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Thermalization universality-class transition induced by Anderson localization

Weihua Zhang ,1,2,* Gabriel M. Lando ,1,† Barbara Dietz ,1,3,‡ and Sergej Flach 1,3,§

1Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Republic of Korea
2Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics,

Lanzhou University, Lanzhou, Gansu 730000, China
3Basic Science Program, Korea University of Science and Technology, Daejeon 34113, Republic of Korea

(Received 30 August 2023; revised 30 November 2023; accepted 10 March 2024; published 25 March 2024)

We study the disorder-induced crossover between the two recently discovered thermalization slowing-down
universality classes, characterized by long- and short-range coupling, in classical unitary-circuit maps close to
integrability. We compute Lyapunov spectra, which display qualitatively distinct features depending on whether
the proximity to the integrable limit is short or long range. For sufficiently small nonlinearity, translationally
invariant systems fall into the long-range class. Adding disorder to such a system triggers a transition to the
short-range class, implying a breaking of this invariance, and in the very limit of vanishing nonlinearity Anderson
localization emerges. The crossover from the long- to the short-range class is attained by tuning the localization
length ξ from ξ ≈ N to ξ � N , where N is the system size. As a consequence, the Lyapunov spectrum becomes
exponentially suppressed, depending on the extent to which its translational invariance is destroyed. We expect
that this disorder-induced crossover will lead to prethermalized phases and, following quantization, to many-
body localization.
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Thermalization is a universal property of nonintegrable
many-body systems, with characteristic timescales that di-
verge upon approaching integrability [1–7]. In the near-
integrable regime, one can interpret the system as a pertur-
bation of an integrable one, with the perturbation’s overall
effect being to couple the action-angle variables of the unper-
turbed system in a nonlinear manner [4–7]. Thermalization
slowing-down was shown to strongly depend on the per-
turbation’s coupling range [5,7,8], which can be classified
according to two universality classes: short-range network
(SRN) and long-range network (LRN) [5,9–12]. To quantify
these slowing-down processes, one can study finite-time aver-
ages of observables. These however need to be selected with
care [5,11,13] to ensure that one obtains proper ergodization
timescales [9–12]. The ambiguity in the choice of suitable
observables led to the use of a novel method based on the
Lyapunov spectrum (LS) to distinguish the two universality
classes [11]. In this approach, which can also be employed to
diagnose phase transitions [14–17], significantly more infor-
mation than the typical Lyapunov time (given by the inverse
of the largest Lyapunov exponent) is available, since each
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Lyapunov exponent (LE) in the spectrum carries its own char-
acteristic timescale.

The numerical challenges of dealing with weakly noninte-
grable many-body Hamiltonian systems led to the study of
one-dimensional unitary-circuit maps, for which time evo-
lution is exact. This removes time discretization errors and
allows for substantially larger evolution times, and thus for
higher resolution in the LS [11,13]. The resulting universal
scaling properties of the LS rendered possible an unambigu-
ous identification of the different SRN and LRN universality
classes. These were also observed in a recent study of multi-
dimensional Josephson-junction networks across all possible
lattice dimensions [18]. The predictive power of unitary-
circuit maps was thereby confirmed, and above all the LS
has been established as an invaluable tool in the study of the
thermalization of many-body systems [13].

Our objective is to gain insight into the interplay of dis-
order with nonintegrability, which might reveal a connection
with the celebrated phenomenon of many-body localization
[19]. For this, we employ unitary-circuit maps to investigate
how the disorder impacts the two thermalization slowing-
down universality classes. We use tailored disorder, which
leads to Anderson-localized states [20] in the integrable limit
of linear maps. The tunable localization length ξ is universal
for all eigenmodes and is determined solely by the hop-
pinglike parameter associated with the unitary-circuit map
[21]. We then demonstrate that the system’s thermalization
universality class changes from the LRN to the SRN as the
localization length is tuned from ξ ≈ N to ξ � N , where N
is the system size. Our findings intertwine the fields of many-
body localization and thermalization of weakly nonintegrable
systems and provide an alternative venue for connecting
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FIG. 1. Schematic representation of the disordered unitary-
circuit map, where violet and brown circles indicate sites. Large
green blocks represent unitary matrices Ĉ(θ ), small yellow blocks
indicate local nonlinear unitary operators Ĝ(g), and small blue blocks
indicate local disorder unitary operators D̂({εn}). One time step con-
tains four steps (unitary transformations).

the slowing down of classical many-body dynamics in the
presence of disorder and localization physics in quantum
many-body systems like the ones proposed in Refs. [22–27].

