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Compact localized states in electric circuit flat-band lattices
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We generate compact localized states (CLSs) in an electrical diamond lattice, comprised of only capacitors
and inductors, via local driving near its flat-band frequency. We compare experimental results to numerical
simulations and find very good agreement. We also examine the stub lattice, which features a flat band of a
different class where neighboring compact localized states share lattice sites. We find that local driving, while
exciting the lattice at that flat-band frequency, is unable to isolate a single compact localized state due to their
nonorthogonality. Finally, we introduce lattice nonlinearity and showcase the realization of nonlinear compact
localized states in the diamond lattice. We induce an instability in the nonlinear CLS when it is shifted into
resonance with a dispersive (optical) band. Our findings pave the way of applying flat-band physics to complex
electric circuit dynamics.
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I. INTRODUCTION

Flat bands (FBs) arise as completely degenerate en-
ergy bands in certain tight-binding lattices with macroscopic
degeneracy [1,2]. FB signals zero group velocity, suppress-
ing transmission, and producing compact localized states
(CLSs), i.e., eigenstates trapped in a strictly finite number
of sites. The extreme sensitivity of FBs to perturbations
leads to the emergence of diverse and intriguing phases as it
lifts the macroscopic degeneracy, including ferromagnetism
[3–7], superfluidity [8–12], localization-delocalization tran-
sition [13–17], many-body flat-band localization [18–22],
symmetry-breaking transitions [23,24], and compact discrete
breathers [25,26], among others [2,3,27,28].

With the above, the experimental realization of artificial
FB lattices becomes a priority. The challenge is in fine
tuning to preserve the CLS over a long time. Several exper-
imental attempts, typically over a short time, lacked crucial
relative phase information for the CLS and sufficient spa-
tial resolution. Examples are photonic lattices [24,29–33],
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cold atoms [34,35], polariton condensates [36,37], electrical
circuits [38–41] and topological material [42], as well as
magnonic [43] crystal lattices. Electrical circuits offer a par-
ticularly promising approach for in-depth exploration of FBs
and CLS. They provide flexibility in various lattice geome-
tries, feasibility of fine-tuning lattice parameters, and precise
experimental control and measurement.

In this paper, we experimentally construct and characterize
one-dimensional FB electrical lattices with discrete circuit
elements. We excite FB CLS through local sinusoidal driving
at the FB frequency, reporting results of two lattice structures:
diamond and stub lattices. The diamond lattice contains or-
thogonal CLSs and exhibits CLS resonant modes when locally
driven at the FB. Finally, we impart nonlinearity by replacing
the capacitors with varactor diodes characterized by a voltage-
dependent capacitance. Our findings reveal the continuation of
CLSs into the highly nonlinear regime in the diamond lattice
and the onset of nonlinear CLS instability when it becomes
resonant with a dispersive band. On the other hand, a stub
lattice features nonorthogonal CLSs and shows exponentially
localized resonant modes by overlapping CLSs.

II. THE MODEL—DIAMOND CHAIN

In the electrical-lattice context, vertices and edges of a
tight-binding lattice represent capacitors and inductors, re-
spectively. The lattices are examples of electrical transmission
lines with nontrivial geometry, as depicted in Figs. 1(a)
and 1(b), where a diamond lattice is shown with two dif-
ferent hopping values denoted by black and red lines. The
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FIG. 1. (a) Tight binding representation of the diamond lattice,
with grey boxes denoting unit cells and red/blue circles representing
CLS with opposing amplitudes. (b) The lattice is driven at one site
via a driving capacitor Cd by a sinusoidal voltage signal vd (t ) from a
signal generator.

capacitance of each node is C, and the lattice incorporates
inductors with different inductance, Lb and Lr , shown as black
and red, respectively. The inductors are assumed to have an
effective serial resistance (ESR) R, while the capacitors are
treated ideally.

The voltages at the three nodes of the nth unit cell are
denoted as Tn,Un,Vn. We drive the lattice at Um in the mth unit
cell with a driving capacitor of capacitance Cd � C. From
Kirchhoff’s current law at each node, the equations of motion
for the voltages in the nth unit cell at the linear level take the
form

T̈n + βṪn = −ω2
b[4Tn − Un − Un+1 − Vn − Vn+1],

Ün+ βU̇n = −ω2
b[(2 + α)Un − αVn − Tn − Tn−1],

V̈n + βV̇n = −ω2
b[(2 + α)Vn − αUn − Tn − Tn−1]. (1)

At the driven site Um, Eq. (1) gets a correction factor
1/(1 + γ ) and an additive driving force A sin(ωdt ),

Üm + βU̇m

1 + γ
= −ω2

b

1 + γ
((2 + α)Um − αVm − Tm − Tm−1)

