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We demonstrate the existence of an intermediate superexponential localization regime for eigenstates of the

Aubry-André chain. In this regime, the eigenstates localize similar to the eigenstates of the Wannier-Stark
ladder. The superexponential decay emerges on intermediate length scales for large values of the winding
length—the quasiperiod of the Aubry-André potential. This intermediate length scale localization is present both
in the metallic and insulating phases of the system. In the insulating phase, the superexponential localization
is periodically interrupted by weaker decaying tails to form the conventional asymptotic exponential decay
predicted for the Aubry-André model. In the metallic phase, the superexponential localization is only a transient
phenomena and happens for states with energies away from the center of the spectrum and is followed by a
superexponential growth into the next peak of the extended eigenstate. By adjusting the parameters, it is possible
to extend the range of the superexponential localization to arbitrarily low values of the eigenfunction’s amplitude.
A similar intermediate superexponential localization regime is demonstrated in quasiperiodic discrete-time

unitary maps.

DOLI: 10.1103/PhysRevB.108.064204

I. INTRODUCTION

Uncorrelated disorder potentials enforce exponential An-
derson localization for all eigenstates in one-dimensional
potentials [1,2]. This holds for any strength of the disorder
potential relative to the kinetic energy strength induced, e.g.,
by the hopping ¢ between nearest neighbor (NN) sites on a
one-dimensional chain. Quasiperiodic potentials instead can
be viewed as highly correlated aperiodic ones. Consequently,
the one-dimensional model shows a metal-insulator transition
with eigenstates changing from extended to exponentially lo-
calized upon increasing the quasiperiodic potential strength
A relative to the hopping 7. This was first demonstrated for
the Aubry-André chain (AA) [3,4]. The AA model and its
generalizations proved to be useful in different branches of
physics, e.g., many-body localization [5-8] and topological
insulators [9-11]. Theory predicts [3] and simulations confirm
[4] the asymptotic exponential decay of the eigenstates [12]
for strong enough potential A. However, the intermediate but
potentially long-lasting nonasymptotic decay, i.e., the decay
of the probability profile on intermediate length scales, can
show substantial deviation from the established asymptotic
ones.

The AA model has four parameters: Hopping strength ¢,
potential strength A, winding length VV or spatial quasiperiod
of the potential, and a phase ¢ which is usually absorbed by a
shift of space origin. The AA model is known to show asymp-
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totic exponential eigenstate localization in its localized phase
[A] > 2]t|. The localization length £ depends only on one
parameter—the ratio of potential strength to hopping strength
(see the section below). In particular, & does not depend on
the winding length, the position of the eigenstate, nor its
eigenenergy. However, the precise form of the localized eigen-
state does depend on the winding length, its position in space
relative to the AA potential, and also on its energy. We show
that such eigenstates develop a broad core of nondecaying
oscillating parts for large winding length due to the slow vari-
ation of the AA potential and the finite strength of the hopping
t. At the same time, the decay away from the core is controlled
over large length scales of the order of the winding length by a
faster than exponential—superexponential—factorial decay in
the same regime. Further details can also depend on the energy
and spatial location of the eigenstate. Exponential decay is
observed on distances larger than the winding length. Remark-
ably, similar features are also observed in the metallic phase,
|| < 2Jt|, for states with energies close to the edge of the
spectrum. The superexponential decay is similar to the decay
of the eigenstates of the Wannier-Stark ladder [13,14]. Very
high precision and very large lattice sizes are required in this
regime to see that such eigenstates are actually exponentially
localized or extended, as predicted by the theory [3].

We further show that similar results hold for unitary maps
(UMs) as well. Time evolution under discrete-time UMs is
usually computationally faster compared to the Hamiltonian
evolution [15-17]. Therefore, identifying a UM with prop-
erties identical or similar to a given Hamiltonian model is
important for the development of fast simulation tools for uni-
tary dynamics. We consider a UM: A split-step discrete-time
quantum walk [18-20] with a spatially varying quasiperiodic

©2023 American Physical Society
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phase factor. Similarly to the AA Hamiltonian model with
|A| > 2|t|, the eigenstates of this UM localize exponentially
[21]. For smaller phase factor and coin parameters, we iden-
tify the intermediate superexponential localization regime.
This allows us, in principle, to use these maps to approximate
Wannier-Stark Hamiltonians in the UM setting and achieve
faster simulation of their dynamics.

The paper is organized as follows. In Sec. II, we discuss
the AA Hamiltonian model and its intermediate localization
properties for large winding length W, including analyti-
cal derivation of the asymptotic decay of eigenstates for
power-law potentials on a chain. Section III covers numerical
evidence for the intermediate superexponential localization
in the AA chain with large winding lengths. In Sec. IV, we
construct the quasiperiodic discrete-time UM that features the
transient plane wave and the superexponential localization
regimes for fine-tuned parameters, similarly to the AA Hamil-
tonian. We conclude in Sec. V.

