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Conductance transition with interacting bosons in an Aharonov-Bohm cage
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We study the transport of interacting bosons through an Aharonov-Bohm cage—a building block of flat-
band networks—with coherent pump and sink leads. In the absence of interactions the cage is insulating due
to destructive interference. We find that the cage stays insulating up to a critical value of the pump strength
in the presence of mean-field interactions, while the quantum regime induces particle pair transport and weak
conductance below the critical pump strength. A swift crossover from the quantum into the classical regime
upon further pump strength increase is observed. We solve the time-dependent master equations for the density
matrix of the many-body problem in the classical, pure quantum, and pseudoclassical regimes. We start with an
empty cage and switch on driving. We characterize the transient dynamics, and the complexity of the resulting
steady states and attractors. Our results can be readily realized using experimental platforms involving interacting
ultracold atoms, superconducting circuits, and photons on fine-tuned optical lattices.
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Introduction. Flat bands arise in the band structure of
fine-tuned tight-binding networks and are used in various
setups in condensed matter physics and photonics [1–4]. Par-
ticular interest has been paid to the case when all bands
are flat—ABF lattices—as originally observed for particu-
lar magnetic flux values threading the lattice, and therefore
coined Aharonov-Bohm (AB) cages due to the complete
destructive interference-induced trapping of noninteracting
particles [5,6]. ABF lattices can be in general diagonalized
with a finite number of local unitary transformations, support
compact localized eigenstates (CLS), and serve as the starting
ground for a variety of single-particle and many-body per-
turbations which lead to different nonperturbative phases of
matter [7–18].

A famous example of such an ABF lattice is the π -flux
rhombic lattice [6] (also known as the diamond lattice) which
is shown in Fig. 1. Here, the term “π flux” means that the sum
of phases of the nearest-neighbor hopping matrix elements
is equal to π . All eigenstates of the quantum particle in this
lattice are compact localized states which prohibit any trans-
port across the lattice. This statement, however, is valid only
for noninteracting particles. A finite interparticle interaction
will recover transport in general [6,13,19], though additional
single-particle and interaction fine tuning can prohibit trans-
port even in the interacting case [11–13,20].

In the present Letter we address the effect of an interpar-
ticle interaction on the transport of Bose particles across the
diamond lattice from the viewpoint of laboratory experiments
where one injects bosons into the first site of the lattice by
using an external coherent driving pump and withdraws them
from the last site with a sink. Nowadays such experiments can
be performed by using different physical platforms, for exam-
ple, superconducting circuits [21–23]. In short, one arranges
interacting transmons (microresonators coupled to Josephson

junctions) in a lattice, drives the first transmon with a mi-
crowave field, and reads the signal off from the last transmon.
The crucial impact of Josephson junctions is that they intro-
duce an effective interparticle interaction for photons in the
microresonators. Hence, that setup can be modeled by the
Bose-Hubbard Hamiltonian. Another promising system are
photonic crystals [24]. In a recent laboratory experiment [25]
the authors realized the π -flux rhombic lattice and proved the
absence of transport for noninteracting photons.

Model. The above considered laboratory setup is described
by the following master equation for the reduced density ma-
trix R̂(t ) of microwave photons,

∂R̂
∂t

= − i

h̄
[Ĥ, R̂] − γ

2
(â†

LâLR̂ − 2âLR̂â†
L + R̂â†

LâL ), (1)

where γ is the rate of photon absorption by a measurement
device and the Hamiltonian Ĥ has the form
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In Eqs. (1) and (2), â� and â†
� are the standard annihilation and

creation operators which commute to unity, n̂� = â†
� â� is the

particle number operator, � is the Rabi frequency (which is
proportional to the amplitude of the driving field), � is the
detuning of the driving frequency from the linear frequency
of quantum oscillators, g is the macroscopic interaction con-
stant (which determines the nonlinearity U = h̄g of the energy
spectrum of quantum oscillators), J�,�′ are the hopping matrix
elements (i.e., the couplings between oscillators), L is the

2469-9926/2023/108(1)/L010201(5) L010201-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5072-8126
https://orcid.org/0000-0002-3155-2997
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.L010201&domain=pdf&date_stamp=2023-07-11
https://doi.org/10.1103/PhysRevA.108.L010201