+ A sin(ωdt ). (2)

γ = Cd/C, where Cd � C, is an impurity artifact that appears
as a result of driving, which can be minimized to within the
experimental tolerance of ω2

b. Note that ω2
b = 1/(LbC) and

A = vdω
2
dγ (1 + γ )−1. α = Lb/Lr tunes the flat band, and β =

R/L accounts for dissipation. Then, the equation of motion is
approximately written as follows:(

d2

dt2
+ β

d

dt

)
|ψ (t )〉 = H |ψ (t )〉 + |F(t )〉. (3)

This equation describes wave dynamics on a diamond lattice.
Here, the wave, |ψ (t )〉 = ∑

n,X Xn|Xn〉, is the voltage at each
node, where |Xn〉 is real-space lattice site basis at sublattice
X ∈ {T,U,V }, and n ∈ Z. The matrix H represents the cou-
pling of the diamond lattice, given from the right-hand side
of Eq. (1). |F(t )〉 is the driving term, yielding the last term

of Eq. (2). Unlike the hoppings in tight-binding diamond
lattices, inductors also add to the “on-site potential” (diagonal
elements of H), which in turn guarantees ω2 is positive and
breaks the lattice bipartitness and chirality, but not the flat
band [44]. In the absence of driving, the Bloch waveform
ansatz, Un = U (k) exp[i(ωt − kn)] (and similarly for Vn, Tn)
solves the eigenvalue problem associated with Eq. (1). It re-
sults in three bands—an optical band, a gapped flat band, and
lower frequency acoustic band, which extends down to zero
frequencies,

ω2
FB = 2ω2

b(α + 1), ω2
DB = ω2

b(3 ±
√

4 cos(k) + 5). (4)

Solving the dissipative case yields s2 − iβs = ω2
FB/DB,

sFB/DB = i
β

2
±

√
−β2

4
+ ω2

FB/DB, (5)

with the dissipation time τ = 2/β and the slightly shifted
ωFB/DB (<1% in our experiment) from Eq. (4). We assume
only underdamped frequencies making the square root part
always real, i.e., ω2

FB/DB > β2/4. Hence, we set sFB/DB ≈
ωFB/DB throughout the paper.

While the Bloch eigenvectors at FB are spatially extended,
the degeneracy of the FB allows CLS eigenstates. For the
diamond lattice, the CLS is given by Un = δnm, Vn = −Un, and
Tn = 0 for any unit cell n forming an orthogonal basis in the
FB subspace, as we will see below in further detail in Fig. 2.
A similar analysis is performed on the stub lattice [Fig. 3(b)],
and is discussed in Sec. V.

III. RESPONSE TO LOCAL PERTURBATION

We analyze the impact of local driving on the flat-band
analytically in this section, and we apply this result to the
diamond lattice and stub lattice in the following sections.

To analyze the impact of local driving on the flat band,
we employ the transfer function method [45], a powerful tool
to understand the dynamic behavior of systems described by
linear differential equations. In our case, the transfer function
operator G(ω) is defined in the following:

(−ω2 + iβω − H )G(ω) = I. (6)

The transfer function operator G(ω) encodes all information
on the response to local sinusoidal driving. With zero initial
condition, the response to the ideal sinusoidal driving is then
given as

|ψ (ω)〉 = G(ω)|F(ω)〉, (7)

The transfer function operator G(ω) can be easily calculated
in the eigenbasis of H ,

G(ω) = GFB(ω) + GDB(ω)

= PFB

iβω − ω2 + ω2
FB

+
∑

j,k

|ψ j (k)〉〈ψ j (k)|
iβω − ω2 + ω2

j (k)
. (8)

Note that we treat the frequency responses of the flat band and
dispersive bands separately, to isolate the flat-band response,
where j ∈ DB is the band index for the dispersive bands. If
we assume ideal local sinusoidal driving at Ym, we can write
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FIG. 2. (a) The lattice response to local driving (at node 4) as a function of driving frequency (exciting wavenumbers ±k). The system
features two dispersive bands—one acoustic, one optical branch, and one flat band. In panels (1)–(5), the driving frequency fd is chosen
according to the labels in (a). The time axis is in units of T = 1/ fd ; red, blue, and black indicate positive, negative, and zero voltages,
respectively. Driving near the flat band yields a CLS (1), driving in the acoustic branch yields a spatially extended response (2), (3). Two
examples in the optical branch are shown in (4), (5), where the inset shows the spatial voltage profile (consistent with the corresponding k
value of the Bloch eigenfunction) at a moment in time. (b) Response at flat band corresponding to the highest peak in (a), fd = 401 kHz,
see panel (1). Blue and red colored lines correspond to the experimental CLS sites 3, 4. (c) Simulation result of Eq. (1) with experimental
parameters at 429 kHz.