We employ a modification of the classical unitary-
circuit maps introduced in [11,13]. These consist of a
one-dimensional periodic chain of N complex numbers ψn,
with n = 1, 2, . . . , N denoting the sites (we assume that N is
even). An initial vector �� with these complex scalar compo-
nents ψn is evolved by applying iteratively the unitary map

Û = D̂ĜĈ(even)Ĉ(odd). (1)

Here we interpret the number of iterations as a discrete time,
i.e., ��(t + 1) = Û ��(t ). A pictorial description of Û is pro-
vided in Fig. 1. The operators Ĉ(even) and Ĉ(odd) are linear
transformations. In matrix representation they are block di-
agonal with each block consisting of a 2 × 2 unitary matrix
Ĉn,n+1 with n even and odd, respectively, coupling the compo-
nents ψn(t ) and ψn+1(t ), parametrized by a hoppinglike angle
parameter θ ,

Ĉn,n+1

(
ψn(t )

ψn+1(t )

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ψn(t )

ψn+1(t )

)
. (2)

All remaining matrix elements are zero and, due to periodic-
ity, ψN+1 = ψ1. Successive applications of Ĉ(odd) and Ĉ(even)

intertwine neighbors to the left and to the right of site n
(green boxes in Fig. 1). In matrix representation the operator
Ĝ corresponds to a diagonal matrix whose elements Ĝn,n are
nonlinear on-site potentials acting as

Ĝn,nψn(t ) = eig|ψn|2ψn(t ). (3)

Similar to an anharmonic oscillator whose frequency de-
pends on its level of excitation, the imposed phase shift
(during one given time step) depends on the amplitude |ψn|.
This term is responsible for the chaoticity of the dynamics
(yellow boxes). Finally, D̂ acts on a given site, that is, in matrix
representation again is a diagonal matrix with elements

D̂n,nψn(t ) = eiεnψn(t ), (4)

where the εn are site-dependent disorder potentials that are
uniformly distributed in [−π, π ] (blue boxes). This is a
commonly used procedure to introduce on-site disorder. As
demonstrated in the following, this is sufficient to induce a
transition from the LRN to the SRN.

The unitarity of Û implies that the total squared norm
| ��(t )|2 is a conserved quantity. Accordingly, in order to al-
low all possible typical scenarios for the temporal behavior
with equal probability, we generated in all considered cases
ensembles of trajectories by choosing the initial values of
the squared moduli of the rescaled components ηn = N |ψn|2
uniformly spread over the N sphere with the joint-probability
distribution P({ηn}) ∝ δ(N − ∑N

n=1 ηn). This yields, for the
probability distribution of the ηn, P(η) ∝ (1 − 1/N )(1 −
η/N )N−2 N�1−−→ e−η. For the computation of the LS 
 com-
prising the LEs 
i with 
1 � 
2 � · · · � 
N , we follow the
calculation procedure of Ref. [13], outlined in more detail in
[28]. Note that we are considering the part of the LS that is
composed of non-negative LEs in the spectrum. We can do
so because, similarly to time-independent Hamiltonian sys-
tems, the N positive LEs come in pairs with negative ones of
the same modulus 
i = −
2N−i+1 [13]. The final simulation
time is denoted by Ts.

In the absence of hopping, achieved by setting θ = 0, the
sites decouple and the squared norms |ψn|2 are conserved.
This results in N functionally independent conserved quan-
tities. Since the system has N degrees of freedom implying
a 2N-dimensional phase space, this limit is integrable. The
squared norms then provide a discrete analog to the actions in
continuous Hamiltonian systems when θ = 0 [11,13]. A sec-
ond integrable limit is realized by setting g = 0. In this case,
the sites remain coupled, but there is no source of nonlinearity,
and the squared norms of the corresponding normal modes,
i.e., of the eigenvectors of Û (g = 0), are conserved [11,13].

