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This supplementary material complements the main
text by providing additional information on the numeri-
cal procedures that were employed to compute Lyapunov
spectra. It includes a comprehensive description of the
dynamic evolution of the unitary circuits maps used in
our simulations. Additionally, we outline the specific ini-
tial conditions adopted for the simulations and elaborate
on the convergence criteria applied for obtaining the Lya-
punov spectrum (LS).

I. DYNAMIC EVOLUTION

For the sake of simplicity, we use the notation
{ψ2n(t), ψ2n+1(t)}T to represent the states of two sites
within a single unit cell (depicted as violet and brown
circles in Fig. 1 of the main text). The time evolution of
these states is governed by the equations [1, 2]:

ψn(t+ 1) = eiϵnei(g|fn[Ψ⃗(t)]|2)fn[Ψ⃗(t)], (S1)

(S2)

with

f2n[Ψ⃗(t)] = C2ψ2n(t)− CSψ2n−1(t) + S2ψ2n−2(t) + CSψ2n+1(t),

f2n−1[Ψ⃗(t)] = C2ψ2n−1(t)− CSψ2n−2(t) + S2ψ2n+1(t) + CSψ2n(t),

(S3)
where C = cos θ and S = sin θ.

II. INITIAL CONDITIONS

In all simulations, we initialize the system with initial
conditions |ψn|eiϕn , n = 1, 2, . . . N for the nth compo-

nent of Ψ⃗(0), where the phases ϕn are uncorrelated and
uniformly randomly distributed in the range [−π, π], and
the rescaled squared amplitudes ηn = N |ψn|2 follow an
exponential distribution p(η) ∝ e−η/⟨η⟩. The average
value of the square-norm of ψn is normalized to ⟨η⟩ = 1

2
which is consistent with the approach used in Refs. [1, 2].

The strengths of disorder, denoted by ϵn, are also un-
correlated and uniformly randomly distributed in the
interval [−π, π], following the procedure described in
Ref. [3].

FIG. S1. Evolution of positive transient LS with θ = 0.00075
and g = 1. N = 100, Ts = 107.

III. LYAPUNOV SPECTRUM CALCULATION

The Lyapunov exponent measures the exponential
growth rate of an infinitesimal distance w(t) from the

initial trajectory. It is defined as Λ = limt→∞
1
t ln

w(t)
w(0)

[4]. To compute the positive LS, we introduce N orthog-
onal perturbations w⃗(t) to trajectories x⃗(t), where N is
equal to the degree of freedom of the system and the

state Ψ⃗(t) = x⃗(t) + w⃗(t) follows the equations of motion
Eq. (S1).

Because of the linearity property fn[Ψ⃗(t)] = fn[x⃗(t)]+
fn[w⃗(t)], we can expand the norm in the exponential term
in Eq. (S1). We only keep the first order of w⃗,

|fn[Ψ⃗(t)]|2 = |fn[x⃗(t)] + fn[w⃗(t)]|2

= |fn[x⃗(t)]|2 + |fn[w⃗(t)]|2 + 2Re{fn[w⃗(t)]fn[x⃗(t)]∗}
≈ |fn[x⃗(t)]|2 +Ren

where Ren = 2Re{fn[w⃗(t)]fn[x⃗(t)]∗}.
Expanding the nonlinear part in a Taylor series and

retaining only the first order of w⃗(t), we obtain

eig|fn[Ψ⃗(t)]|2 = ei|fn[x⃗(t)]|
2

eigRen

≈ ei|fn[x⃗(t)]|
2

(1 + igRen).

Subtracting the contribution from the linear trajectories
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FIG. S2. The colored lines show Λi versus g. The black
dashed lines show the extrapolation process. The red stars
show the points that are used in the plots of the asymptotic
curves.

yields the growth of the perturbation

wn(t+ 1) = ψn(t+ 1)− xn(t+ 1)

= eiϵnei(g|fn[x⃗(t)]|
2){fn[w⃗(t)] + igRen fn[x⃗(t)]}.

Fig. S1 exemplifies the evolution of the positive tran-
sient LS for one specific case.

IV. SATURATION CRITERION AND
ASYMPTOTIC CURVE OF RESCALED

LYAPUNOV SPECTRUM

A. Saturation criterion of Lyapunov spectrum

As we approach an integrable limit, the divergent
timescales become inversely proportional to the LS. How-
ever, due to computational limitations, we are required
to terminate our evolution at a specific number of time
steps, typically ranging from 108 to 109 in this study.
Despite this limitation, even at these time steps, certain
parts of the LS may not have reached saturation. To
quantify the saturation level, we calculate the standard
deviation σt of the data between the final time, 10ns , and
its previous “generation”, 10ns−1. This interval typically
covers more than 90% of the total evolution time.

