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Abstract: We develop a generalized non-Hermitian Hamil-

tonian formalism for guided resonances in photonic crystal

slabs, derived directly from Maxwell’s equations through

a systematic guided-mode expansion. By expanding the

electromagnetic fields over the complete mode basis of an

unpatterned slab and systematically integrating out radia-

tive Fabry–Pérot channels, we obtain the analytical opera-

tor structure of the Hamiltonian, which treats guided-mode

coupling and radiation losses on equal footing. The resulting

Hamiltonian provides explicit expressions for both disper-

sive and radiative coupling terms in terms of modal overlap
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integrals and Fourier components of the permittivity modu-

lation. For specific geometries, the Hamiltonian coefficients

can be extracted from full-wave simulations, enabling accu-

ratemodeling without phenomenological assumptions. As a

case study, we investigate hexagonal lattices with both pre-

served and broken C6 symmetry, demonstrating predictive

agreement for complex band structures, near-field distribu-

tions, and far-field polarization patterns. In particular, the

formalism reproduces symmetry-protected bound states in

the continuum (BICs) at the Γ point, accidental off-Γ BICs

near the Γ point, and the emergence of chiral exceptional

points (EPs). It also captures the tunable behavior of eigen-

modes near the K point, including Dirac-point shifts and the

emergence of quasi-BICs or bandgap openings, depending

on the nature of C6 symmetry breaking. We further demon-

strate in the Appendix that the same formalism extends nat-

urally to other symmetry classes, including C2 (1D grating)

and C4 (square lattice) photonic crystal slabs. This approach

enables predictive and efficient modeling of complex pho-

tonic resonances, revealing their topological and symmetry-

protected characteristics in non-Hermitian systems.

Keywords: non-Hermitian photonics; photonic crystal;

bound states in the continuum; exceptional points; guided

resonances

1 Introduction

Understanding and engineering the resonant modes of pho-

tonic crystal (PhC) slabs [1]–[3] – and more broadly, non-

local metasurfaces composed of periodic subwavelength

lattice elements [4]–[7] – is a central theme in modern

nanophotonics, underpinning key applications in lasers, fil-

ters, sensors, and quantum optics. These systems exhibit

rich physics due to their intrinsic non-Hermiticity, which

arises from radiation leakage into the continuum and

leads to complex-valued eigenfrequencies. One of the most

intriguing phenomena associated with non-Hermitian pho-

tonic systems is the emergence of bound states in the contin-

uum (BICs) [8]–[12], which can be broadly categorized into

two types: symmetry-protected BICs and accidental BICs.
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Symmetry-protected BICs occur at high-symmetry points

in momentum space, where the confined electromagnetic

modes are forbidden from coupling to outgoing radiation

channels due to a symmetry mismatch. In contrast, acci-

dental BICs arise away from these high-symmetry points

as a result of destructive interference between multiple

radiation pathways, and are therefore highly sensitive to

geometric parameters of the structure. Another notable

non-Hermitian feature is the presence of exceptional points

(EPs) [13]–[18], where both eigenvalues and eigenmodes

coalesce inmomentum space, leading to non-trivial topolog-

ical and spectral behaviors. Aunified andaccuratemodeling

framework is thus essential for understanding and design-

ing these non-Hermitian resonances in structured photonic

media.

Guided resonances in PhC slabs – also referred to as

quasi-guided modes – arise from the coupling between

guided modes of an unpatterned dielectric slab and radia-

tion continua induced by periodicmodulation. Thesemodes

are characterized by complex eigenfrequencies encod-

ing both the resonance frequencies and radiative losses.

While full-wave numerical solvers (e.g., FEM, FDTD) can

directly compute these quantities, they are computationally

demanding for large parameter scans and often obscure the

underlying physical mechanisms. Conversely, analytical or

semi-analytical Hamiltonian approaches – such as temporal

coupled-mode theory (TCMT) [19], [20] and phenomenolog-

ical non-Hermitian models [14]–[16], [18], [21] – offer com-

pact descriptions but typically start from assumed operator

structures, which may restrict their applicability to specific

designs or symmetry configurations.

A powerful intermediate approach is coupled-mode

theory via permittivity perturbation, where the permittiv-

ity is written as 𝜖(r) = 𝜖0(r)+Δ𝜖(r), with 𝜖0(r) describing

the unperturbed slab and Δ𝜖(r) the periodic modulation.
This formulation enables the eigenmodes of the full sys-

tem to be expressed in terms of those of the homogeneous

slab, yielding an effective Hamiltonian that captures both

mode coupling and radiation leakage – particularly when

extended to the complex frequency plane. This strategy

dates back to distributed feedback laser theory [22], [23] and

has been extended to two-dimensional PhC slabs to describe

phenomena such as band inversion, symmetry-protected

BICs, and topological transitions in non-Hermitian photon-

ics [24], [25]. Complementary developments byNoda’s group

provided effective mode-couplingmodels for various lattice

geometries, offering insight into BIC formation and far-field

radiation control [26]–[30], consistent with experimental

observations from the MIT group [31]. However, a general

and systematic formalism that includes the full mode basis

of the slab and treats non-Hermiticity from the outset has

remained unexplored.

In this work, we derive a generalized non-Hermitian

Hamiltonian for guided resonances by expanding the fields

onto the complete set of eigenmodes from the unpat-

terned slab – including both guided and Fabry–Pérotmodes

(Figure 1). Starting from Maxwell’s equations, we systemat-

ically integrate out the Fabry–Pérot components to derive

the analytical operator structure of a non-Hermitian Hamil-

tonian – including diffractive coupling terms and radia-

tive self-energy – expressed as overlap integrals between

slab eigenmodes and the Fourier components of the per-

mittivity modulation. Our approach extends the guided-

mode expansion method developed by Andreani and col-

laborators [32], [33], which constructs a Hermitian Hamil-

tonian restricted to guided modes and treats radiation

perturbatively. In contrast, our method incorporates non-

Hermiticity at the core, enabling accuratemodeling of leaky

modes and their complex interactions across the light cone.