as

|F(ω)〉 = A

2
(δ(ω − ωd ) + δ(ω + ωd ))|Ym〉. (9)

We assume local driving at Ym, where Y = T,U,V is a sub-
lattice index. We neglect the dispersive term GDB, which
is reasonable when ωd ≈ ωFB and the dispersive bands are
sufficiently far from the flat bands compared to the width of
resonance peaks. We use Eqs. (7)–(9) and obtain the spatial
profile

〈Xn|ψ (ω)〉 ≈ 〈Xn|GFB|Ym〉 ∝ 〈Xn|PFB|Ym〉. (10)

We express the projector in terms of the CLS basis,

PFB =
∑

i, j∈Z
[S−1]i j |CLSi〉〈CLS j |, (11)

where i, j are lattice sites, and S is the overlap matrix with
elements defined as Si j = 〈CLSi|CLS j〉. For flat bands sup-
porting orthogonal CLSs, Si j = δi j [Eq. (11)], the projector
PFB is expressed simply as

PFB =
∑
i∈Z

|CLSi〉〈CLSi|, (12)

resulting in a compact projector [46]. The term compact
implies the existence of an integer l � |n − m|, such that
the matrix elements satisfy 〈Xm|PFB|Yn〉 = 0, where X,Y ∈
{T,U,V }. For instance, for the diamond lattice (Sec. II), the
CLS at the ith unit cell is represented as

|CLSi〉 = (|Ui〉 − |Vi〉)/
√

2. (13)

Then, the real-space representation of the projector is obtained
from Eq. (10), and the CLS response of the diamond lattice at
Un is obtained as

|〈Un|ψ (ω)〉| = 1

2

δmnγ (1 + γ )−1vdω
2
d√(

ω2
FB − ω2

d

)2 + β2ω2
d

, (14)

which is identical for the Vn sites. For the parameters in
the experimental setup, we have γ = 0.015, vd = 1 V, ωd =
ωFB = 2π × 429 kHz, and β = R/Lb = 49356/sec. The max-
imum CLS response is given by 0.4 V, which is in excellent
agreement with the experiment and simulation within 10%
[Figs. 2(b) and 2(c)].

IV. EXPERIMENTAL AND NUMERICAL
RESULTS—DIAMOND

We construct an electrical-circuit diamond lattice of N = 5
unit cells, with periodic boundary conditions. The lattice in-
cludes 3N = 15 capacitors, each with a capacitance of C =
1 ± 0.01 nF; the driving capacitor of Cd = 15 pF yields γ =
0.015. Two inductors are employed with Lb = 466 µH and
Lr = 674 µH, within a 1% tolerance. The main sources of
inductor dissipation include ferrite cores and coil-wire re-
sistance, diminishing the quality factor Q = ωL/Reff . The Q
of an inductor remains essentially constant while the effec-
tive serial resistance (ESR) varies according to the resonant
frequency.

With Q = 55 at 232 kHz, we estimate ESR Reff ≈ 23 


for the Lb inductor at fFB [47]. A 10 k
 resistor is placed
in parallel with the lattice to suppress a DC voltage compo-
nent. We then obtain the band structure using Eq. (4) [red
(dispersive) and blue (FB) lines in Fig. 2(a)]. The flat-band
frequency fFB = 429 kHz is in the spectral gap between the
two dispersive bands. The flatness of this band has been ascer-
tained experimentally by measuring its frequency using both
a spatially uniform and a staggered driver.

To experimentally probe the flat band and its CLS, we
supply energy locally via a sinusoidal voltage input from a
signal generator (Agilent 33220A function/sweep generator),
see Fig. 1. The measurement results are displayed in Fig. 2.
We also monitor the response voltage at all lattice sites,
which corresponds to (U0,V0, T0, . . . ,U4,V4, T4), simultane-
ously with a 16-channel data acquisition system (NI PXI-1033
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FIG. 3. (a) spectrum of solutions for the stub lattice, according to Eq. (16). The red curves indicate dispersive bands and the blue curve
is the flat band. The experimental spectrum is displayed by the black trace along the right vertical axis, obtained by frequency sweeping the
local driver at a CLS site. Panels (b) and (c) show a stub lattice schematic, and the electrical circuit implementation, respectively. In-stub
tight-binding diagram, (+) and (–) at sites 5, 8 and the site 6, represent a CLS. The colors of the curves in panel (d) and (e) pertain to the
respective ones used in panel (b). Panel (d) shows the experimental result of local driving at site 6, where the trace color assignment and driving
location (arrow) is given in (b). Panel (e) displays the corresponding numerical result. The plot of site 5 (cyan) is hidden behind the plot of site
8 (purple). This is also the case for sites 2 and 3, which are hidden behind the plot of sites 9 and 11.

with NI 6133 cards) at a 2.5 MHz sampling rate. The driving
voltage is injected at site 3 (U1). While we show a continuous
band structure, there is only N = 5 resonance modes per band,
hence 
N/2� = 3 peaks per band due to twofold degeneracy.