II. INTERMEDIATE LOCALIZATION REGIME
IN THE AUBRY-ANDRE CHAIN

The AA Hamiltonian with an incommensurate potential on
the 1D chain reads [3]

H= Z[—t(lnﬂn + 1| + [n){n — 1|) + A cos(an + ¢)|n)(n|].
neZ

ey

Here t € R is the NN hopping parameter, while /27 is an
irrational number ensuring the quasiperiodicity of the po-
tential. Without losing generality, we consider o > 0. The
potential cos(an + ¢) almost repeats itself at lattice sites n
and n+ |27 /o] (or n + [27 /a]) for arbitrary n. Therefore,
we define the winding length

W =27/a] > 1. 2)

The Hamiltonian Eq. (1) has asymptotically exponentially
localized eigenstates for |A| > 2|¢|, which are peaked around
some eigenstate-dependent lattice site . The asymptotic lo-
calization length

1

§=—57 (3)
In|5]

describes the asymptotic decay of all eigenstates v, ~ e~ "I/,
We emphasize that the localization length is independent of
the winding length W (or «) and the phase ¢, and so is the

localization transition [3].

A. Large winding length

We now demonstrate that there is an intermediate localiza-
tion regime whose span is governed by the winding length W
and the phase ¢. In this intermediate regime, eigenfunctions
decay faster than exponential, similarly to the eigenstates of
the Wannier-Stark ladder. For that, we consider the case of
very small values of |o| <« 1: There is a region of the 1D
chain, a subset of the chain sites I. C Z, such that for all
n € L and a particular eigenstate peak ny € L, the following
condition holds:

lae(n —no)| < 1. “)

Therefore, we can approximate the cosine potential up to the
second-order expansion in «(n — ng) as

2
cos(an + ¢) ~ cos(ang + ¢)|:1 — %(n — no)2i|

— sin(ang + ¢)[a(n — ng)]. 5)

The choice of the phase ¢ allows us to approximate either
linear or quadratic potentials. For ang + ¢ ~ 2m + 1) /2
with m € Z, the Hamiltonian Eq. (1) is approximated by the
Wannier-Stark Hamiltonian on a 1D chain:

H=—1) In)n+1]+n)n—1|
neZ

— (=1)"a Y (n = no)ln) (nl. (6)

nez

The effective DC field strength is given by F = A«, which has
to be compared to the hopping strength ¢ [14]. Given || < 1,
one needs strong potential strengths |A /7| >> 1 to achieve even
moderate field values F ~ ¢.

For ang+ ¢ ~ mm with m € Z, the AA Hamiltonian
Eq. (1) approximates the discrete simple harmonic oscillator
Hamiltonian on a 1D chain:

H=—1) In)(n+1]+n)n—1]
nez

2
+ (=" [1 - %(n - n0)2:| mynl. (@

neZ

The harmonic potential strength is given by F = Aa?/2.

B. Asymptotic decay of eigenfunctions for power-law
potentials on a chain

We start by discussing the localization properties of eigen-
states in tight-binding chains with power-law potentials. A
tight-binding lattice Hamiltonian with a simple power poten-
tial with exponent p takes the form

H= Z[—t(|n)(n + 1| + |n){n — 1) + Fn'|n)(n]]. (8)
neZ

The eigenvalue equation for an eigenstate at energy E reads

EYy = —tYnp — t¥n—1 + Fn'' Y. &)

The eigenstates localize factorially, i.e., superexponentially in
n for the linear potential = 1, i.e., the Wannier-Stark case
[13,14]. This implies that the ratio v, /v,,—; decays asymp-
totically as n~! for large n, i.e., far away from the peak of
the eigenstate. For larger exponents (u > 1), we expect an
even stronger decay with n, and we use this observation to
approximate the eigenvalue equation for very large n, away
from the peak of the localized eigenstate. Hence we neglect
E, and t,1; compared to the other terms in Eq. (9) for a
finite eigenvalue E, a finite hopping strength ¢, and a finite
field strength F, and simplify the eigenequation to a simple
recursion:

L (10)
n Y, &,
f n 1

064204-2



INTERMEDIATE SUPEREXPONENTIAL LOCALIZATION ...

PHYSICAL REVIEW B 108, 064204 (2023)

This resolves into
t\" u
I/fnJrno = f (”') I/fn()? (]1)

where ny is the peak of the eigenstate as for example captured
in Egs. (6) and (7). Similar arguments apply for very large
negative values of n, i.e., on the other side of the peak of an
eigenstate .