In the numerical examples, the corresponding coupling

coefficients are extracted from full-wave simulations to

enable direct and quantitative comparison with complex

band structures, quality factors, and far-field patterns. This

approach avoids phenomenological assumptions about the

Hamiltonian form while remaining computationally effi-

cient and physically interpretable. To illustrate the effi-

ciency and generality of the formalism, we apply it to

hexagonal-lattice PhC slabs with both C6-symmetric and

symmetry-broken configurations near the Γ and K points

of the Brillouin zone. Beyond the hexagonal lattices dis-

cussed in the main text, we further demonstrate in the

Appendix that the same formalism extends naturally to

other symmetry classes, including C2 (1D gratings) and C4
(square lattices), confirming its generality across diverse

photonic crystal geometries. The derived non-Hermitian

Hamiltonian not only reproduces the complex photonic

band structure but also accurately captures near-field and

far-field distributions, including polarization textures, in

Figure 1: Generalized guided-mode expansion. Guided resonances in a

PhC slab result from periodic permittivity perturbations coupling guided

modes and Fabry–Pérot modes of an unpatterned slab waveguide.
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excellent agreement with full-wave finite-element simula-

tions. The model predicts symmetry-protected BICs at the

Γ point (monopolar, hexapolar, and quadrupolar modes),

accidental off-Γ BICs from momentum-dependent destruc-

tive interference, and the emergence of chiral EP pairs in

momentum space. It further describes eigenmode behavior

near the K point under C6 symmetry breaking: in triangular

lattices with broken C3 symmetry, the Dirac point shifts

away from K while preserving degeneracy, with quasi-BIC

features in the lower band; in honeycomb lattices with bro-

ken inversion symmetry, the Dirac degeneracy is lifted and

a bandgap opens, with all modes becoming radiative. These

results establish the generalized guided-mode expansion as

a predictive and versatile framework for analyzing com-

plex resonant phenomena and symmetry-governed radia-

tion properties in non-Hermitian PhC slabs.

2 Theoretical framework

2.1 Eigenmodes of PhC slabs

PhC slabs are finite structures where light is confined verti-

cally (z-direction) within a slab that consists of multilayers

of high refractive index. The slab is periodically corrugated

in the x-y plane, and the vertical confinement is achieved by

the refractive index contrast between the slab material and

its surrounding lower refractive index environment (e.g.,

air and substrate). The in-plane periodicity gives rise to pho-

tonic band structures, while the vertical confinement allows

the PhC slab to support fully guidedmodes that are confined

by total internal reflection, useful for integrated photonic

on-chip applications, and leaky modes (guided resonances)

that interact with the radiation field in free space and are

critical for applications such as light-emitting devices, sen-

sors, or detectors. Guided resonances are specific to PhC

slabs and introduce non-Hermitian physics. In thiswork, we

focus solely on PhC slabs and sometimes refer to them as

PhCs for brevity.

The behavior of electromagnetic waves in PhC slabs is

governed by Maxwell’s equations. Here, for the sake of sim-

plicity, we assume the materials are isotropic, lossless, non-

magnetic, and non-dispersive, simplifying the permeability

𝜇 = 1 and the permittivity to spatially varying constants

𝜖(r). For time-harmonic fields E(r, t) = E(r)e−i𝜔t, the master

equation for the electric field is given by:

∇× (∇× E) = 𝜔2

c2
𝜖(r)E. (1)

This eigenvalue equation describes the frequency𝜔 of elec-

tromagnetic waves as a function of the spatial variation

of 𝜖(r), laying the foundation for the photonic band struc-

ture in PhCs. It is important to note that this equation is

not a standard eigenvalue equation but a generalized one,

requiring specific formulations for the inner product and

orthogonality, which involve weighting by the permittivity

𝜖(r). Here the permittivity exhibits in-plane periodicity, sat-

isfying 𝜖(r) = 𝜖(r+ R) with R being a lattice vector in the xy

plane. Since the periodicity exists in the in-plane directions

(x, y) but not along z, the eigen Bloch modes are given by:

E(r) = uk∥(r)e
ik∥⋅r∥ , (2)

where k∥ = (kx, ky) is the in-plane wavevector, r∥ = (x, y)

are the in-plane spatial coordinates, and uk∥
(r) is a peri-

odic function with the same periodicity as 𝜖(r). The eigen-

value problem yields the photonic band structure, 𝜔(k∥),

which maps the allowed frequencies for each wavevector

k∥ within the first Brillouin zone.

The emergence of complex eigenvalues for guided res-

onances arises from their interaction with the radiative

continuum. This coupling to the radiative continuum is a

hallmark of non-Hermitian physics in PhC slabs. Mathemat-

ically, the eigenvalue problem for guided resonances can

be written as ĤE = 𝜔E, where the Hamiltonian Ĥ is non-

Hermitian due to the inclusion of radiative losses. A non-

Hermitian Hamiltonian is characterized by Ĥ ≠ Ĥ†, mean-

ing it is not equal to its adjoint. This property introduces

complex eigenvalues, where the imaginary part typically

represents energy gain or loss in the system. In PhC slabs,

the non-Hermitian nature of Ĥ stems from the open-system

interaction between guided resonances and the radiative

continuum, which allows energy leakage. This is a direct

departure from Hermitian physics, where systems are typ-

ically closed and do not interact with an external environ-

ment. The non-Hermitian framework enables the study of

unique phenomena such as EPs and BICs, which are absent

in purely Hermitian systems.

2.2 Effective Hamiltonian from 𝚫𝝐
perturbation

Before discussing the Hamiltonian of generalized guided

modes expansion,wefirst introduce the common formalism

of the coupledmode theory viaΔ𝜖 perturbation. The unper-
turbed system, characterized by 𝜖0(r), has known eigen-

values 𝜔n and eigenmodes En(r): ∇×∇ × En =
𝜔2
n

c2
𝜖0(r)En.