Let us turn to the impact of local driving frequency fd .
We sweep 200–600 kHz frequency range within 25 ms using
a function generator. The steady-state amplitude responses
at site 4 (V1) were measured with an oscilloscope (no DAQ
card), shown as the black trace in Fig. 2(a). The flat-band
frequency prediction is accurately matched. This resonance
peak strength depends on dissipation, driving voltage, and am-
plitude of resonant eigenvector at Um. We observe the largest
peak reaching 0.4 V at 429 kHz. Two other prominent modes
in the acoustic branch are also visible at k = 2π/5, 4π/5.
We now tune the function generator to the frequencies of the
observed resonance peaks. Figure 2 panels (1)–(5) display
spatial patterns at various drive frequencies once they reach
a steady state.

At fd = 429 kHz, corresponding to the largest resonance
peak on the flat band, the associated CLS is predicted to sit
at Un,Vn of a single unit cell, with their excitations out of
phase. Figures 2(b) and 2(c) compare experiment and nu-
merics, respectively. In Fig. 2(b), the red trace depicts the
response of the driven site, whereas the blue depicts that for
the other CLS site. The traces show voltage-time profiles for
all 15 sites within the time interval (0, 2/ fd ). We observe
precise out-of-phase behavior, causing destructive interfer-
ence at neighboring bottleneck sites Tn, Tn−1. However, small
leakage to the rest of the sites is evident due to experimental
imperfections and dissipation, which broadens the dispersive
resonance peaks—yet, this does not adversely affect the CLS
(even in the nonlinear regime, as we will see), as its frequency
is detuned from any other eigenmodes. Note that driving at a
site in the CLS is essential for its generation.

In Fig. 2(c), the corresponding numerical simulation
demonstrates excellent agreement with the experiment. In the
simulation, for β = 0, all sites other than the CLS sites ap-
proach near-zero voltages, resulting in a true CLS localized

on the two CLS sites, oscillating at the flat-band frequency
of 429 kHz. Note that the experimental frequency is shifted
down slightly to 401 kHz due to small parasitic capacitances
associated with the measurement apparatus (ribbon cables and
DAQ board).

V. EXPERIMENTAL AND NUMERICAL
RESULTS—STUB CHAIN

We conduct a similar analysis on a stub lattice. In Figs. 3(b)
and 3(c), we illustrate the circuit representation and schematic
of the stub lattice. In the stub case, only a single type of
inductor is required (we use Lb). The equations of motion for
the stub lattice are

Än + βȦn = −ω2
b[2An − Bn−1 − Bn],

B̈n + βḂn = −ω2
b[3Bn − Cn − An − An+1],

C̈n + βĊn = −ω2
b[2Cn − Bn]. (15)

The driven site is Am and is modified similarly to Eq. (2). The
eigenfrequencies for the stub lattice for β = 0 are computed
as

s2 =
{

ω2
FB = 2ω2

b,

ω2
DB = (

ω2
b/2

)
(5 ± √

13 + 8 cos(k)).
(16)

Similar to the diamond chain the on-site potentials break
chirality (but, again, not the flat band [44]), and in addition
here also make both dispersive bands optical-like, with a finite
gap to zero frequencies. The blue and red traces in Fig. 3(a)
plot Eq. (16); the black trace along the right vertical axis
depicts the experimental spectrum obtained by sweeping the
frequency of the driver at a CLS site. Note that the largest
experimental response at this CLS site is registered at the
predicted flat-band frequency. The zone-center acoustic mode
occurs at a nonzero frequency and is registered in the spec-
trum. At ωFB, the CLS labeled with i occupies the ith and
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FIG. 4. The nonlinear system is achieved by (a) replacing the capacitors with the element shown in the inset. (b) corresponds to the
numerical simulation of (a) to obtain the coupling g in Eq. (21). A hysteresis window opens up at the highest amplitude (blue, green). (c)–(e)
show the resonance curve obtained from numerical simulations for N = 100 unit cells at vd = 0.5, 1.0, 2.0 from top to bottom. (f)–(h) show
the resonance curves obtained experimentally for local driving. The black (red) trace is the response of site 3 (2). (i)–(k) display the full
spatiotemporal pattern for N = 5 unit cells from the experiment. At low and intermediate amplitudes outside the optical band, the CLS remains
stable: (i) vd = 0.5 V with fd = 578 kHz and (j) vd = 2.0 V with fd = 650 kHz. The insets show the FFT of response at site 3, indicating the
emergence of higher harmonics. At high amplitudes, such as (k) vd = 4.0 V and fd = 735 kHz, CLS instability occurs when resonating with
an optical band mode. (l)–(n) depict the full spatiotemporal pattern from the numerical simulations. At low and intermediate amplitudes outside
the optical band, we see stable CLS: (l) vd = 0.5 V with fd = 638 kHz and (m) vd = 2.0 V with fd = 680 kHz. At high amplitudes, such as
(n) vd = 4.0 V and fd = 797 kHz, CLS instability is once again observed.

