parameter θ is varied. For all cases system
size N ¼ 200.
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networks are realized with translationally invariant lattice
systems in the limit of weak nonlinearity. In that case, the
actions correspond to normal modes extended over the
entire real space. Nonintegrable perturbations will typically
couple them all. On the other side, short-range networks are
characterized by a two-parameter scaling. In addition to the
largest Lyapunov exponent, a diverging length scale results
in a suppression of the renormalized Lyapunov spectrum
upon approaching the integrable limit. Typical short-range
networks are realized with lattice systems and local (short-
range) nonlinearities in the limit of weak coupling. Our
findings call for a thorough analysis of other potential
network range classes. In particular the cases with disorder,
exponentially or polynomially decaying long-range cou-
plings in combination with multiple spatial dimensions
may result in new classes of weakly nonintegrable dynam-
ics, which are not covered in this work and could be a
promising direction of future research. In particular, quan-
tizing the classical dynamics could lead to many-body
localization in the case of short-range networks, as opposed
to long-range networks.
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