IntroducingΔ𝜖(r) perturbs these eigenmodes and eigenval-
ues, allowing us to write: E(r) = ∑

ncnEn(r), where cn are

expansion coefficients that account for the perturbation.

Substituting E(r) into the perturbed master equation ∇×
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∇× E = 𝜔2

c2

[
𝜖0(r)+Δ𝜖(r)

]
E and projecting onto the unper-

turbed basis modes {En(r)} in the approximation 𝜔 ≈ 𝜔0

to achieve an eigenvalue problem of 𝜔 instead of 𝜔2, we

obtain:

HeffC = 𝜔C, (3)

whereC = {cn} is the vector of expansion coefficients. Here,

the effective Hamiltonian Heff includes the perturbative

contributions fromΔ𝜖(r):

[Heff]nm = 𝜔n𝛿nm +ΔHnm, (4)

with:

ΔHnm = 𝜔0

2 ∫ E
∗
n
⋅Δ𝜖(r)Em dr. (5)

2.3 Field expansion in the generalized
guided mode expansion

In the generalized guidedmode expansion, the unperturbed

system corresponds to the unpatterned slab with a permit-

tivity profile 𝜖0(z), representing the zeroth Fourier com-

ponent of 𝜖(r). The perturbation arises from the periodic

modulation in the x-y plane, expressed as:

Δ𝜖(r) =
∑
G

𝜖G(z)e
iG⋅r∥ , (6)

where G denotes the reciprocal lattice vectors, and r∥ =
(x, y) represents the in-plane coordinates.

The eigenmodes of the unpatterned slab 𝜖0(z) include

the guidedmodes of the planarwaveguide and the radiative

Fabry-Pérot (FP) modes. In this work, we focus on the low-

energy regime, where the wave vectors Gn+ k ∥ primarily
describe guided modes with evanescent out-of-plane com-

ponents, while the wave vectors k∥ correspond to modes

inside the light cone – i.e., radiative FP modes. The total

electric field in the PhC slab can thus be expanded as:

E =
∑
n

anEn +
∑
m

bmEm,FP, (7)

where En = un(z)e
i(Gn+k∥ )⋅r∥ are the guided modes confined

within the slab, having corresponding eigenvalues 𝜔n. And

Em,FP = um,rad(z)e
ik∥⋅r∥ are the radiative FP modes propa-

gating outside the slab, having corresponding eigenvalues

𝜔̃m,FP = 𝜔m,FP − i𝛾m,FP.Wenote that in this study,we restrict

ourselves to the low-energy regime, where only the zeroth-

order FP modes contribute to radiation. However, the for-

malism can be naturally extended to higher-energy regimes

by including FPmodes associated with higher-order diffrac-

tion channels. We also focus exclusively on transverse elec-

tric (TE) guided modes. The same formalism can be applied

to transverse magnetic (TM) guided modes by formulating

the perturbation theory in terms of the magnetic field H,

rather than the electric field E as done here. We also neglect

TE–TM coupling, which is justified in our system due to the

strong spectral separation between TE and TM modes in

high-contrast dielectric slabs.

It is important to note that despite the radiative

Fabry–Pérot modes being quasinormal modes – charac-

terized by complex eigenfrequencies due to their leaky

nature, they can form a complete and orthogonal basis

under specific conditions. The completeness and orthogo-

nality of quasinormal modes in leaky optical cavities were

rigorously established by Leung, Liu, and Young in 1994 [34].

Their work demonstrated that, despite the non-Hermitian

nature of such systems, a discrete set of quasinormal modes

suffices to accurately describe the field distribution within

the cavity. Therefore, the guided modes (En) and radiative

Fabry–Pérot modes (Em,FP) together provide a complete and

orthogonal basis that ensures the expansion from Eq. (7) is

both accurate and comprehensive.

The perturbation Δ𝜖(r) introduces coupling between
these guided and radiative modes. The coupling matrix ele-

ments are:

ΔHguided
nm = 𝜔0

2 ∫ E
∗
n
⋅Δ𝜖(r)Em dr

= 𝜔0

2 ∫ u
∗
n
(z) ⋅ 𝜖Gn−Gm

(z)um(z) dz,

ΔHguided−FP
nm = 𝜔0

2 ∫ E
∗
n
⋅Δ𝜖(r)Em,FP dr

= 𝜔0

2 ∫ u
∗
n
(z) ⋅ 𝜖−Gn

(z)um,rad(z) dz,

ΔHFP−guided
nm = 𝜔0

2 ∫ E
∗
n,FP

⋅Δ𝜖(r)Em dr

= 𝜔0

2 ∫ u
∗
n,rad

(z) ⋅ 𝜖Gm
(z)um(z) dz.

(8)

These coupling terms correspond to three distinctive

mechanisms:

– Guided-to-Guided Coupling: The interaction between

two guided modes is mediated by the Fourier compo-

nent Δ𝜖Gn−Gm
(z), which matches their momentum dif-

ference. This term is crucial for photonic band structure

modifications, such as band gaps.

– Guided-to-FP Coupling: The coupling of a guidedmode

to a radiative (Fabry–Pérot) mode depends on the

Fourier component Δ𝜖−Gn
(z). This term introduces

radiative losses to guided modes, converting them into

quasi-normal modes.

– FP-to-Guided Coupling: Radiative modes contribute

to guided modes through the Δ𝜖Gm
(z) term. This term

describes how energy can leak from FP modes back
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into guided modes. This is the reversed mechanism of

the guided-to-FP coupling, evidenced by ΔHguided−FP
nm =(

ΔHFP−guided
nm

)∗
.

Note that as we restrict ourselves to the low-energy regime,

where only the zeroth-order FP is involved, there is no FP-

to-FP coupling.