(i + 1)th unit cells,

|CLSi〉 = 1√
3

(|Ci〉 + |Ci+1〉 − |Ai+1〉). (17)

As a result of the overlap between the closest CLSs, they form
a nonorthogonal basis. Then, the impact of local driving on
the stub flat band exhibits distinct behavior compared to the
diamond case, leading to Si j �= 0 for i �= j. Given that the
stub CLSs only overlap with their nearest CLSs, as defined
by Eq. (17), the overlap matrix Si j in Eq. (11) is determined
as

Si j = 〈CLSi|CLS j〉 = δi j + σδi±1, j, (18)

where the overlap between neighboring CLSs is denoted as σ .
S is a tridiagonal matrix with translational symmetry, thus its
inverse can be readily obtained in the momentum basis,

[S−1]i j = 1

2π

∫ π

−π

dk
exp(ik|i − j|)

−1 − 2σ cos(k)
∝ e−|i− j|/ξ . (19)

The integration is solved in the complex plane using Cauchy’s
integral formula with substitution, ω = exp(ik) and dω =
iωdk [48]. Here, a characteristic localization length ξ is
obtained as

1

ξ
= ln

∣∣∣∣ 2σ

−1 + √
1 − 4σ 2

∣∣∣∣. (20)

Therefore, local driving induces exponential localization
around the driven site, not an excited CLS mode. We have
σ = 1/3 and thus ξ ≈ 1.03 for the CLS in Eq. (17).

To verify the theoretical prediction, we introduce a driver at
site 6 (indicated in red arrow) as depicted in Fig. 3(b), it is ex-
pected to induce partial excitation in both CLSs, which share
the site 6. This situation experimentally shown in Fig. 3(d),
using a driver frequency of 312 kHz with a driving amplitude
of 11 V. The corresponding result is shown in the numeri-
cal simulation of Fig. 3(e). The voltage-time profiles of all
15 sites are presented for two periods. When site 6 (red) is
driven, neighboring CLSs also undergo excitation (depicted in
yellow and blue). This phenomenon arises due to the shared
sites 5 and 8 with adjacent CLSs. It is important to note that
slight inhomogeneities result in uneven excitation amplitudes
between the two neighboring CLSs.

VI. NONLINEAR COMPACT LOCALIZED STATES

We extend our studies and investigate the impact of nonlin-
earity on the CLS in the diamond chain both experimentally
and numerically. It has been predicted that linear homoge-
neous CLSs (absolute values of all nonzero amplitudes are
equal) can be extended into the nonlinear regime as families
of compact periodic orbits or compact discrete breathers in the
presence of a suitable symmetric nonlinearity [26]. In order to
create a symmetric hard-type nonlinearity, we substitute the
capacitors with varactors—diode pairs oriented in opposite
directions [49]. The varactor configuration is illustrated in the
inset of Fig. 4(a). The additional ground-connected resistor
(100 k
) is needed to prevent a DC charge buildup. It breaks
the symmetry, but the effect is weak for the chosen large resis-
tance value due to the small current actually flowing through
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it. The diodes ensure a symmetric nonlinear current-voltage
characteristics. Consequently, the term ω2

b in Eq. (1), becomes
a nonlinear symmetric function of the voltage Un, at sites Un

(and similarly for Vn, Tn).
In order to experimentally demonstrate nonlinear CLS, we

employ these diodes and a 680 µH inductor to build an RF
resonator. We drive it using a sweep generator and a linear ca-
pacitor, recording the resulting resonance curves. In Fig. 4(a),
a low driving amplitude yields a symmetric peak (black).
As we increase the driving amplitude (red), the curve shifts
to higher frequencies. At vd = 4 V, a significant bistability
window emerges, (340–500 kHz), with hysteresis evident in
the up and down sweeps (blue and green, depicting only
peak-to-peak amplitude for visual clarity).