It follows from the normalization condition of the proba-
bility distribution that 1, is a finite constant. Therefore, the
eigenstate decays superexponentially for large positive lattice
sites n as

t\" N A " —& . _unln(n)
7 (n) "= Foh 2nn) I X e . (12)

Here the Stirling’s approximation n! &~ «/2mn(n/e)" for large
n was used. Therefore, we expect the same superexponential
decay of the eigenstates for any power-law potential ", up to
the factor w in the exponent.

‘We note that this asymptotic behavior is very different from
the asymptotic localization properties in the continuous 1D
space {x € R}, where the eigenvalue equation is

d*y,
BVe=—"2

For the linear case u =1, the wave function v, takes
the form of an Airy function which for x > xo decays as

3
(F'B3x)~1/4¢=3(F"")% " On the other hand, for the simple
harmonic potential u = 2, the wave function v, is a prod-

uct of Gaussian and Hermite polynomials—their asymptotic

. . \ﬁ.\'z
decay is controlled by the Gaussian: e~ 5. In both cases,

the asymptotic decay is faster than that of the discrete cases:
e HX ln(x)_

+ F(x — x0)" Y. 13)

III. NUMERICAL RESULTS

We refer to |,|> (modulus squared of an eigenstate’s am-
plitude) as probability at a site n and talk about the probability
profile {|¥,]?} of an eigenstate. As well, we refer to the core
of a localized eigenstate as its peak. We set the hopping
strength ¢ = 1 and measure « in units of 277 ¢ with the golden
ratio ¢ = (1 + \/5)/2 ~ 1.61803. We consider finite chains
with open boundary conditions, numerically diagonalize the
AA Hamiltonian Eq. (1) with ¢ = 7 /2 for different winding
lengths W, and check the decay of probability profiles of the
eigenstates.

To quantify the decay of the probability profiles and dis-
criminate between their exponential and superexponential
decay, we use two metrics. First, we define the local gradient
of the logarithms of the probability with respect to the lattice
position:

In |Wn+1|2 —In hbnfll2 _
3 =

Vst
%—1

We refer to it as simply the gradient in the text below. A
constant in n value of the gradient indicates exponential local-
ization while the decay with n signals faster than exponential
decay. For an exponential decay ¢~2"/¢ with a constant lo-

calization length &, A(n) is a step function, with values % to

An) = In . (14)

the left and —§ to the right of the probability peak n = 0.
Second, for a superexponential, e.g., factorial decay of the
eigenstates of the Wannier-Stark ladder, the following ratio

takes an asymptotically constant value:

1 n+n 2_1 n 2
R(M,Vl)z n|w+o| n|w0|
win(n|!) = |n|1n |t/ F| Inl—oo

as follows from Eq. (11). We use the gradient A and the
R value in our numerical simulations to detect and quantify
the superexponential decay. Since the value of R depends on
the exponent w, R can distinguish different superexponential
decays, e.g., due to Wannier-Stark or harmonic potentials.
Only the correct value of the exponent u leads to —2 asymp-
totically. We also point out that deviations of both A and R
from their expected asymptotic values allows us to detect the
character of nonexponential decays.

In what follows, we refer to localization on intermediate
scales as simply localization, while the usual AA exponential
localization is referred to as asymprotic localization. In all
other cases, the type of localization should be clear from the
context.

Since our numerical data contained extremely small ampli-
tudes, ~1072%_ and to ensure the correctness of the numerical
results, we used an arbitrary precision Python library MPMATH
[22] for all our numerical calculations. We used the preci-
sion up to 200 decimal places for all numerical calculations
presented below. Additionally, we verified that the results
presented in Fig. 3 are stable and do not change for a lower
precision of 150 decimal places.

-2, (15

A. Insulating regime: |A| > 2]¢|

Remember that our main focus is WW > 1. Deep in the
insulating regime |A| > 2|¢|, a typical eigenstate with energy
close to zero will be located close to a zero of the AA potential
and have a span (core)

Al 2k
Mo mlAl

so & € W in accord with Eq. (6). There are three length
scales present in the problem: The localization length &, the
winding length WV, and the span of an eigenstate S. The span
S is the length scale over which the change in potential is of
the order of the free particle bandwidth or maximum change in
kinetic energy 4|¢|, so the Hamiltonian appears as that of a free
particle on a chain over this length scale. The eigenstate shows
no significant decay features over that length scale. Beyond
this core, the eigenstate will decay superexponentially until
the slow quasiperiodic potential returns to its value at the core
center.