2.4 Effective Hamiltonian for guided modes

The total Hamiltonian for the coupled system of guided and

radiative modes can be written as:

H =
[

Hguided Hguided−FP

HFP−guided HFP

]
, (9)

which satisfies the eigenvalue problem:

H

[
A

B

]
= 𝜔

[
A

B

]
, (10)

where A = {an} and B = {bm} are the expansion coeffi-

cients of the total electric field E in Eq. (7). From the sec-

ond row of Eq. (10), we obtain a relation between the coef-

ficients of the radiative modes and those of the guided

modes B =
(
𝜔− HFP

)−1
HFP−guidedA, where 𝜔− HFP is a

diagonal matrix with entries Δn + i𝛾n,rad, and Δn = 𝜔−
𝜔n,rad denotes the detuning from the radiative FP mode

frequencies.

Substituting this relation into the first row of Eq. (10)

yields an effective operator acting on the guided-mode

amplitudes:

Ĥ = Hguided + Σ(𝜔), (11)

where Σ(𝜔) is the self-energy term, given by Σ(𝜔) =
Hguided−FP (𝜔− HFP )

−1 HFP−guided. This effective operator

satisfies

ĤA = 𝜔A, (12)

but the equation remains nonlinear due to the explicit 𝜔-

dependence of the self-energy term Σ(𝜔). Physically, this
term encapsulates the modification of the guided-mode

dynamics via coupling to the radiative Fabry–Pérot modes.

The imaginary part of Σ(𝜔) captures the irreversible cou-
pling to radiation and gives rise to the non-Hermitian

character of the guided resonances. Its real part produces

only a small dispersive frequency shift, which can be fully

absorbed into the guided-mode Hamiltonian through the

renormalization Hguided → Hguided + Re Σ, thereby shifting

only the diagonal terms of Hguided without altering modal

profiles, radiation rates, or topological properties. This pro-

cedure is standard in open electromagnetic and quantum

systems – directly analogous to Lamb-shift corrections

in QED, real-part self-energies in Green’s-function theory,

resonance-frequency shifts in temporal coupled-mode the-

ory, and on-site energy shifts in tight-binding models.

In the limit where the FP modes form a broadband and

rapidly decaying reservoir (e.g., for thin or weakly confined

slabs), the imaginary part of Σ dominates over the real

part. However, even when this strict quasi-continuum con-

dition is not satisfied, in practice, the diagonal parameters

of Hguided in numerical examples are extracted from full-

wave simulations, so any dispersive contribution from ReΣ
is naturally absorbed into these extracted coefficients. This

makes the approximation robust. In the concrete examples

presented in Sec.3, this renormalization simply corresponds

to a small adjustment of the guided-mode resonance fre-

quencies 𝜔Γ and 𝜔K . Retaining only the imaginary part of

the self-energy therefore yields a compact closed-form non-

Hermitian effective Hamiltonian acting on the guided-mode

subspace:

Ĥ = Hguided− i Hguided−FP Im
(
H−1
FP

)
HFP−guided

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Hrad

. (13)

This is the non-Hermitian effective Hamiltonian we

set out to derive. It captures both the dispersive proper-

ties of the guided modes and their radiative losses through

coupling to the continuum. Importantly, the approximation

eliminates the 𝜔-dependence in the self-energy, so that Ĥ

now defines a standard linear eigenvalue problem.

Moreover, within the quasi-continuum regime of FP

modes, the radiation amplitudes B – corresponding to the

far-field leakage – can be directly computed from the eigen-

vector A of Ĥ using:

B ≈ −i Im
(
H−1
FP

)
HFP−guidedA. (14)

2.5 Compact expression and physical
meaning of the non-Hermitian
Hamiltonian

The expressions of the coupling terms of Ĥ, given in Eq. (8),

are simplified by summing out the polarization cross prod-

ucts (see Appendix A). We now discuss the compact expres-

sion and physical meaning of each of these terms.

– The first term Hguided represents the unperturbed

guided modes and the diffractive couplings between

them. The diagonal elements correspond to the fre-

quencies of guided modes in the unpatterned slab:

H
guided
nn = 𝜔n. (15)
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The off-diagonal elements describe direct coupling

between guided modes via diffractive mechanism:

H
guided
nm = pn ⋅ pmUnm, (16)

where pn, pm are the polarization vector of the guided

mode En,Em, respectively; and the coupling strength

Unm is given by:

Unm = 𝜔0

2 ∫ u∗
n
⋅ 𝜖Gn−Gm

⋅ um dz. (17)

– The second term Ĥrad represents the radiative losses

and radiative coupling of the guided modes. The diag-

onal elements introduce imaginary components in the

eigenfrequencies of the guided modes due to coupling

with radiative modes:

Hrad
nn

= −i
∑
l

𝛾 (l)
n
. (18)

Here 𝛾 (l)n represents the radiative losses of the guided

mode n via the radiative Fabry–Pérot mode l, and the

expression of 𝛾 (l)n is given by:

𝛾 (l)
n

=
𝜔2
0

|||∫ u∗
n
⋅ 𝜖−Gn

⋅ ul,rad dz
|||2

4c4𝛾l,rad
. (19)

The off-diagonal elements describe indirect coupling

between guided modes mediated by radiative modes:

Hrad
nm

= −ipn ⋅ pm
∑
l

√
𝛾 (l)n 𝛾 (l)m ei(𝜙

( l )
n −𝜙( l )

m ), (20)

where coupling phase 𝜙(l)
n is given by:

𝜙(l)
n
= arg

(
∫ u∗

n
⋅ 𝜖−Gn

⋅ ul,rad dz
)
. (21)

It is worth emphasizing that the coupling terms expressed

in Eqs.(17) and (20), derived here from first-principles

Maxwell equations via the guided-mode expansion, cor-

respond directly to the so-called diffractive coupling and

radiative coupling often introduced phenomenologically in

the literature on 1D photonic gratings [21], [35] and 2D PhC

slabs [11], [36]. In particular, Eq.(20), which captures the off-

diagonal elements of the radiative loss operator, is in excel-

lent agreementwith the inter-mode coupling terms found in

the radiativeHamiltonian of temporal coupled-mode theory

applied to non-orthogonal resonators [20]. This highlights

the consistency between the full-wave modal expansion

approach and reduced-order models, and provides a rig-

orous microscopic foundation for the coupling coefficients

often assumed in heuristic or fitted models.