We model the nonlinearity with the following ansatz:

ω2
b(Un) = ω2

b0

[
1 + ln

(
1 + gU 2

n

)]
, (21)

where g = 0.1 characterizes the hard-type nonlinearity, and
ωb0 = ωb(0). This particular choice of nonlinearity provides
a good fit to our experimental data at strong driver voltage,
see the blue curves in Figs. 4(a), 4(g), and 4(h). At weak
voltage, gU 2

n � 1, the model simplifies to a quadratic form,
ω2

b → ω2
b0(1 + gU 2

n ), capturing the essence of nonlinearity at
lower voltages. In the Appendix, we conduct a stability anal-
ysis following Ref. [26] for the undriven nonlinear diamond
lattice, for quadratic, and logarithmic nonlinearities.

In the nonlinear diamond lattice, we simulate frequency
sweeps starting near the flat band—see Figs. 4(c)–4(e). When
reaching the optical band-edge for this lattice of 100 unit cells,
735 kHz, the signal either drops abruptly to zero or (at higher
amplitudes) continues with additional noise. The black (red)
curves represent the response at a CLS (non-CLS) site. No-
tably, panel (c) is essentially unchanged over a range of driver
amplitudes (A up to 0.8 V), and upon entering the optical band
(A � 0.9 V), the response at the adjacent non-CLS site jumps
up discontinuously.

In the experiment, panels (f)–(h), we observe similar be-
havior in a smaller lattice (N = 5). These panels show the
response again for different driving amplitudes (top 1 V, mid-
dle 2.25 V, bottom 2.75 V). The two optical modes show up
prominently in the red curve. More importantly, when the
driving frequency reaches the first of these modes at 800 kHz,
it either drops or continues with enhanced noise.

Figures 4(i)–4(n) display the spatiotemporal profiles at sta-
tionary resonant states at multiple driving amplitudes, both
experimentally and numerically. We start in the nearly lin-
ear regime at 578∗ kHz (equivalent to 630 kHz, shift due
to DAQ/ribbon cable), and raise the frequency to 650∗ kHz
(708 kHz) with a stronger driver. This procedure does not
disrupt the CLS. When extending deeper into the nonlinear
regime, the emergence of harmonics in the CLS spectrum
(see insets) underscores the nonlinear nature of the stationary
CLS. Lowering the amplitude while maintaining 650 kHz de-
stroys the CLS due to the nonlinearity-induced bistability and
hysteresis.

Exploiting the strong nonlinearity of the varactors, we aim
to shift the nonlinear CLS into the optical band, in line with
theoretical predictions [25,26]. To achieve this, we must chirp
the driver frequency up as we enter high-frequency regions
due to the system’s hysteresis. In Fig. 4(k), as the local driving

frequency sweeps on the second mode of the optical band
735∗ kHz (801 kHz), we observe the CLS transitioning to
a pattern where energy oscillates between the CLS sites in
an alternating (“zig-zag”) fashion and partially “leaks”, i.e.,
radiates into the rest of the lattice. This observation is con-
sistent with simulations in panel (n), which exhibit a similar
instability pattern. We conclude that a nonlinear CLS in this
electrical diamond lattice displays a special instability pattern,
yet highly localized when its resonance frequency intersects
the linear optical band, in contrast to Ref. [26], where insta-
bility destroys the CLS.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Using complex electrical circuits, we constructed 1D flat-
band lattices and observed resonant modes through local
sinusoidal driving. In a diamond lattice, we find that the
driving at the flat-band frequency excites a CLS. In the stub
lattice the lack of orthogonality of neighboring CLSs pre-
cludes the observation of individual CLSs, leading instead to
resonance modes with exponentially localized spatial profiles.
Finally, we found that CLSs persist in the diamond lattice
when nonlinearity is introduced by replacing the capacitors
with varactor diodes exhibiting symmetrical nonlinearity of
capacitance, but that it either disintegrates entirely or becomes
unstable when it is nonlinearly shifted into resonance with a
dispersive band.

The clarity, as well as the qualitative and quantitative
correspondence between theory, numerics, and computations
affirms the particular relevance of such linear, and, espe-
cially through our paper, nonlinear electrical lattices as a
fruitful platform for exploring flat bands and CLSs, includ-
ing for relevant applications such as, e.g., targeted energy
transfer [50]. Naturally, numerous open questions emerge
from the present paper, including, e.g., whether a CLS can
be distilled suitably in stub lattices, and whether more com-
plex quasi-one-dimensional [51], but also two-dimensional
structures [32] can also be engineered. In such settings the
fate of linear and, perhaps especially, nonlinear flat-band
states remains an appealing and challenging task for future
considerations.
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APPENDIX: STABILITY OF UNDRIVEN
NONLINEAR CLS

In this Appendix we discuss the existence and stability of a
nonlinear CLS in the undriven, undamped diamond lattice in
detail, using the approach similar to Ref. [26].