In this regime, all eigenstates are asymptotically expo-
nentially localized, however, their intermediate behavior is
controlled and depends strongly on the value of the wind-
ing length W. The parameters of the Hamiltonian Eq. (1)
used below—A = 100, ¢ = 7 /2,t = l—are chosen to ap-
proximate the Wannier-Stark Hamiltonian Eq. (6) around
lattice position ng = 0. For this choice of parameters, the
potential energy function Eq. (1) turns into sin(an).

For small winding length WV = 1, exponential localization
is observed on all scales, as shown in Fig. 1, and the profile

(16)
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FIG. 1. The log-linear plot of the spatial profile (blue) of the E =
0 eigenstate of the Hamiltonian Eq. (1) with W =1, (¢ = 2w ¢),
A =100, ¢ =m/2, np =0, and N = 201 sites with open boundary
conditions. The black dashed line is the exponential fit with the
exponent 2/& = 7.82 predicted by the theory Eq. (3). Bottom inset:
A (14) (blue) and the same exponential fit (dashed black). Top inset:
R value (15) evaluated for F = A«.

of the E = 0 eigenstate (blue line) matches well with the
exponential decay predicted by the theory (black dashed line).
The estimate of the size of the eigenstate’s core Eq. (16) gives
a small value S ~ 0.004 which is consistent with the eigen-
state being strongly peaked at a single site. The exponential
decay is further confirmed by the behavior of the gradient A
shown in the bottom inset of Fig. 1. The step-function-like be-
havior of the envelope of the oscillating profile for A implies
exponential decay of the probability profile. At the same time,
the R value Eq. (15) evaluated for 7 = A« is not constant and
is different from the —2 value, indicating the absence of the
superexponential localization.

We increase the winding length to YW = 47. The estimate
of the size of the eigenstate’s core Eq. (16) produces S =~ 0.3,
i.e., the state is still strongly peaked around a single lattice
site. Figure 2(a) shows the log-linear plot of the probability
profile for the eigenvector of E = 0 (blue) and the exponential
fit (dashed black) predicted by the theory Eq. (3). Overall, the
decay of the profile is exponential, although significant devi-
ations develop that are particularly well exposed in Fig. 2(b).
This is also confirmed by the bottom inset of Fig. 2(a), which
shows an oscillating A to the left and to right of the eigen-
state’s peak. Note that the oscillation period is W/2 =~ 23,
since the zeros of sin(an) repeat with period W/2.

The average over the oscillating regions A still matches
the theoretical prediction of the localization length £ : 2/ =
21n|1/2¢t| = 2In(50) = 7.82. The step-function-like behav-
ior of the envelope of the cover of oscillating profile for A
in the inset of Fig. 2(a) implies exponential decay of the
probability on average. For short distances around the peak
of the eigenstates, the profile decays superexponentially, as
implied by the inset of Fig. 2(b), where the R value in the
region around n = 0 is computed with 7 = Aa. The value of
R is not constant and approaches —2 only very close to the
origin n = 0, suggesting that Y} = 47 is not large enough and
the intermediate superexponential localization regime only
starts to emerge at around n = 0.
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FIG. 2. The log-linear plot of the spatial profile (blue) of the
E =0 eigenstate of the Hamiltonian Eq. (1) with W =47, (« =
2 p/75), A =100, ¢ = /2, ng = 0, and N = 201 sites with open
boundary conditions. (a) The central part of the full eigenstate’s
profile (blue) and the exponential fit (dashed black) predicted by
the theory Eq. (3). Bottom inset: A, Eq. (14), (blue) and the corre-
sponding exponential fit (dashed black). Top inset: R value, Eq. (15),
computed for F = La. (b) The zoomed-in central part of (a) (blue)
and the exponential fit (dashed black). Insets: The respective zoom-
ins of the insets for A and R from (a).

To clearly expose the intermediate length-scale superex-
ponential localization, we increase the winding length up
to W = 3091 keeping all the other parameters the same as
before. Now the predicted core size becomes S = 20, and
the superexponential decay should last over one-half of the
winding length, i.e., over 1545 sites (which is much larger the
system size used in the numerics). Figure 3 shows the spatial
profile |1,|? of the eigenstate at E = 0 in the log-linear scale.
Overall, the profile looks similar to the previous cases with
a peak at the origin and decay away from it. First, we note
that around the peak n = 0O the profile does not decay at all,
but rather resembles a plane wave as shown in the top left
inset of Fig. 3: Here the kinetic energy dominates over the
potential energy up to the length scale 4|7|/(|Aa|) =~ 20 for
the choice of the parameters, so the particle is almost free
and the eigenstate resembles a plane wave. This estimate is
confirmed in the top left inset of Fig. 3, where the dashed red
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FIG. 3. The log-linear plot of the spatial profile (blue) of the
E = 0 eigenstate of the Hamiltonian Eq. (1) with W = 3091 (& =
2 ¢/5000); all the other parameters are the same as in Fig. 2. Lat-
tice size is N = 341 with open boundary conditions. Top left inset:
Zoom-in around the peak of the eigenstate profile showing the plane-
wave regime extending from —10 to 10. The vertical dashed red lines
mark the theoretical prediction 4|¢|/|Ax| & 20. Top right inset: R
value (15) for F = La. Bottom inset: The gradient A Eq. (14).