Furthermore, we highlight that the radiative losses of

the guided mode n via the radiative channel l is governed

by the overlap integral ∫ u∗
n
⋅ 𝜖−Gn

⋅ ul,rad dz, as shown in

Eq. (19). It can be accidentally suppressed if the overlap

integral is zero, leading to the suppression of a radiative

channel for a given guided mode. In particular, for some

particular design, it is possible to render null the radiative

losses of every guided modes in the spectral window of

interest. In such a configuration, the eigenmode is evidently

lossless. This corresponds to an accidental BIC configura-

tion, well documented in the literature, whose emergence

is extremely sensitive to the slab thickness, effective index,

and requires a vertical symmetry design [37]–[39].

2.6 From eigenmodes to nearfield pattern
and farfield pattern of Bloch modes

The eigenmodes of the system are obtained by diagonal-

izing the effective non-Hermitian Hamiltonian Ĥ through

the characteristic equation det(H −𝜔) = 0. Due to the non-

Hermitian nature of Ĥ, its eigenvalues Ωn are generally

complex, and the corresponding eigenvectors ||Ωn⟩ describe
the resonantmodes of the structure. If the imaginary part of

an eigenvalue vanishes, i.e. Im(Ωn) = 0, the corresponding

eigenmode ||Ωn⟩ is lossless. Such states are known as BICs.

Conversely, if Im(Ωn) < 0, the mode exhibits radiative loss

and is referred to as a leaky mode. The eigenvector An =
(an1 , an2 , an3 , ..) associated with ||Ωn⟩ defines the near-field
spatial distribution of the electric field:

E|Ωn⟩ =
∑
m

anmEm =
∑
m

anmum(z)e
i(Gm+k∥ )⋅r∥p

m
. (22)

A similar superposition principle applies to the magnetic

field. Due to the TEnature of the guidedmodes, themagnetic

field is predominantly polarized along the z-direction. The

corresponding near-field profile of the magnetic field can

thus be expressed as a scalar field:

H|Ωn⟩ ∝
∑
m

anmum(z)e
iGmr∥ ẑ. (23)

The far-field radiation pattern is governed by the FP com-

ponents in the field expansion of Eq. (7). For a given eigen-

mode ||Ωn⟩, the FP coefficients Bn = (bn1 , bn2 , bn3 ,… ) can be

obtained from the eigenvector An using Eq. (14). The result-

ing far-field electric field is given by:

E
farfield|Ωn⟩ =

∑
m

bnmEm,FP

∝ ei(k∥r∥+kz .z)
∑
m

anm𝛼mpm,
(24)

where𝛼m = ∑
l

√
𝛾 (l)m , ei𝜙

( l )
m accounts for the radiation ampli-

tude and phase into each far-field channel l. We note a
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direct correspondence between the near-field and far-field

expressions in Eqs. (22) and (24): the far-field radiation is

derived from the near-field by replacing the mode pro-

files um(z), e
iGm⋅r∥ with radiating plane wave components

eikzz,pm. This procedure effectively represents the folding

of guided Blochmodes into the first Brillouin zone and their

subsequent coupling to the radiation continuum.

The polarization texture – including polarization ori-

entation, ellipticity, and topological charge of polarization

singularities – can be readily computed from the far-field

electric field (see Appendix E).

3 Non-Hermitian Hamiltonian

versus numerical simulations

3.1 Hexagonal lattices with C6 symmetry

3.1.1 System description

We now apply our general non-Hermitian Hamiltonian to

described guided resonances in the vicinity of the Γ and

K point of a PhC slab with hexagonal lattices. The case of

grating and square lattices is presented in the Appendix F.

The PhC slab of consideration is of a hexagonal lattice

with C6 symmetry, for example, a triangular lattice with

a single circular hole in the unit cell (see Figure 2a), or a

honeycomb lattice with two identical circular holes (see

Figure 2b). The unit vectors are given by a1 = Λ
(√

3

2
,
1

2

)
and

a2 = Λ
(√

3

2
,− 1

2

)
with Λ = a for the triangular lattice, and

Λ =
√
3a for the honeycomb lattice.

In the momentum space, the high symmetry points are

K, K′, and M at the edge of the Brillouin zone, and Γ at

the centre of the Brillouin zone (see Figure 2c). The corre-

sponding unit vectors in momentum space are given by:

b1 = b
(
1

2
,
√
3

2

)
, and b2 = b

(
1

2
,−

√
3

2

)
, with b = 4𝜋√

3a
for the

triangular lattice, and b = 4𝜋

3a
for the honeycomb lattice. We

Figure 2: Geometry of hexagonal lattices. a) Triangular lattice.

b) Honeycomb lattice. c) First Brillouin zone in momentum space.

Figure 3: Guided mode basis. a) Eigenmodes operating at the Γ point

and above the light cone are described by six guided modes ||Γn⟩
of wave vector 𝚪n, with n = 1→ 6. b) Eigenmodes operating at the K

point and above the light cone are described by three guided modes ||Kn⟩
of wave vector Kn, with n = 1→ 3. The green region indicates the first

Brillouin zone, the blue regions indicate the second Brillouin zone,

and the yellow region indicates the third Brillouin zone.

note that |b1| = |b2| = b is the distance between theΓ point
of the first Brillouin zone (BZ) to the six closest Γ points of

the neighbor (i.e. second) BZs (see Figure 3a).

3.2 Guided mode basis

In this work, we only focus on photonic modes above the

line cone. In this region, the lowest photonic bands at the

Γ point is described by the basis consisting of guided modes

operating at the sixΓpoints of the secondBZs(see Figure 3a).
These correspond to six guided modes ||Γn⟩, with n = 1→ 6,

that both originate from the fundamental TE-guided mode

of the slab 𝜖0(z) and have wavevector 𝚪n (see Figure 3a).