As explained in the main text, symmetric nonlinearity is
essential to find a nonlinear CLS. The nonlinearity mod-
els we particularly consider are: quadratic, and logarithmic
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nonlinearity. While both models are quadratic at low voltage,
the particular choice of logarithmic modeling at high voltage
provides good fits to the experimental data.

Similar to the approach in Ref. [26], the presence of sym-
metric nonlinearity preserves the exact compactness of the
CLS, Un = −Vn. To see this, let us consider the following non-
linear CLS ansatz: Un = δn,m f (t ), Vn = −Un, and Tn = 0.
Here f (t ) is some periodic function with f (0) = 1, and 

denotes the CLS amplitude at t = 0. We insert the ansatz into
the nonlinear equations of motion Eq. (1) with the modifica-
tion given in Eq. (21). For both the quadratic case and the
logarithmic case at small amplitudes

Üm + βU̇m = −g0Um − g1U
3
m. (A1)

The nonlinearity strength g0 = ω2
b0(2 + α) and g1 = ω2

b0g
characterizes the well-known Duffing oscillator. For any so-
lution Um, its negative partner Vm = −Um is also a solution.
This symmetry arises from the fact that Eq. (A1) contains
only the odd powers of Um due to the symmetric nature of
the nonlinearity. Thus, Vm = −Um cancel out at the bottleneck
sites of Tm and Tm+1, which validates our ansatz.

As  increases, the fundamental frequency of the nonlin-
ear CLS, denoted as ω̃FB, undergoes a shift towards higher
frequencies due to the influence of the hard nonlinearity. This
effect is shown in Fig. 5(a), which illustrates the relation be-
tween  and ω̃FB. The dashed-red line represents the estimated
resonance frequency shift, obtained for the quadratic case, or
logarithmic case with g2 � 1, which is given by

ω̃FB ≈ ωb

√
(2 + 2α)

(
1 + 3

4 g2
)
. (A2)

They can be obtained by inserting the Fourier series expanded
solution into Eq. (A1) and neglecting higher-order terms in g.
Note that this approximation fails at higher voltages for the
logarithmic modeling.

The stability of the nonlinear CLS becomes crucial, partic-
ularly when ω̃FB begins to resonate with the dispersive band
[26], as described in Eq. (A2). To investigate the stability of
the nonlinear CLS, we slightly perturb it with a random vector
|δψ〉,

|ψ (t = 0)〉 = |CLSm〉 + |δψ〉, (A3)

|δψ〉 =
N−1∑
n=0

μn|Un〉 + νn|Vn〉 + τn|Tn〉. (A4)

All elements μn, νn, τn represent random noise perturbations
added on the site Un,Vn, Tn, respectively, and uniformly dis-
tributed in [−λ, λ]. The strength of the random vector is
controlled by λ (ideally intended to be of infinitesimal am-
plitude). The temporal dynamics of perturbed CLS over long
time, as governed by Eq. (1) with the nonlinearity specified in
Eq. (21), allows us to study the stability of the CLS. A stable
CLS would be robust against any perturbations maintaining
its compact localization over long time.

In Figs. 5(c)–5(j), the spatiotemporal profiles after 2 ms
of evolution for quadratic case (right panels) and logarithmic
case (left panels), with the initial condition Eq. (A3), with
λ = 0.001 are presented. For  � 1 [Figs. 5(c) and 5(d)],
ω̃FB is located below the top band, the CLS remains stable,
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FIG. 5. Simulation results on undriven undamped nonlinear dia-
mond chain circuit. (a) Fundamental frequencies ω̃FB/2π vs initial
CLS amplitude . The simulation result (lines) is compared with
Eq. (A2) (dashed red). (b) Computed exponent � vs A by linear
stability analysis. (c)–(f) Numerical results for the undriven case,
with “dirty” CLS initial condition Eq. (A3), with λ = 10−3, N = 40,
with an initial CLS amplitude at (c) and (d)  = 1, (e) and (f)
 = 2.1, (g) and (h)  = 2.5, (i) and (j)  = 3.9. The rest of the
parameters of the circuits are the same as in the nonlinear diamond
chain in the main text. Left panels shows the FFT result of the CLS
site, Ũm(ω) = FT [Um(t )]. The right panels show the amplitudes at
all nodes after a certain time evolution (∼2 ms), of the first 5 unit
cells among 40. The CLS is located at sites 3, 4.