A. R. KOLOVSKY, P. S. MURAEV, AND S. FLACH PHYSICAL REVIEW A 108, L010201 (2023)

FIG. 1. The flux rhombic lattice (diamond chain). The all-bands-
flat case corresponds to � = π .

total number of sites, and h̄ is the dimensionless Planck con-
stant [26]. We label the rhomb sites as shown in Fig. 1 where
C2 ≡ D1, C3 ≡ D2, etc., and we shall use the gauge where
JAD = JBD = J and JCA = −JCB = iJ . In what follows we set
J = 1 which implies that all system parameters are measured
in units of the hopping frequency J , and time in units of its
inverse 1/J . The case of noninteracting particles results in
destructive interference on the first D site of the diamond
lattice, which blocks all transport. Thus, to understand the
effect of finite interparticle interactions it suffices to consider
the lattice consisting of a single rhomb.

Mean-field approach. First, we analyze the classical (mean-
field) problem by using the Gross-Pitaevskii equations on
the rhomb lattice, i.e., by replacing annihilation and creation
operators by c-numbers in the presence of damping and driv-
ing [27]. For the lattice consisting of a single rhomb we have

iĊ = (� + g|C|2)C − i

2
A + i

2
B + �

2
,

iȦ = (� + g|A|2)A + i

2
C − 1

2
D,

iḂ = (� + g|B|2)B − i

2
C − 1

2
D, (3)

iḊ = (� + g|D|2)D − 1

2
A − 1

2
B − i

γ

2
D,

where C, A, B, D are now time-dependent complex ampli-
tudes of the local oscillators at the rhomb nodes and Ẋ ≡
dX/dt . We use the Rabi frequency � as our control parameter
and fix g = 0.5, γ = 0.2, and � = −0.5. The above equa-
tions are invariant under a reflection symmetry A → −B, B →
−A, with D = 0. To enforce D = 0 we need A(t ) = −B(t ).
Such states are the generalization of a flat-band CLS which
persist due to the destructive interference of waves from A and
B reaching site D [20].

Due to the presence of dissipation (more precisely, con-
traction of the phase-space volume), the long-time dynamics
of system (3) is determined by attractors. Attractors can be
stationary [the left-hand side (lhs) of (3) vanishes] or non-
stationary. Stationary attractors can be obtained from Eq. (3)
by setting its lhs to zero and solving the remaining nonlinear
algebraic equations for the amplitudes A, B,C, D. In addition,
attractors can be symmetric (they respect the above reflection
symmetry) or asymmetric. Asymmetric attractors have D(t →
∞) �= 0 and can well be stationary. The current j̄ = γ |D|2
across the rhomb is nonzero for asymmetric attractors. Sym-
metric attractors correspond to D(t → ∞) = 0 and cannot be
stationary. The current j̄ = γ |D|2 across the rhomb vanishes

FIG. 2. Relaxation of (3) to various attractors with initial
condition |X | ≡ |A| = |B| = |C| = |D| = 0.001 and random initial
phases. The plots show |C(t )|2 (blue, top line) and |D(t )|2 (purple,
bottom line). (a) Relaxation to the symmetric nonstationary attractor
s1 for � = 0.85. (b) Relaxation to the asymmetric stationary attrac-
tor a1 for � = 1.5. (c) Relaxation to the symmetric nonstationary
attractor s2 for � = 1.5 with a tiny change in the initial phase values
as compared to case (b). For both (b) and (c) the amplitude D(t )
grows exponentially in the interval 0 < t < 10, all amplitudes show
chaotic dynamics during 10 < t < 20, and the asymptotic regime is
obtained for t � 20. Parameters are � = −0.5, g = 0.5, γ = 0.2.

for symmetric attractors. The time evolution of C(t ), A(t ),
and B(t ) = −A(t ) amplitudes of symmetric attractors turns
periodic or even quasiperiodic [28]. For � < �cr ≈ 0.9 we
found two symmetric attractors s1 and s2, with s1 smoothly
tuned into an empty state A = B = C = 0 for � → 0 and s2
keeping finite constant amplitudes A, B,C in that limit. The
attractor s1 turns unstable for � > �cr, while attractor s2
stays stable. An asymmetric stationary conducting attractor a1
exists for � > �cr.