On the other hand, the lowest photonic bands at the K

point is described by the basis consisting of guided modes

operating in three K points, two of them are in the second

BZ and the third one is in the third BZ (see Figure 3b). These

correspond to three guided modes ||Kn⟩with n = 1→ 3, that

both originate from the fundamental TE-guided mode of

the slab 𝜖0(z) and have wavevector Kn (see Figure 3b). In

a general way, 𝚪n = n1b1 + n2b2 and Kn = n1b1 + n2b2 + K

with K = b
(
1

2
,
√
3

4

)
is the position of the K point in the first

BZ. The couples (n1, n2) are given by:

(n1, n2 )|Γ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, 0)

(1, 1)

(0, 1)

(−1, 0)

(−1,−1)

(0,−1)

and (n1, n2 )|K =

⎧⎪⎪⎨⎪⎪⎩

(0,−1)

(0, 1)

(−2,−1)

(25)
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for ||Γ1⟩→ ||Γ6⟩ and ||K1⟩→ ||K3⟩, respectively. We note that||𝚪n
|| = b and ||Kn

|| = 2√
3
b. Explicit expressions of 𝚪n and Kn

are provided in the Appendix B.

The six guided modes ||Γn⟩ have the same energy 𝜔Γ at

the Γ point, and the three guided modes ||Kn⟩ have the same
energy 𝜔K at the K point. Adding an in-plane momentum

k = (k cos 𝜑, k sin 𝜑) with |k|≪ b, the propagation vector

of ||Γn⟩ and ||Kn⟩ becomes 𝚪n + k and Kn + k, respectively.

Thus the energy of ||Γn⟩ and ||Kn⟩ atk are given by𝜔|Γn⟩(k) ≈
𝜔Γ + 𝑣Γ

𝚪n⋅k|𝚪n| and 𝜔|Kn⟩(k) ≈ 𝜔K + 𝑣K
Kn⋅k|Kn| where 𝑣Γ and 𝑣K

are the group velocities of the guided mode at Γ and K,

respectively. Explicit expressions of 𝜔|Γn⟩(k) and 𝜔|Kn⟩(k)
are provided in the Appendix C. Due to the TE nature, our

guidedmodes exhibit in-plane polarization that are perpen-

dicular to their wavevector. Thus p|𝚪n⟩ ⋅ (𝚪n + k
)
= p|Kn⟩ ⋅(

Kn + k
)
= 0. In the limit of k ≪ b, the previous condition is

approximately reduced to p|𝚪n⟩ ⋅ 𝚪n = p|Kn⟩ ⋅ Kn = 0. Thus

one may easily obtain p|𝚪n⟩ and p|Kn⟩ (see Appendix D).
Finally, since ||Γn⟩ belongs to the same planar waveg-

uide mode, they exhibit the same vertical confinement pro-

file uΓ(z). The same, all three ||Kn⟩ exhibit the same vertical
confinement profile uK (z). We note that each guided mode

is associated with a pair (n1, n2) that corresponds to a Bloch

vector Gn = n1b1 + n2b2. Therefore, the electric field of our

two basis are given by:

E|𝚪n⟩ = uΓ(z)e
i(Gn+k∥ )⋅r∥p|Gn⟩,

E|Kn⟩ = uK (z)e
i(Gn+k∥ )⋅r∥p|Kn⟩.

(26)

Here the momentum k∥ within the first BZ is given by k for||Γn⟩ and K+ k for ||Kn⟩.

3.3 Effective Hamiltonian

Wenowapply the general expressions derived in Section 2.5

to the two mode bases 𝚪n and Kn. The diagonal elements of

the guided-mode HamiltonianHguided are simply the disper-

sion relations of the corresponding modes:

H
guided(Γ)
nn (k) = 𝜔|Γn⟩(k),

H
guided(K )
nn (k) = 𝜔|Kn⟩(k). (27)

The off-diagonal elements, corresponding to diffractive cou-

pling between guided modes, take the form:

H
guided(Γ)
nm = Û (Γ)

nm
= p|Gn⟩ ⋅ p|Gm⟩U (Γ)

nm
,

H
guided(K )
nm = Û (K )

nm
= p|Kn⟩ ⋅ p|Km⟩U (K )

nm
,

(28)

where the coupling coefficients are defined as:

UΓ
nm

= 𝜔Γ
2 ∫ ||uΓ(z)||2𝜖n1−m1,n2−m2

(z) dz,

UK
nm

= 𝜔K

2 ∫ ||uK (z)||2𝜖n1−m1,n2−m2
(z) dz.

(29)

Here, 𝜖n1−m1,n2−m2
denotes the Fourier component 𝜖Gn−Gm

of the in-plane permittivity modulation Δ𝜖(r∥). Thanks to
the C6 symmetry of the lattice and using the specific mode

indices (n,m) given in Eq. (25), along with the polarization

vectors p|Gn⟩ and p|Kn⟩ defined in Eq. (47), the coupling

matrices acquire the simplified form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ÛΓ
12
= ÛΓ

23
= ÛΓ

34
= ÛΓ

45
= ÛΓ

56
= ÛΓ

61
≡ V ,

ÛΓ
13
= ÛΓ

24
= Û35 = ÛΓ

46
= ÛΓ

51
= ÛΓ

62
≡ W ,

ÛΓ
14
= ÛΓ

25
= ÛΓ

36
≡ U,

ÛK
12
= ÛK

23
= ÛK

31
≡ T .

(30)

The couplings U , V , W , and T are all real-valued and gov-

erned by specific Fourier components ofΔ𝜖:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V : 𝜖1,0 = 𝜖1,1 = 𝜖0,1 = 𝜖−1,0 = 𝜖−1,−1 = 𝜖0,−1,

W : 𝜖1,−1 = 𝜖2,1 = 𝜖1,2 = 𝜖−1,1 = 𝜖−2,−1 = 𝜖−1,−2,

U: 𝜖2,0 = 𝜖2,2 = 𝜖0,2,

T: 𝜖0,2 = 𝜖2,0 = 𝜖−2,−2.