lines mark the 4|¢|/(|Ax|) scale. The gradient A is not constant
but decays (with increase of n) as shown in the bottom inset of
Fig. 3. This suggests that the decay away from the center of the
profile deviates strongly from the exponential fit Eq. (3). We
see from the main figure and the bottom inset the absence of
exponential localization all the way down to 1072%, making
the expected exponential asymptotic regime absent for all
practical purposes. The R ratio (the top right inset of Fig. 3)
quickly approaches the constant value —2 away from the peak,
implying the onset of the superexponential decay, i.e., the
analytical prediction of Eq. (11).

B. Metallic regime: |A| < 2|¢]

In the metallic regime |A| < 2|t|, all eigenstates are asymp-
totically extended. For eigenenergies |E| < 2f, eigenstate
profiles are indeed relatively evenly spread, with only weak
modulations stemming from the AA potential variations.
However, for energies closer to the band edges 2t < |E| <
2t + X, the profiles of the eigenstates are different and consist
of periodically arranged cores with superexponential decay
and growth in between them, as follows from the numeri-
cal results presented below. We choose the winding length
W =248 (a =2n¢p/400)and L = 1.5, ¢ = /2,t = 1. The
profiles of two different eigenstates located in the different
parts of the spectrum—at the center, £ = 0, and closer to the
edge, E = 3.136—are shown in Figs. 4 and 5 on linear and
logarithmic scales, respectively. At the center of the spectrum,
the eigenstates are extended, as illustrated by the E = 0 case,
which shows a modulation of the spatial profile with half of
the winding length W/2 = 124.

Away from the center of the spectrum, eigenstates show
localization on intermediate length scales far into the tails
of the eigenstates. The E = 3.136 eigenstate illustrates this
behavior. The nonconstant, decreasing gradient A in the left
bottom inset of Fig. 5 implies a nonexponential decay/growth

0.020 1

0.0151
o
S 0.010
0.005 1
0.000
—400 —200 0 200 400
n

FIG. 4. Spatial profiles of the £ = 0 (blue) and E = 3.136 (red)
eigenstates in the metallic regime |A| < 2|¢f| of the Aubry-André
model Eq. (1). The parameters of the Hamiltonian: W = 248 (« =
2w /400), A = 1.5, ¢ = 7 /2, and lattice size N = 1001 with open
boundary conditions.

of the |y,(E =3.136)> (for convenience, A only for the
central core is shown). The central core is located around
site ny = 62, where AA is approximated by the quadratic
potential Eq. (7) rather than the linear one, Eq. (6). The right
bottom inset of Fig. 5 shows the R value for the central core
evaluated from Eq. (15) with u =2, F = Aa?/2. It never
does flatten around the value —2 as expected for the localiza-
tion induced by quadratic potential on a lattice, Eqgs. (7) and
(11). The intermediate localization becomes stronger towards
the edges of the spectrum (not shown). Yet, this localization
is only a transient behavior on intermediate length scales,
since asymptotically all eigenstates are extended [3], and the
eigenstate eventually revives for large enough system sizes,
in accordance with theory [3]. Nevertheless, for the wind-
ing lengths and system sizes considered, some eigenstates
appear as faster-than-exponentially localized for all practical

1016 ™ T ey LB an ua Al Ty T
10—394
10—62 4
— E=-0.000
-85 ]
10 — E=3.136

10-—108 4

0.0

10—1544 AO< Q:_z 5

10-177 -5 -5.0
0 100 0 200
—-200 0 200 400

lwnl?

10-131] 5 2.5

10—200

—400

FIG. 5. Log-linear plot of the spatial profiles of the £ = 0 (blue)
and £ = 3.136 (red) eigenstates in the extended regime |A| < 2|¢| of
the Aubry-André model Eq. (1). The parameters of the Hamiltonian:
W =248 (a0 = 2m¢/400), A = 1.5, ¢ = 7 /2, and lattice size N =
1001 with open boundary conditions. Left inset: Gradient A for the
E = 3.136 eigenstate (red). Right inset: The R value for the E =
3.136 eigenstate (red).
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€ € €

FIG. 6. Pictorial representation of two time steps, 7 = 1, 2 of the
unitary map. The small red spheres indicate lattice sites. Blue shaded
rectangles indicate the coin operations, steps I and II in Eq. (17),
the yellow shaded rectangles indicate phase operations, step III in
Eq. (17), which depend on the lattice site positions.

purposes since their amplitudes go down all the way to 10~%
(see Fig. 5). This is similar to Lifshitz-tail physics, where the
particles are trapped by the peaks or wells of the effective
harmonic potentials and not because of the (quasi)randomness
of the bulk [23].