Let us consider first the disorder-free case. When ap-
proaching the decoupled integrable limit, i.e., when θ � 1,
each action is only weakly coupled to its nearest neighbors,
resulting in a SRN [11,13]. In the regime g � 1, on the other
hand, all normal-mode actions are weakly coupled to each
other such that all-to-all linear interactions persist and impli-
cate a LRN [11,13]. Furthermore, it was demonstrated that,
in the absence of disorder, the Lyapunov spectra for LRN and
SRN systems behave significantly differently as the integrable
limit is approached: While most of the LEs in the LRN class
are of the same order of magnitude at any distance from the
integrable limit, the LEs in the SRN class are damped and
end up spanning several orders of magnitude, with the span
increasing upon approaching the integrable limit (see Fig. 2).
We derived an ansatz for the rescaled Lyapunov spectrum 
̄

of the LRN and SRN. This rescaled spectrum is obtained by
dividing the original LEs by the maximal LE (MLE) 
̄i =

i/
1. The starting point of the derivation is the analytical
result for the number of Lyapunov exponents N (
) below

 = 
i, given by N (
i ) = N + 1 − i, i = 1, 2, . . . , N . Away
from the limiting values 0 < 
̄i < 1, this number is well
described by the integrated Wigner semicircle law [29–31],
yielding an inverse semicircle law for 
̄ versus ρi = i/N .
The damping rate of the spectrum in the SRN regime, on the
other hand, is exponential. An approximation of the resulting
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FIG. 2. Lyapunov spectra 
i of the ordered unitary-circuit map
versus (a) g in the LRN regime (θ = 1.13 and Ts = 108) and (b) θ

in the SRN regime (g = 1 and Ts = 109). The error bars show the
standard deviation σg obtained from an ensemble of 12 different
trajectories. Here N = 200.

expression, which for ρ > 0 reflects these features, is pro-
vided by the ansatz


(ρ) = (1 − ρα )e−βργ

. (5)

The parameters α, β, and γ are determined from the fit of this
ansatz to the rescaled LS. However, the qualitative behavior
of 
(ρ) is already well captured with γ = 1 [18]. We con-
firmed the applicability of the ansatz for various parameter
settings and illustrate it in Fig. S4 of [28] for one ordered
case and the corresponding disordered case. In addition, we
compute the rescaled Kolmogorov-Sinai (KS) entropy κ =

1
N−1

∑N
i=2 
̄i = ∫ 1

0 
̄ dρ, which is a very useful quantifier of
the different regimes. In the SRN regime, κ tends to 0 when
approaching the integrable limit, while in the LRN regime,
it saturates at some value, as shown in Fig. 3. The insets
of Fig. 3 show that the fitting parameter α does not vary
significantly for all considered cases. In contrast, the exponent
β grows with a power law in the SRN upon lowering θ , while
it saturates similarly to α in the LRN with decreasing g. As a
consequence, the rescaled LS 
̄(ρ) saturates on some analytic
invariant curve in the LRN for g → 0, and knowing one LE
(e.g., the MLE) results in knowing all others as well, whereas
the SRN is characterized by an exponential damping of LEs
compared to the MLE.

FIG. 3. Rescaled KS entropy κ for the ordered case in the LRN
regime with θ = 1.13 (red circles, top) versus g in the SRN regime
with g = 1 (blue circles, bottom) versus θ . Solid lines connect the
data points and guide the eye. Here Ts = 108 and N = 200. The insets
show the fit coefficients α (triangles) and β (squares) of Eq. (5) in
the LRN (top left) and SRN (bottom right) regimes. The error bars
represent the standard deviation deduced from an ensemble of 12
trajectories. The dashed curves in the main plot show the integral of
Eq. (5) evaluated with the coefficients from the fits.

Figures 2 and 3 show results for Lyapunov spectra and KS
entropy for the ordered case. Our next objective is to compare
them to results for the disordered case to get insight into the
effect of disorder on the LRN with the aim of realizing a SRN
for weak but nonzero nonlinearity g � 1 and establishing a
connection to Anderson localization [20,32,33]. For g = 0,
all normal-mode eigenstates of Û are exponentially localized
[21]. The localization length ξ depends only on the hopping-
like parameter θ ,

2

ξ
= |ln(|sin θ |)|, ξ (θ → 0) → 0, ξ

(
θ → π

2

)
→ ∞.