Conductance transition. Let us analyze the transport across
the rhomb as the function of the Rabi frequency �. For small
� the steady-state response of the system to the external
driving is the attractor s1 featuring small quasiperiodic os-
cillations with B(t ) = −A(t ) and D(t ) = 0 [see Fig. 2(a)].
However, if we increase � above the critical value �cr this
quasiperiodic trajectory becomes unstable and any tiny per-
turbation (the numerical round error suffices) leads to an
exponential growth of the D amplitude. The regime of ex-
ponential instability is followed by some transient regime of
chaotic dynamics, where all amplitudes show irregular oscil-
lations [see Figs. 2(b) and 2(c)]. The transient chaotic regime
is then relaxing into a steady-state regime a1 [Fig. 2(b)] or
s2 [Fig. 2(c)]. The exact attractor choice depends on the fine
details of the transient state and is again affected by tiny de-
tails. Using an ensemble of initial conditions with the absolute
values of the complex amplitudes equal to 0.001 and random
phases, we calculate the mean values of the squared ampli-
tudes and plot them in Fig. 3(a). One clearly identifies the
critical driving magnitude �cr ≈ 0.9 and this value coincides
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FIG. 3. Left column: (a) The mean-squared amplitudes of the
classical oscillators in the stationary regime vs �, averaged over
1008 random initial phase conditions with |X | = 0.001. (c) The mean
populations of the rhomb sites for h̄ = 2 in the quantum case versus
�. Right column: The mean-squared population of the rhomb sites
in the pseudoclassical approach, (b) h̄ = 0.1 and (d) h̄ = 2. For all
cases: |C|2, blue curves (top); |A|2 and |B|2, yellow curves (middle);
|D|2, purple curves (bottom). The other parameters are � = −0.5,
g = 0.5, and γ = 0.2. The number of different realizations of the
stochastic force in the pseudoclassical approach is 1008.

with the transition from regular to chaotic dynamics in the
Hamiltonian counterpart (γ = 0) of the considered system.
Let us also mention that from the viewpoint of a laboratory
experiment the crossing of the chaos border is similar to some
phase transition where the system is conducting for � > �cr

and insulating for � < �cr.
Quantum. We proceed with the quantum dynamics. In the

numerical simulations we evolve the density matrix R̂(t ) for
initial conditions corresponding to the empty system and cal-
culate the single-particle density matrix ρ̂(t ),

ρ�,m(t ) = Tr[â†
� âmR̂(t )]. (4)

The diagonal elements of this matrix give the population of
the rhomb sites while the off-diagonal elements determine
the current between the rhomb sites. We also mention the
density matrix symmetries ρA,A(t ) = ρB,B(t ), ρC,B = −ρC,A,
and ρA,B < 0, which follow from the π -flux symmetry of the
quantum Hamiltonian. Evolving the system for long enough
time, we find the stationary population of the rhomb sites
[see Fig. 3(c)]. Note the reasonable agreement between the
quantum and classical results for � > �cr and the strong
discrepancy for a small �. Unlike the classical system, the
quantum system remains conducting for � < �cr.

To explain the absence of a sharp conductance transition
at a critical �cr in the quantum case we will consider the
system dynamics in Fock space. Let us consider for the mo-
ment γ = 0 and � = 0, and an initial state of the system
with a nonzero population of the C site only. The Hamil-
tonian dynamics will propagate this state into other Fock
states. Figure 4 shows the transition diagram for two particles

FIG. 4. Transition diagram for two particles N = 2. The rhombs
present the ten different Fock states which are labeled by the index
j = 1, . . . , 10 in the center of each rhomb. The numbers of particles
on the individual sites of a rhomb in a given Fock state are indicated
in the blue and red circles. The dashed purple and black arrows
correspond to matrix elements J = ±i and the green arrows to J = 1.
If g = 0, the red-colored Fock states cannot be populated because of
complete destructive interference between different paths connecting
these states with the initial state j = 1.

N = 2 where different arrows mean different matrix elements
J . For the noninteracting case g = 0 the π -flux symmetry of
the Hamiltonian induces destructive interference for the Fock
states with nonzero occupation of the D site, preventing our
initial Fock state from leaking particles into the D site. This
holds true for larger N as well [29]. Nonzero interactions g �=
0 will detune and remove the destructive interference condi-
tions. In the considered case N = 2 these interactions change
the equation of motion for the occupation amplitudes of the
fifth and the sixth Fock states, which leads to a population of
the symmetry-protected Fock states. We mention in passing
that for N = 2 the discussed interaction-induced destruction
of Aharonov-Borm caging was confirmed experimentally in
the recent experiment [23] with superconducting circuits.