IV. INTERMEDIATE SUPEREXPONENTIAL
LOCALIZATION IN DISCRETE-TIME UNITARY MAPS

The emergence of the superexponential localization on
intermediate length scales followed by an asymptotic expo-
nential decay in the AA Hamiltonian Eq. (1) can also be
realized in other settings with quasiperiodic potentials. In
particular, we consider a discrete-time UM, the linear and
nondisordered version of the maps used in Refs. [17,18].
These maps provide a convenient computational tool for
studying long-time dynamics of nonlinear systems [16,17]. It
is therefore important to extend these maps to various settings,
e.g., to mimic the effect of a DC field.

We start by defining the UM. For that, we consider a single
particle on an infinite 1D chain with time evolution governed
by the brickwork action of local unitary operators and de-
scribed by the following three steps depicted schematically
in Fig. 6: All the sites are split into disjoint pairs of the NN
sites.

Step I: Probability amplitudes on every pair of sites are
mixed by applying an orthogonal SO(2) matrix:

ay (T + 1) = cos 0y, 1 (T) + sin 04, (T),
ay (T + 1) = —sin 0y, 1(T) + cos Oy, (T).

Step II: Make a cyclic shift of all sites by one lattice spacing
and mix the amplitudes of the pairs again by applying the
same SO(2) matrix:

by (T + 1) = cosBay,(T + 1)+ sinfay, 1 (T + 1),
b1 (T + 1) = —sinbay,(T + 1) + cosOay,+1(T + 1).
Step III: Add local phases ¢, to all amplitudes:
Un(T + 1) = b, (T + 1). (17)

Combining all three steps together produces the final UM:
Yon(T + 1) = > [cos? O, (T ) — cos 0 sin Oy, (T)

+ 506 €08 0241 (T) + sin? O9,42(T)],

Yan1 (T + 1) =1 [c0s” Oy 1 (T) — sin 6 cos O, (T)

+ €08 0 sin OYr2,12(T ) + sin? Oyra,—1 (T)].
(18)

In the absence of the local phase, ¢, = 0 for all sites 7, the
map is translationally invariant and has extended eigenstates
with eigenvalues e~F sitting on the unit circle in the com-
plex plane. The eigenvalues are parametrized by their angle
(phase) E which is a function of lattice momentum or wave
number k: E = =+ arccos(cos? 0 + cos k sin? 0) [24]. For our
paper, we consider 0 < 6 < m. The bandwidth is AE = 46.
For a quasiperiodic local phase ¢, = —an with an irrational
o /m, this unitary evolution displays asymptotic exponential
localization with localization length

1
"~ |In(|sin@))|’

as shown in Ref. [21] (Proposition 3.2). This setup is similar to
the case of the electric quantum walk with an irrational phase
[25,26] or aperiodic quantum walks [27].

Similarly to the AA case, we consider |o| < 1 so |an| K
|n| for all n on a finite chain, so that ™" ~ 1 — jan is
justified. Furthermore to allow NN hopping only (as in the
AA Hamiltonian) we also require 6 < 1, so that cosf ~ 1
and sin @ ~ . Then the af and §? terms are negligible com-
pared to « and 6 respectively, and the UM Eq. (18) becomes
approximately

You(T + 1) = (1 — i (2n)) Y2 (T)

§ (19)

—O0W2n1(T) = Y21 (T)),  (20a)
Vo1 (T + 1) ~ (1 —ia(2n + 1) Y41 (T)
— 020 (T) = Y2ui2(T)).  (20b)

The two Eqgs. (20) are the same up to the relabelling of the
lattice sites, and correspond to the discrete time version of the
1D Wannier-Stark Schrodinger Hamiltonian:

Hapl¥ (1)) = illY (T + 1)) — [Y(T))],
Hap =0 Y |n)(n+ 1| — [n)(n — 1| + & nln)(nl.