with its compactness and out-of-phase relation preserved. For
1 �  � 3 [Figs. 5(e) and 5(f)] we observe a quasiperiodic
“zig-zag” instability with sharp, narrow side peaks around
the harmonics in the CLS Fourier spectrum. This “zig-zag”
instability also appears in the driven case at certain amplitudes
of driving within the top band. This instability is of local
nature, since ω̃FB is still located below the top band. For
3 �  � 6.5 the frequency ω̃FB resonates with the top band
and its extended eigenstates, resulting in its full destruction
and the excitation of extended states [Figs. 5(g) and 5(h)].
We observe another narrow island of stability around  = 3.9
[Figs. 5(i) and 5(j)], where the CLS regains perfect stability
again (we do not currently have an explanation for that).
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The result we obtain with the quadratic nonlinearity es-
sentially agrees with the results [26], in that the CLS will
undergo global instability when its frequency starts to res-
onate with a dispersive band. For the logarithmic nonlinearity,
we still observe the three main phases of the CLS as in
the quadratic case: stable CLS, localized (zig-zag) instability,
global instability (complete destruction of CLS), which we do
not show in this paper. However, the main difference is that,
for the logarithmic case, the localized zig-zag instability is
observed even when the shifted CLS frequencies are inside
the top band. This interesting difference is also observed in
the experimental results in the presence of driving. At small
voltage, in Figs. 4(c) and 4(f), full destruction of CLS is
observed, when the resonance frequency lies in the dispersive
band (green-shaded area). On the other hand, as the driver
voltage increases, we observe a localized instability within the
dispersive band, in Figs. 4(d)–4(h).

For the quadratic case, the linear stability analysis is
conducted to identify the stable and unstable regions of 

[52–54]. This involves expressing the differential equation up
to first order in λ. The resulting linear differential equation de-
scribes the time evolution of |δψ〉. For the quadratic case we
find at the CLS site (n = m)

μ̈m = −ω2
b0(1 + g2 f 2(t ))[(2 + α)μm − ανm − τm − τm−1]

− 2ω2
b0g2 f 2(t )(2 + 2α)μm,

ν̈m = −ω2
b0(1 + g2 f 2(t ))[(2 + α)νm − αμm − τm − τm−1]

− 2ω2
b0g2 f 2(t )(2 + 2α)νm. (A5)

As before,  f (t ) represents the nonlinear CLS located at
Um, which is the exact solution to Eq. (A1). In our analy-
sis, we neglect higher order harmonics of f (t ) and consider
only the first harmonic, thus focusing on the linear response.
For the non-CLS sites (n �= m) the equation is identical
to the linear case as in Eq. (1). The differential equa-
tions of |δψ〉 are expressed in a more conventional manner as

follows:

ẏ = d

dt

[
δψ

δψ̇

]
=

[
O I

H (t ) O

][
δψ

δψ̇

]
= J (t )y, (A6)

where δψ = (. . . , μn, νn, τn, . . .)t . O, I are a 3N × 3N zero
matrix and an identity matrix, respectively. Here H (t ) char-
acterizes the Hamiltonian of the diamond lattice, specifically
the right-hand side of Eq. (1) for a non-CLS site (n �= m) and
the right-hand side of Eq. (A5) for CLS site (n = m). Further-
more, H (t ) exhibits periodicity with a period T = 2π/ω̃FB

[Eq. (A2)]. Integrating Eq. (A6) yields the Floquet linear map,

y(t + T ) = My(t ), (A7)

where M is the Floquet operator obtained by integrating J (t )
over a period T . To study the stability of the solution, we
examine the exponential growth of ||y(t )|| over each period
T in phase space. Such an exponent is denoted as the (largest)
exponent � = ln |m|/T and is measured in frequency units
of [kHz]. Here, m represents the largest eigenvalue of M. An
unstable CLS is characterized by � > 0, while a stable CLS
corresponds to � = 0.

The computation result of the relevant exponent is shown in
Fig. 5(b). At very low , � approaches zero within numerical
precision, indicating that the CLS is stable at small nonlin-
earity. This observation agrees with the findings presented
in Figs. 5(c) and 5(d). For f = 1000 kHz ( ≈ 4.0 V), there
exists a window of stability. Within this region, the nonlinear
CLS is observed to achieve perfect stability, as illustrated in
Figs. 5(i) and 5(j).

Further information can be obtained by studying the
eigenvectors of the Floquet operator. In case of instability,
according to bifurcation theory [55], a stable periodic orbit ex-
ists nearby. The eigenvector corresponding to that eigenvalue
m represents the direction in phase space along which the
solution changes most rapidly, towards a new stable periodic
orbit. The newly stable orbits may be a pair of asymmet-
ric modes, which therefore also cease to be compact. The
“zig-zag” mode [Figs. 5(e) and 5(f)] is then a quasiperiodic
oscillation between the two asymmetric stable modes.
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