To control the accuracy of our simulations, we utilize
the parameter L = σt

Λmax
, where Λmax is the maximum

Lyapunov exponent. We found out that the requirement
L ≤ Lmax = 0.11 is sufficient to obtain reliable results
for the Lyapunov exponents Λi.

B. Asymptotic curve of rescaled Lyapunov
spectrum

Fig. S2 depicts the extrapolation process used to ob-
tain the results plotted in Fig. 5 of the main text. The

FIG. S3. Asymptotic curves for rescaled LS versus rescaled
index ρ for the (a) ordered cases and (b) disordered cases in
log scale. The angle θ varies from 1.43 (blue) to 0.38 (red).
The error bars represent the time (σt black) and ensemble (σg

colored) standard deviations. For all cases, the system size is
N = 200. Unphysical error bars that would generate negative
exponents are removed in panel (b).

values of the smallest and second smallest perturbation
strength g were determined based on the required accu-
racy L ≤ Lmax. To obtain information on the Λi when
g approaches zero, we perform linear extrapolation of
these two points. The red stars in Fig. S2 exemplary in-
dicate the values of the Lyapunov exponents (LEs) that
are used in the plots of asymptotic curves resulting from
such an extrapolation procedure. These LEs capture the
behavior of the system as g approaches zero and provide
valuable insights into the system properties in the near-
integrable regime.
Using this extrapolation procedure, we have obtained

the asymptotic curves for the rescaled Lyapunov spectra
of both ordered and disordered cases, considering differ-
ent values of θ. These curves are depicted in Fig. S3.
The rescaled Lyapunov spectra provide valuable insights
into the thermalization universality-class transition in-
duced by disorder and the impact of localization on the
system’s behavior in the near-integrable regime.

V. FITTING OF LYAPUNOV SPECTRUM

To further illustrate the distinct characteristics of the
short- and long-range networks, we employ Eq. (5) from
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FIG. S4. Asymptotic curves (red) for the rescaled LS versus
rescaled index ρ for the (a) ordered and (b) disordered cases
in log scale. The angle θ is equal to 0.38. The error bars
represent the ensemble (σg) standard deviations. The blue
dashed curves are the fittings.

the main text to fit the rescaled LS.

Fig. S4 presents one example for the fit of the proposed
ansatz Eq. (5) of the main text to the rescaled LS for
the ordered case and one for the disordered case. This
fitting procedure allows us to better understand the be-
havior of the system and the underlying thermalization
universality-class transition induced by Anderson local-
ization. The fitted curves provide valuable insights into
the relationship between the localization length ξ and the
thermalization behavior in the near-integrable regime.

VI. FIT COEFFICIENT α FOR ASYMPTOTIC
CURVES OF ORDERED AND DISORDERED

UNITARY CIRCUITS MAPS

Fig. S5 displays the fit coefficients α obtained from
Eq. (5) of the main text as a function of θ for the asymp-
totic curves shown in Fig. S3. In the plot, the red tri-
angles connected by red dashed lines represent the fit
coefficients for ordered systems, while the blue triangles
connected by blue straight lines represent the fit coeffi-
cients for disordered systems.

FIG. S5. Fit coefficient α (β is shown in Fig. 5 of the main
text) of Eq. (5) in the main text versus θ for the asymptotic
curves of the ordered (red empty triangles) and disordered
(blue filled triangles) unitary circuits maps.

FIG. S6. κa versus 1/N with localization length ξ = 2
(θ = 0.65) for disordered unitary circuits maps. The error
bars represent the time (σt black) and ensemble (σg blue)
standard deviations. The number of trajectories is 100.

VII. VARIATION OF κa WITH DIFFERENT
SYSTEM SIZES

In addition to inducing the transition from a long-
range network to a short-range network by varying the
localization length ξ, we can also achieve this transition
by increasing the system size N . We have calculated the
quantity κa for different system sizes, all with the same
localization length ξ = 2, as presented in Fig. S6.

We observe that as the system size N increases, κa de-
creases, providing further evidence for the long- to short-
range network transition. Notably, the error bars de-
duced from ensemble averages are of comparable magni-
tude to the average value. This observation clearly in-
dicates non-ergodicity and suggests that the maximum
achievable time Ts = 108 may not be sufficient for er-
godization in the system. Note also that the ergodization
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time diverges much more rapidly in the short-range net- work regime [5, 6], which will be explored in forthcoming
works.
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