From the above expressions, we can define the effective DC
field strength 7 = « and hopping parameter ¢ = i. Based on
this mapping of the parameters, we expect that the eigenstates
of the exact UM Eq. (18) display superexponential localiza-
tion on intermediate length scales for ||, 6 < 1, followed by
the asymptotical exponential localization, similarly to the AA
case. We also define the winding length W = [27 /] that
controls the intermediate length scale behavior just like in the
AA model above. In analogy to the AA chain reasonin;, we
predict that the span of the core of an eigenstate is S ~ % ~

%W and superexponential decay should go uninterrupted
over one winding length W.
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To verify these predictions numerically, we first transform
the UM Eq. (18) into a discrete time quantum random walk
[28]. The UM Eq. (18) acts differently on odd and even sites
and, consequently, has two bands in the spectrum. The UM
can be viewed as a special case of the split-step discrete-time
quantum walk (SS-QW) [19,20] on a 1D chain. To reformu-
late our UM as the quantum walk, each pair of odd and even
sites of the original chain are merged into a single site of a new
chain with two internal states: Spin up 1 and spin down |,
corresponding to the odd and even sites of the original chain,
respectively [29]:

2n—1) = |m, 1) = (10)" ® |m),
12n) = m, }) = (0 D) ® |m). (22)

The spin degrees of freedom define the coin space on every
site of the new chain. The new lattice site index m = 2n takes
only even values to match with the minimum distance between
unit cells in the original lattice. A single time step of the SS-
QW reads

Uﬁs—qsz'SZ'CZ'Sl 'Cla

me2Z
_ |m) (m| 0
si=> ("0 |m—2)(m|>’
me2Z
o sin (—1) cos 6
Ci= 2222 ((—1)’]r1 cos @ sin 6 > ® [m) {m|.
me

(23)

Here C), are unitary operations in the coin space while S »
are the coin-state-dependent shift operators on the chain. P
is the coin- and site-dependent unitary phase shift. Note that
the conventional discrete-time quantum walk is recovered by
setting C, to an identity matrix. In what follows, we focus
on the localization properties of eigenstates of the evolution
operator of this quantum walk, Eq. (23).

Numerical results

We consider a 1D chain with periodic boundary conditions:
The phase ¢, | 4 is not periodic and has a jump in value be-
tween the sites N and 1. This choice of the boundary condition
is dictated by convenience of avoiding the open boundary con-
ditions for a discrete time quantum walk. As we are expecting
superexponential localization, the boundary conditions should
not matter much once the eigenstate is localized away from
the site 1, N where the jump of the phase ¢, | 4 occurs. We
diagonalize Ugs_qw, transform an eigenstate of the quantum
walk Eq. (23) at a given pseudoenergy e~ to an eigenstate of
the original UM Eq. (18), and check the spacial decay of the
resulting eigenstate using the same two metrics as in the AA
model case: A and R.

For small winding length, YW = 1, we expect clear expo-
nential localization. This is confirmed in Fig. 7: The E = 0

102
A 0
103 -1
<
10-12 -2
o~ -3 -
5 10-19 -100 O 100
Il
w 1026
Y
§ 10—33
1074
1047
10734
-150 -100 -50 0 50 100 150

FIG. 7. The log-linear plot of the spatial profile of the eigenstate
at E = 0 (blue) of the unitary map with = 6 = 2w, W = 1. The
lattice size is N = 154 for the quantum walk. The dashed black lines
are the exponential fit with the slope given by 2/(§) = 2/2.549 =
0.785, computed from Eq. (19). Bottom inset: The gradient A (blue)
and the gradient (dashed black) that is used in the exponential fit. Top
inset: The R value (red).

eigenstate profile matches well the exponential fit given by
Eq. (19), with only minor deviations. The bottom inset shows
A: While fluctuating, its average value agrees well with the
value given by Eq. (19). In the top inset, the R value is differ-
ent from —2, indicating the absence of the superexponential
localization.

Upon increasing the winding length, for intermediate value
W = [2n /a| = 47, the E = 0 eigenstate profile (blue) is still
fitted reasonably by an exponential (dashed black) as sug-
gested by Fig. 8, however, significant deviations are visible.
The bottom inset shows the gradient A (blue): There are
significant oscillations, however, the analytical expression for
the localization length (19) (dashed black) still provides a
reasonable fit to the eigenstate profile. The top inset shows the

10—16
10—39
N 10—62
—
| 10—85
& 10—108
S 102
10—154
10—177

10-200
-150

—IiE —

-100 =50 0 50 100 150

FIG. 8. The log-linear plot of the spatial profile of the £ =0
eigenvector (blue) of the unitary map with W =47, o = 2w /75 =
0, &€ = 0.5 [according to the formula Eq. (19)]. The system size
for the quantum walk is N = 154. The dashed black lines are the
exponential fits with the slope 2/(£) = 4. Bottom inset: The gradient
A of the profile (blue) and the gradient used in the exponential fit
(dashed black). Top inset: The R value (red).