(6)
Let us expand an arbitrary ��(t ) in the eigenmode basis at
g = 0 and Û (g = 0) ��k = eiωk ��k , namely, ��(t ) =∑

k ck (t ) ��k . Here the eigenmodes ��k are Anderson localized
with components |ψn

k | ∼ e−|n|/ξ . The quasienergies ωk are
real and the expansion coefficients ck (t ) are complex. The
actions {|ck|2} are the constants of motion. Away from the
integrable limit, i.e., for 0 < g � 1, the expansion coefficients
are coupled as

ck (t + 1) = eiωk ck (t )

+ ig
∑

k1,k2,k3

ei(ωk1 +ωk2 −ωk3 )Ik,k1,k2,k3 ck1 (t )ck2 (t )c∗
k3

(t ),

(7)

where Ik,k1,k2,k3 is an overlap integral Ik,k1,k2,k3 ∼∑
n ψn

k1
ψn

k2
(ψn

k3
)∗(ψn

k )∗. For small g and |π
2 − θ | the length

ξ becomes larger than the system size, implying that the
normal modes extend over the entire system, and Eq. (7) turns
into a LRN with essentially all-to-all action couplings. For
small g and θ � 1 the length ξ tends to zero, the eigenmodes
are strongly localized, and Eq. (7) turns into a SRN with
essentially nearest-neighbor action couplings.

We therefore predict that the universality class of a finite
disordered system will depend on the ratio ξ/N . In Fig. 4 we
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FIG. 4. Lyapunov spectra 
i for the disordered case for (a) the
LRN with θ = 1.26 and ξ ≈ 40 and (b) the SRN with θ = 0.38 and
ξ ≈ 2. Here 
i is plotted versus g for Ts = 108 and N = 200. The
error bars show the standard deviation σg for an ensemble of 100
trajectories.

show the LS dependence on g for ξ/N = 0.2 [Fig. 4(a)] and
ξ/N = 0.01 [Fig. 4(b)]. We clearly observe that Fig. 4(a)
displays the typical LRN behavior observed in Fig. 2 with
all LEs being proportional to each other. In Fig. 4(b) the LEs
widen in a fanlike way, indicating SRN features.

To gain further insight, we extrapolate the rescaled LS
down to g = 0 [28] as a function of θ and fit the ansatz (5)
to the outcome. The results are summarized in Fig. 5 and for
α in Fig. S5 of Ref. [28]. Figure 5(a) shows the dependence
ξ (θ ) for convenience. Figure 5(b) exhibits the dependence of
the exponent β on θ (closed squares), i.e., on the localization
length ξ with a growth over several decades, as expected,
when crossing over from a LRN to a SRN class. In Fig. 5(c)
the dependence of the asymptotic rescaled KS entropy κa

versus θ is plotted (closed circles), showcasing the vanishing
of κa for small θ . For reference, we plot in Figs. 5(b) and
5(c) the corresponding results for the ordered case using open
symbols. In this case no sizable change of β(θ ) and κa(θ ) is
observed. In addition to inducing the transition from a LRN
to a SRN by varying the localization length ξ , this can be
achieved by increasing the system size N . To demonstrate
this, we have calculated the quantity κa for different system
sizes, all with the same localization length ξ = 2, exhibited
in Fig. S6 of Ref. [28], yielding that κa indeed decreases with
increasing system size N .

FIG. 5. Disordered case after extrapolating down to g = 0. Or-
dered case results are added for comparison. (a) Localization length
ξ versus θ . The black line is the analytical result of Eq. (6) and the
blue circles mark the θ values used for the computations. (b) Fit
coefficient β of the asymptotic rescaled LS 
̄(ρ; g → 0) versus θ

(closed blue squares). Open red squares are obtained from the corre-
sponding ordered case data [28]. (c) Asymptotic rescaled KS entropy
κa versus θ (closed blue circles). Open red circles are obtained from
the corresponding ordered case data [28]. The error bars represent the
time σt (black) and ensemble σg (blue and red) standard deviations
[28]. Lines guide the eye.