The C6 symmetry also simplifies the structure of the

radiative Hamiltonian Ĥrad. The diagonal elements are

given by:

Ĥrad(Γ)
nn

= −i𝛾0,

Ĥrad(K )
nn

=
⎧⎪⎨⎪⎩
−i𝛾1 for n = 1, 2,

−i𝛾2 for n = 3,

(31)

where 𝛾0, 𝛾 1, and 𝛾2 represent the radiative loss rates for the

modes at Γ and K, respectively, under the assumption of a

single radiation channel. These are governed by:

⎧⎪⎪⎨⎪⎪⎩

𝛾0: 𝜖1,0 = 𝜖1,1 = 𝜖0,1 = 𝜖−1,0 = 𝜖−1,−1 = 𝜖0,−1,

𝛾1: 𝜖0,1 = 𝜖0,−1,

𝛾2: 𝜖−2,−1.

The off-diagonal elements are expressed as:

Ĥrad(Γ)
nm

= −ip|Gn⟩ ⋅ p|Gm⟩𝛾0,
Ĥrad(K )
nm

= ip|Kn⟩ ⋅ p|Km⟩
√
Ĥrad(K )
nn Ĥrad(K )

mm .

(32)
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Finally, the full non-Hermitian effective Hamiltonians for guided resonances near the Γ and K points are constructed

as:

ĤΓ(k) = 𝜔Γ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣Γk cos
(
𝜑− 𝜋

3

)
V W U W V

V 𝑣Γk cos 𝜑 V W U W

W V 𝑣Γk cos
(
𝜑+ 𝜋

3

)
V W U

U W V −𝑣Γk cos
(
𝜑− 𝜋

3

)
V W

W U W V −𝑣Γk cos 𝜑 V

V W U W V −𝑣Γk cos
(
𝜑+ 𝜋

3

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− i𝛾0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

2
− 1

2
−1 − 1

2

1

2
1

2
1

1

2
− 1

2
−1 − 1

2

− 1

2

1

2
1

1

2
− 1

2
−1

−1 − 1

2

1

2
1

1

2
− 1

2

− 1

2
−1 − 1

2

1

2
1

1

2
1

2
− 1

2
−1 − 1

2

1

2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(33)

and

ĤK (k) = 𝜔K +

⎛⎜⎜⎜⎜⎝
𝑣Kk sin 𝜑 T T

T −𝑣Kk sin
(
𝜑− 𝜋

3

)
T

T T −𝑣Kk sin
(
𝜑+ 𝜋

3

)
⎞⎟⎟⎟⎟⎠
− i

⎛⎜⎜⎜⎜⎜⎝

𝛾1 − 1

2
𝛾1 − 1

2

√
𝛾1𝛾2

− 1

2
𝛾1 𝛾1 − 1

2

√
𝛾1𝛾2

− 1

2

√
𝛾1𝛾2 − 1

2

√
𝛾1𝛾2 𝛾2

⎞⎟⎟⎟⎟⎟⎠
. (34)

3.4 Eigenmodes at 𝚪: emergence
of symmetry-protected BICs

At theΓ point, ĤΓ(k) can be diagonalized analytically, yield-

ing six eigenmodes
|||Ω(Γ)

n=1,…,6

⟩
with eigenvalues:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ω(Γ)
1
(k = 0) = 𝜔Γ + U + 2V + 2W ,

Ω(Γ)
2
(k = 0) = 𝜔Γ + U − V −W ,

Ω(Γ)
3
(k = 0) = 𝜔Γ + U − V −W ,

Ω(Γ)
4
(k = 0) = 𝜔Γ − U − 2V + 2W ,

Ω(Γ)
5
(k = 0) = 𝜔Γ − U + V −W + 3i𝛾0,

Ω(Γ)
6
(k = 0) = 𝜔Γ − U + V −W + 3i𝛾0.

(35)

From these expressions, we identify four BICs at theΓ point:|||Ω(Γ)
1

⟩
and

|||Ω(Γ)
4

⟩
are non-degenerate, while

|||Ω(Γ)
2

⟩
and|||Ω(Γ)

3

⟩
form a doubly degenerate pair. The remaining two

modes,
|||Ω(Γ)

5

⟩
and

|||Ω(Γ)
6

⟩
, are leaky modes and also form a

degenerate pair.

The corresponding eigenvectors, non-normalized, at

k = 0 are:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A
(Γ)
1

= (1, 1, 1, 1, 1, 1),

A
(Γ)
2

= (−1, 0, 1,−1, 0, 1),

A
(Γ)
3

=
(
− 1

2
, 1,− 1

2
,− 1

2
, 1,− 1

2

)
,

A
(Γ)
4

= (−1, 1,−1, 1,−1, 1),

A
(Γ)
5

= (1, 0,−1,−1, 0, 1),

A
(Γ)
6

=
(
1

2
, 1,− 1

2
,
1

2
,−1,− 1

2

)
.

(36)

Using Eqs. (22) and (23), the near-field distributions E(Γ)|Ωn⟩
and H(Γ)|Ωn⟩ can be computed analytically. Remarkably, these
spatial field patterns are fully determined by the symme-

try of the eigenvectors and are independent of the specific

values of the coupling parameters U , V , and W . Figure 4

presents the calculated magnetic near-field profiles. Based

on the spatial symmetry of these modes, we assign:
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Figure 4: General near-field patterns. Calculated magnetic near-field

profiles H(Γ )|Ωn⟩ for the eigenmodes at the Γ point. Arrows represent

the electric field vectors EΓ|Ωn⟩.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

|||Ω(Γ)
1

⟩
: magnetic monopolar mode,|||Ω(Γ)

2,3

⟩
: magnetic quadripolar modes,|||Ω(Γ)

4

⟩
: magnetic hexapolar mode,|||Ω(Γ)

5,6

⟩
: magnetic dipolar modes.