064204-7



MALLICK, ANDREANOV, AND FLACH

PHYSICAL REVIEW B 108, 064204 (2023)

10t
-16
107184 .

10-39{10-5
10-62{10°
1075
10-108
g 10—1314
N 10—154‘
10—177
10—200

0 100

e—fE = 1)|2

100

0

-200-150-100 =50 O 50
n
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FIG. 9. The log-linear plot of the spatial profile of the E =
0 eigenvector (blue) of the unitary map with W = 3091, o =
27 ¢/5000, 8 = 10¢, and & = 0.257. Lattice size for the quantum
walk is N = 154. Bottom inset: The gradient A (blue) is not constant.
Top right inset: The R value (red) flattens around the —2 value.
Top left inset: Zoom-in around the peak of the eigenstate profile
showing the plane-wave regime extending from —20 to 20. The
vertical dashed red lines mark the theoretical prediction 4|0 /«| = 40.

R value: It is not equal to —2 and changes with n, indicating
the absence of Wannier-Stark-like localization.

For the large winding number W = [27 /o] = 3091, the
E = 0 eigenstate’s profile is shown in Fig. 9. The profile looks
very similar to that of the AA model with large winding num-
ber, shown in Fig. 3. Close to the peak, the profile resembles
a plane wave, decaying further away from the peak. The top
left inset shows the plane-wave part of the profile around the
peak. The dashed red lines mark the predicted boundaries
of the plane-wave-like regime, 4|0 /«| = 40, where kinetic
and potential energy become comparable, and match well
the numerics. The bottom inset shows the gradient A: It is
not constant over all distances shown, implying the absence
of the exponential localization. At the same time, the value
of R, shown in the top right inset, is almost constant and
close to —2 for large distances, signaling the factorial, i.e.,
superexponential localization down to the extremely small
values of ~1072%_ This makes the detection of the asymptotic
exponential localization regime quite difficult, as it has to
emerge at still smaller values.

V. CONCLUSION

We have shown that for a general power-law potential on
a tight-binding chain, all the eigenstates decay factorially i.e.,
superexponentially. This is a slower decay as compared to the
case in continuous space.

We further demonstrated that such superexponential decay
emerges on intermediate length scales in the 1D AA model. In
the insulating regime of the AA model, |1| > 2|¢|, we demon-
strated that by fine-tuning the parameters of the Hamiltonian,
one can obtain an intermediate superexponential localization
regime that persists down to extremely small values of the
amplitudes of the eigenstates. This makes the asymptotic ex-

ponential localization irrelevant for many practical purposes.
The presence of this regime is controlled by the winding
length W ~ 27 /a, over which the AA potential almost re-
peats itself. This behavior is based on the observation that for
large winding lengths, much bigger than the lattice spacing or
comparable to the system size, the AA potential is well ap-
proximated by a power-law potential, e.g., the Wannier-Stark
(linear) or discrete harmonic oscillator (quadratic) potentials,
for extended parts of the chain.

In the metallic regime, |1| < 2]¢|, theory predicts extended
eigenstates only. For small VW, within our finite system size,
all the eigenstates are indeed extended. For large winding
lengths WV, the eigenstates close to the center of the spectrum,
E < 2t, are extended. However, surprisingly, the eigenvalues
closer to the edges of the spectrum feature superexponentially
localized peaks. One would have to consider system sizes
much larger than the winding length WV to see that these states
are extended.

We also demonstrated analytically and confirmed numer-
ically that such intermediate superexponential localization
preceding the asymptotic exponential localization is also
achievable in UMs/discrete-time quantum walks. This setup
could be implemented in state-of-art experimental devices
[30]. Another studied discrete-time Floquet map is the quan-
tum kicked rotator [31], which also supports Anderson-like
localization in the momentum space. An interesting future
problem would be to identify the regime of parameters of the
rotator which admits a similar intermediate localization.

Our paper suggests an additional regime to explore in
the well-known quasiperiodic lattice model, which is use-
ful in many branches of physics. The large winding length
parameters can be achieved by state-of-the-art experimen-
tal devices, e.g., in a one-dimensional bichromatic potential
obtained by superimposing two optical lattices having very
different wavelengths [32]. In experiments, the parameter « in
the quasiperiodic potentials can be approximated by a rational
number, which is a ratio of two large mutually prime integers,
and the denominator is larger than the lattice size [33]. In
this setting, the large winding length, required to observe the
intermediate localization, is achieved by choosing the denom-
inator much larger than the numerator. It is also worth pointing
out that we expect intermediate localization to also emerge in
periodic potentials that vary sufficiently slowly enough over
sufficiently large parts of the lattice size, similarly to the case
discussed in Sec. III B.
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