Pseudoclassical. The above presented results prove the
quantum system to be always conducting as soon as g �= 0.
Thus, the insulator-to-conductor phase transition is a par-
ticular feature of the classical system. However, since the
transition from the quantum to classical realms is continuous
in h̄, one can find a signature of this classical phase tran-
sition in the quantum dynamics if h̄ 
 1. To quantitatively
address this problem we resort to the pseudoclassical ap-
proximation. The pseudoclassical approximation substitutes
the master equation for the reduced density matrix by the
Fokker-Planck equation for the classical distribution function
f = f (a, a∗, t ), where a� and a∗

� are the pairs of canonically
conjugated variables (� = 1, . . . , L),

∂ f

∂t
= {H, f } + γ

2

(
∂ (aL f )

∂aL
+ c.c.

)
+ γ h̄

2

∂2 f

∂aL∂a∗
L

, (5)
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where {. . . , . . .} denotes the Poisson brackets and H is the
classical counterpart of the Bose-Hubbard Hamiltonian (2).
The first term on the right-hand side of this equation corre-
sponds to the Hamiltonian evolution of the system, the next
term describes the contraction of the phase-space volume,
and the last term is the first order quantum correction to the
classical Fokker-Planck equation [30]. This diffusion term is
of special importance because it restricts contributions of the
other quantum corrections to a value of the order of h̄2 [31].
Unfolding the Fokker-Planck equation (5) into the Langevin
equation, one arrives at Eq. (3) with an additional stochastic
term

√
h̄γ /2ξ (t ). Here, ξ (t ) is the δ-correlated complex white

noise. Then the elements of the single-particle density matrix
are found by averaging the solution of the Langevin equa-
tion over different realizations of ξ (t ), for example, ρA,B(t ) =
〈A∗(t )B(t )〉. The results of the pseudoclassical approach are
shown in the right column in Fig. 3. It is seen that this ap-
proach fairly reproduces the exact quantum result for h̄ = 2
and indicates the convergence toward the classical result for
smaller h̄.

Conclusion. To summarize, we analyzed the transport of
interacting Bose particles across the rhombic lattice (diamond
chain) by employing the classical (mean-field), pseudoclassi-
cal, and quantum approaches. Within the classical approach
the considered problem reduces to the dynamics of coupled
nonlinear oscillators, where the first oscillator in the lattice is
driven by an external field and the last oscillator is subject
to friction. Then the system is insulating if the stationary
amplitude of the last oscillator is strictly zero and conducting
if it is finite. Using the driving strength � as the control
parameter we found the system to be insulating up to a critical
�cr. When exceeding this critical value, the system becomes
unstable, and the transient dynamics of the coupled oscillators
turns chaotic. The final state of the system is either conducting
or insulating with probability P and 1 − P, respectively. We
found that the discussed probability crucially depends on the

system parameters, in particular, on the dissipation constant
γ . In brief, for fixed � > �cr this probability monotonically
decreases from unity to zero in the interval 0 < γ < 0.6. Thus
there is no conducting state for γ > 0.6 (at least in the consid-
ered interval of �). We also studied the many-rhomb system
where, to be closer to laboratory experiments, we included
small dissipation γ̃ = 0.01 to all system sites. Importantly,
the classification of attractors into symmetric (insulating) and
asymmetric (conducting) remains valid. However, for M > 1,
one finds an assortment of possible attractor combinations.
For example, for M = 3 there are situations where the first
and second rhombs relax to asymmetric attractors but the third
rhomb to the symmetric attractor. Yet, the common feature
with the single-rhomb system is that the classical limit shows
a sharp transition from an insulating to a conducting state at
some �cr.

Within the quantum approach we numerically solved the
master equation for the density matrix of interacting bosons.
We found the stationary populations of the lattice sites as a
function of the Rabi frequency � and compared them with
the classical prediction. While there is qualitative agreement
with the classical results, one striking difference is that the
quantum system conducts even below the threshold � < �cr,
and the sharp transition from the classical case turns into a
smooth crossover for the quantum case. The reason for that
is that the destructive interference is destroyed for interacting
particles in the quantum case. However, we showed that the
crossover sharpens back to a classical transition by using a
pseudoclassical method upon increasing the number of parti-
cles, or decreasing the effective Planck constant h̄.
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