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I. LINEAR MAP

In this section we provide equations of motion for the
short range network. For convenience we use a notation
which slightly differs from the main text. We express the

state vector ~Ψ as consisting of N/2 unit cells with sites
A and B

~Ψ(t) = {ψAn (t), ψBn (t)}N/2n=1 . (1)

The linear time evolution of the system is governed by
a discrete unitary map consisting of several transforma-

tions of vector ~Ψ:

Û (0) =
∑
n

ĈB,An

∑
n

ĈA,Bn , (2)

where maps ĈA,Bn and ĈB,An are given by unitary matri-
ces acting on the neighboring sites (ψAn , ψ

B
n )T :

∑
n

ĈA,Bn |Ψ(t)〉 =
∑
n

(
cos θ sin θ
− sin θ cos θ

)(
ψAn (t)
ψBn (t)

)
,

∑
n

ĈB,An |Ψ(t)〉 =
∑
n

(
cos θ sin θ
− sin θ cos θ

)(
ψBn (t)
ψAn+1(t)

)
.

(3)

The resulting equations of motion of the linear evolu-
tion are as follows:

ψAn (t+ 1) = cos2 θψAn (t)− cos θ sin θψBn−1(t)

+ sin2 θψAn−1(t) + cos θ sin θψBn (t)

ψBn (t+ 1) = sin2 θψBn+1(t)− cos θ sin θψAn (t)

+ cos2 θψBn (t) + cos θ sin θψAn+1(t) . (4)

The solution can be determined exactly from the stan-

dard ansatz
(
ψAn (t), ψBn (t)

)T
= e−i(ωkt−kn)

(
ψAk , ψ

B
k

)T
with eigenfrequencies ωk and wave numbers k. The dis-
persion relation ω(k) is given by:

ω(k) = ± arccos
(
cos2 θ + sin2 θ cos k

)
, (5)

with two dispersive bands ωrk (r = 1, 2), see Fig. 1, and
corresponding normal modes which form a complete set:

~Ψr
k =

∑
n

eiknψr,pk , p = A,B . (6)
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FIG. 1: The dispersion relation corresponding to
Unitary Circuits (see eq. (5)). The parameter θ is

varied to showcase a dispersionless flat band (red), a
case of constant group velocity case (black) and the

generic case (green).

II. NONLINEAR MAP

We rewrite the linear part of the evolution eq. (4) as
follows:

αAn (t) ≡ cos2 θψAn (t)− cos θ sin θψBn−1(t)

+ sin2 θψAn−1(t) + cos θ sin θψBn (t)

αBn (t) ≡ sin2 θψBn+1(t)− cos θ sin θψAn (t)

+ cos2 θψBn (t) + cos θ sin θψAn+1(t) . (7)

The nonlinearity inducing map Ĝ is applied after the
linear part of the evolution:

Ûnonlin =
∑
n

Ĝn
∑
n

ĈB,An

∑
n

ĈA,Bn , (8)

The nonlinearity is induced through an additional
norm-dependent phase rotation as the result of the lo-
cal linear evolution:

Ĝnψ
A,B
n (t) = eig|α

A,B(t)|2ψA,Bn (t) (9)

The final equations of motion are:

ψAn (t+ 1) = eig|α
A
n |

2[
cos2 θψAn (t)− cos θ sin θψBn−1(t)

+ sin2 θψAn−1(t) + cos θ sin θψBn (t)
]

ψBn (t+ 1) = eig|α
B
n |

2[
sin2 θψBn+1(t)− cos θ sin θψAn (t)

+ cos2 θψBn (t) + cos θ sin θψAn+1(t)
]

(10)
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III. SHORT RANGE NETWORK

The integrable limit is reached for θ = 0. The system
turns integrable and the equations of motion preserve the
local norm (action) |ψA,Bn |2:

ψAn (t+ 1) = eig|ψ
A
n |

2

ψAn (t)

ψBn (t+ 1) = eig|ψ
B
n |

2

ψBn (t) (11)

For small values of the parameter θ eq. (11) yields

ψAn (t+ 1) = eig|α
A
n |

2[
ψAn (t)− θ(ψBn−1(t)− ψBn (t))

]
ψBn (t+ 1) = eig|α

B
n |

2[
ψBn (t) + θ(ψAn+1(t)− ψAn (t))].

(12)

These equations of motion couple the actions through
nearest neighbor terms and fall under the definition of a
short range network.