The Lyapunov spectrum (or better the inverse of its Lya-
punov exponents) captures the timescale of thermalization.
These times diverge in a qualitatively different way upon
approaching integrable limits for short- and long-range net-
work classes. Previous studies used the limit of weak lattice
coupling to realize a SRN, while weak nonlinearities resulted
in a LRN. Here we show that the addition of disorder allows
us to realize a SRN in the limit of weak nonlinearities, which
in many situations correspond to weak two-body interactions.
To achieve our goals we compute the rescaled Lyapunov
spectrum and fit the ansatz (5) to it to extract an exponent
whose divergence signals the presence of a SRN and measure
the rescaled KS entropy of the rescaled LS as another highly
useful quantifier to tell SRN and LRN regimes apart. We also
extrapolate the rescaled LS down to vanishing nonlinearity
strength. These procedures allow us to unambiguously iden-
tify the crossover from a long-range network to a short-range
network in a disordered system upon reducing the localization
length.

Let us discuss and speculate about some consequences of
the observed crossover. Approaching the integrable limit in
the regime of a short-range network implies that at any time
the dynamics of the system is mostly regular, with rare local
spots of nonlinear resonances leading to weak chaos (which is
probably associated with the largest Lyapunov exponent). The
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density of these rare spots diminishes the closer the system is
tuned to the integrable limit. Large but finite systems are there-
fore expected to display prethermalization features, where
certain parts of the system show thermal properties which
will fluctuate from part to part. Additional quantization of the
considered systems might lead to a suppression of chaotic res-
onances and prethermalization and ultimately to many-body
localization related features. It remains to be studied whether
the well-defined short-range network regimes of the studied
classical systems will indeed result in many-body localization
for the corresponding quantum systems, at variance with the
long-range network classes.

Our studies were confined to finite system sizes. We expect
that the thermodynamic limit N → ∞ will result in a short-

range network class for all cases of finite localization length
(see Sec. VII of Ref. [28]). It remains to be studied whether
large but finite values of the localization length will or will
not result in qualitative changes of the Lyapunov spectrum
scaling in the limit of weak nonlinearities and infinite system
size.
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Tilen Čadež and Alexei Andreanov for fruitful discussions.

[1] K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York,
1987).

[2] G. Bel and E. Barkai, Weak ergodicity breaking in the
continuous-time random walk, Phys. Rev. Lett. 94, 240602
(2005).

[3] M. Rigol, Breakdown of thermalization in finite one-
dimensional systems, Phys. Rev. Lett. 103, 100403 (2009).

[4] C. Danieli, D. K. Campbell, and S. Flach, Intermittent many-
body dynamics at equilibrium, Phys. Rev. E 95, 060202(R)
(2017).

[5] C. Danieli, T. Mithun, Y. Kati, D. K. Campbell, and S. Flach,
Dynamical glass in weakly nonintegrable Klein-Gordon chains,
Phys. Rev. E 100, 032217 (2019).

[6] T. Mithun, C. Danieli, Y. Kati, and S. Flach, Dynamical glass
and ergodization times in classical Josephson junction chains,
Phys. Rev. Lett. 122, 054102 (2019).

[7] T. Mithun, C. Danieli, M. V. Fistul, B. L. Altshuler, and S.
Flach, Fragile many-body ergodicity from action diffusion,
Phys. Rev. E 104, 014218 (2021).

[8] A. S. de Wijn, B. Hess, and B. V. Fine, Lyapunov instabilities
in lattices of interacting classical spins at infinite temperature,
J. Phys. A: Math. Theor. 46, 254012 (2013).

[9] T. Goldfriend and J. Kurchan, Equilibration of quasi-integrable
systems, Phys. Rev. E 99, 022146 (2019).

[10] S. Ganapa, A. Apte, and A. Dhar, Thermalization of local ob-
servables in the α-FPUT chain, J. Stat. Phys. 180, 1010 (2020).

[11] M. Malishava and S. Flach, Thermalization dynamics of
macroscopic weakly nonintegrable maps, Chaos 32, 063113
(2022).

[12] M. Baldovin, A. Vulpiani, and G. Gradenigo, Statistical me-
chanics of an integrable system, J. Stat. Phys. 183, 41
(2021).