IV. LONG RANGE NETWORK

The integrable limit is reached for g = 0 (see section
I). The long range network of observables is obtained in

the normal mode space of the model. The state vector
can be represented as a sum of normal modes:

~Ψ(t) =
∑
k

crk(t)~Ψr
k. (13)

where the index r = 1, 2 corresponds to one of the

two bands and ~Ψr
k are the corresponding normal modes

(see eq. (6)). In the linear setup the absolute values
of the normal mode coefficients are conserved in time
|crk(t)| = const and as such are integrals of motion. In
the reciprocal space the network consists of disconnected
nodes with crk associated to each node. Let us expand
the nonlinear evolution map eq.(8) for small values of
the parameter g:

Ûnonlin = Û (0) + ig
∑
n,p

|αpn|2Û (0). (14)

Using the normal mode representation of the state vec-
tor (13) we obtain the evolution equations of normal
mode coefficients:

crk(t+ 1) = eiωkcrk(t) +
ig

N

∑
r1,r2,r3
k1,k2,k3

ei(ω
r1
k1

+ω
r2
k2
−ωr3

k3
)Ir,r1,r2,r3k,k1,k2,k3

cr1k1(t)cr2k2(t)
(
cr3k3(t)

)∗
(15)

Ir,r1,r2,r3k,k1,k2,k3
= δk1+k2−k3−k,0

∑
p

ψr1,pk1
ψr2,pk2

(ψr3,pk3
)∗(ψr,pk )∗. (16)

The number of triplet terms induced by nonlinearity
in equation (15) is proportional to N3, the selection rules
result in Kronecker δk1+k2−k3−k,0 term in eq. (16) reduc-
ing the number of couplings to N2, which falls under the
definition of a long range network.

V. DEVIATION VECTORS

To compute the set of Lyapunov exponents we fol-
low the evolution of tangent vectors {~wi}. Each vector
corresponds to the direction of the exponential growth
or shrinking of the deviation from the initial trajectory
- in total 2N vectors. The evolution of tangent vec-
tors is done using the corresponding equations of motion
derived below. We measure the magnitude of growth
γ(t) = |~w(t)| of each tangent vector and compute tran-

sient Lyapunov exponents Xi(t) = 1/t
∑t
τ log γ(τ) after

which the tangent vectors are orthonormalized using a

Gram-Schmidt procedure. The evolution of positive tran-
sient Lyapunov exponents X(t) is shown in Fig. 2. After
an initial decay the transient Lyapunov exponents satu-
rate. The saturated values are taken as final values for
Lyapunov exponents Λ. Due to the conservation of the
norm two exponents are expected to attain zero value. In
the figure we see one of them (bottom most purple line)
tending to zero with increasing time and no saturation.

A. Equations of Motion

We start from the nonlinear EoM (12):

ψAn (t+ 1) = eig|α
A
n (Ψ(t))|2αAn (Ψ(t))

ψBn (t+ 1) = eig|α
B
n (Ψ(t))|2αBn (Ψ(t)), (17)

where αA,Bn are linear functions of the local components

of the state vector ~Ψ(t) according to equations (4). We
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FIG. 2: The evolution of positive transient Lyapunov
exponents. a) SRN case with angle θ = 0.1 and

nonlinearity g = 1.0, b) LRN case with angle θ = 0.33π
and g = 0.1. For both cases system size N = 200.

consider a small deviation ~ε(t) from the initial trajectory

~x(t):

~ψ = ~x+ ~ε (18)

Substituting into (12):

ψAn (t+ 1) = eig|α
A
n [~x(t)+~ε(t)]|2αAn [(~x(t) + ~ε(t))]

ψBn (t+ 1) = eig|α
B
n [~x(t)+~ε(t))]|2αBn [(~x(t) + ~ε(t))] . (19)

Expanding the nonlinear term and keeping terms only in
the 1st order of ~ε results in

|αpn[~x(t) + ~ε(t)]|2 = |αpn[~x(t)] + αpn[~ε(t)]|2 =

αpn(~x(t))[αpn(~x(t))]∗ + αpn(~ε(t))[αpn(~ε(t))]∗ +

αpn(~ε(t))[αpn(~x(t))]∗ + αpn(~x(t))[αpn(~ε(t))]∗ ≈
|αpn(~x(t))|2 + ∆p

n(t), (20)

where

∆p
n(t) = αpn(~x(t))[αpn(~ε(t))]∗ + c.c.

(21)

Thus we can rewrite the exponential term by expanding

eig∆
A,B
n (t):

eig|α
p
n[~x(t)+~ε(t))]|2 = eig|α

p
n(~x(t))|2 [1 + ig∆p

n(t)] (22)
With (19) and using the linearity of αpn we finally arrive
at the following linear equations:

εpn(t+ 1) = eig|α
p
n(~x(t))|2

{
αpn[~ε(t)] + ig∆p

n(t)αpn[~x(t)]
}
.

(23)
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