[13] M. Malishava and S. Flach, Lyapunov spectrum scaling for
classical many-body dynamics close to integrability, Phys. Rev.
Lett. 128, 134102 (2022).

[14] C. Dellago and H. A. Posch, Lyapunov instability, local cur-
vature, and the fluid-solid phase transition in two-dimensional
particle systems, Physica A 230, 364 (1996).

[15] C. Dellago and H. A. Posch, Lyapunov instability in the ex-
tended XY -model: Equilibrium and nonequilibrium molecular
dynamics simulations, Physica A 237, 95 (1997).

[16] B. Hadrien and H. A. Posch, What does dynamical systems
theory teach us about fluids? Commun. Theor. Phys. 62, 451
(2014).

[17] A. S. de Wijn, B. Hess, and B. V. Fine, Chaotic properties of
spin lattices near second-order phase transitions, Phys. Rev. E
92, 062929 (2015).

[18] G. M. Lando and S. Flach, Thermalization slowing-down in
multidimensional Josephson junction networks, Phys. Rev. E
108, L062301 (2023).

[19] A. Pal and D. A. Huse, Many-body localization phase transition,
Phys. Rev. B 82, 174411 (2010).

[20] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[21] I. Vakulchyk and S. Flach, Universal anderson localization in
one-dimensional unitary maps, Chaos 33, 083134 (2023).

[22] A. Chan, A. De Luca, and J. T. Chalker, Solution of a minimal
model for many-body quantum chaos, Phys. Rev. X 8, 041019
(2018).

[23] A. Chan, A. De Luca, and J. T. Chalker, Spectral statistics in
spatially extended chaotic quantum many-body systems, Phys.
Rev. Lett. 121, 060601 (2018).

[24] Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect
and the many-body entanglement transition, Phys. Rev. B 98,
205136 (2018).

[25] A. Nahum, S. Vijay, and J. Haah, Operator spreading in random
unitary circuits, Phys. Rev. X 8, 021014 (2018).

[26] B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced
phase transitions in the dynamics of entanglement, Phys. Rev.
X 9, 031009 (2019).

[27] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven en-
tanglement transition in hybrid quantum circuits, Phys. Rev. B
100, 134306 (2019).

[28] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.L012064 for details on the unitary
circuit map, equations of evolution, and some details on Lya-
punov spectrum computation.

[29] M. L. Mehta, Random Matrices (Academic, London, 1990).
[30] G. Gur-Ari, M. Hanada, and S. H. Shenker, Chaos in classical

D0-brane mechanics, J. High Energy Phys. 02 (2016) 091.
[31] M. Hanada, H. Shimada, and M. Tezuka, Universality in chaos:

Lyapunov spectrum and random matrix theory, Phys. Rev. E 97,
022224 (2018).

[32] E. Hamza, A. Joye, and G. Stolz, Dynamical localization for
unitary Anderson models, Math. Phys. Anal. Geom. 12, 381
(2009).

[33] A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Fifty years
of Anderson localization, Phys. Today 62 (8), 24 (2009).

L012064-5

https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.103.100403
https://doi.org/10.1103/PhysRevE.95.060202
https://doi.org/10.1103/PhysRevE.100.032217
https://doi.org/10.1103/PhysRevLett.122.054102
https://doi.org/10.1103/PhysRevE.104.014218
https://doi.org/10.1088/1751-8113/46/25/254012
https://doi.org/10.1103/PhysRevE.99.022146
https://doi.org/10.1007/s10955-020-02576-2
https://doi.org/10.1063/5.0092032
https://doi.org/10.1007/s10955-021-02781-7
https://doi.org/10.1103/PhysRevLett.128.134102
https://doi.org/10.1016/0378-4371(96)00069-6
https://doi.org/10.1016/S0378-4371(96)00423-2
https://doi.org/10.1088/0253-6102/62/4/03
https://doi.org/10.1103/PhysRevE.92.062929
https://doi.org/10.1103/PhysRevE.108.L062301
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1063/5.0141808
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.134306
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.L012064
https://doi.org/10.1007/JHEP02(2016)091
https://doi.org/10.1103/PhysRevE.97.022224
https://doi.org/10.1007/s11040-009-9068-9
https://doi.org/10.1063/1.3206091