These modal patterns can also be classified according to the

irreducible representations of the C6 point group symmetry

[3], offering a clear group-theoretical interpretation of their

polarization textures. We emphasize that the general near-

field patterns predicted by our effective Hamiltonian model

are in perfect agreement with those reported in the liter-

ature using full-wave finite-difference time-domain (FDTD)

simulations [2], for the six photonic modes at the Γ point

of a triangular lattice. This agreement not only validates the

accuracy of ourmodel but also underscores its ability to cap-

ture the essential physics of PhC slabs with high symmetry.

Moreover, using Eq. (24), the radiation pattern of these

six photonic modes can be computed. Onemay confirm that

the farfield radiation of the monopolar mode corresponds

to a polarization singularity of topological charge 1, while

the topological charge of the hexapolar mode is−2, and the
degenerated quadipolar modes are pinned at a polarization

singularity of topological charge −2.
Interestingly, an accidental degeneracy between the

quadripolar modes and the hexapolar mode occurs when

the condition W = 2U+V
3

is satisfied. Under this configura-

tion, the resulting triple degeneracy at theΓ point consists of

one quadratic band and a pair of Dirac cones. This acciden-

tal degeneracy, involving three BICs, is particularly relevant

for applications such as zero-refractive-index metamateri-

als [40], [41] and scalable lasing [42], [43], both of which

benefit from lossless Dirac cones at the Γ point.

3.5 Eigenmodes at K : symmetry-protected
Dirac dispersion

In the vicinity of the K point, the non-Hermitian Hamil-

tonian ĤK (k) can be approximately diagonalized in the

regime T ≫ 𝛾 1, 𝛾2. This yields three eigenmodes
|||Ω(K )

n=1,2,3

⟩
with eigenvalues:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ω(K )

1
(k) = 𝜔K − T + 𝑣Kk sin

(
𝜑+ 𝜋

3

)
− i

3𝛾1
2
,

Ω(K )

2
(k) = 𝜔K − T − 𝑣Kk sin

(
𝜑+ 𝜋

3

)
− i

(√
𝛾1 + 2

√
𝛾2
)2

6
,

Ω(K )

3
(k) = 𝜔K + 2T − i

(√
𝛾1 −

√
𝛾2
)2

3
+ (k2 ).

(37)

The corresponding eigenvectors at k = 0 are:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A
(K )
1

=
(

−2(1+ sin 𝜑)

1+ sin 𝜑−
√
3 cos 𝜑

,
2(1+ sin 𝜑)

1+ sin 𝜑−
√
3 cos 𝜑

− 1, 1

)
,

A
(K )
2

=
(

−2(1− sin 𝜑)

1− sin 𝜑+
√
3 cos 𝜑

,
2(1− sin 𝜑)

1− sin 𝜑+
√
3 cos 𝜑

− 1, 1

)
,

A
(K )
3

= (1, 1, 1).

(38)

The first two modes,
|||Ω(K )

1

⟩
and

|||Ω(K )

2

⟩
, are degenerate

at k = 0 and split linearly with k, forming a Dirac cone

centered at the K point. This Dirac cone is robust against

variations in 𝛾 1, 𝛾2, and T , as long as the condition T ≫

𝛾 1, 𝛾2 holds.

3.6 Effective theory versus numerical
simulations near the 𝚪 point

In this section, we focus on the eigenmodes in the vicinity

of the Γ point, where various symmetry-protected and acci-

dental BICs and EPs can emerge. The analysis of modes near

the K point – characterized by distinct degeneracy lifting

and topological transitions under C6 symmetry breaking

– will be presented in the next section.

The simulated structures consist of air hole arrays in

dielectric slabs with two lattice geometries: triangular and

honeycomb. In both designs, the lattice constant is a =
400 nm, the air hole diameter is D = 0.35a, and the slab

thickness is h = 100 nm. The refractive index of the slab is

n = 2.0, and the structures are embedded in air.



V. A. Nguyen et al.: Non-Hermitian Hamiltonian in photonic crystal slab — 5239

3.6.1 Complex band structures and symmetry-protected

BICs

We first show that the photonic band structures near the

Γ point are accurately described by the effective non-

Hermitian Hamiltonians introduced in Eq. (33). To validate

this theory, we perform full-wave simulations using the

finite element method (FEM) implemented in COMSOL MUL-

TIPHYSICS. Floquet boundary conditions are applied in the

in-plane directions, while perfectly matched layers (PMLs)

along z model radiation into the far field. Complex eigen-

frequencies Ωn(k) are computed for a dense sampling of

k-points near the Γ point, and are fitted using the analytical

eigenvalues of the effective Hamiltonians. The correspond-

ing fitting parameters are listed in Appendix G.

Figure 5a and d presents the real parts of the eigen-

frequencies for the triangular and honeycomb lattices,

respectively. The band structures show excellent agreement

between numerical simulations and the analytical calcula-

tions, both for the real and imaginary parts of the eigen-

frequencies, as evidenced by the quality factors plotted in

Figure 5b and e. In particular, the expected scaling laws

for BICs are recovered: Q ∝ 1∕k2q, where q is the topolog-
ical charge. The hexapolar mode with q = −2 follows Q ∝
1∕k4, while the monopolar (q = +1) and each of the two

quadrupolar modes (q = −1) exhibit Q ∝ 1∕k2, fully consis-
tent with theoretical calculations.

3.6.2 Accidental off-𝚪 BICs

While the presence of symmetry-protected BICs at the Γ
point is independent of the lattice details – as discussed in

Section 3.4 and confirmed above for both geometries – acci-

dental off-Γ BICs can emerge in specific bands depending on
the lattice design.

In the triangular lattice, off-Γ BICs are found in the

monopolar mode band at 3|k|a∕4𝜋 = 0.0391 along the Γ→

M direction (Figure 5b). In the honeycomb lattice, off-Γ BICs
appear in the hexapolar mode band at 3|k|a∕2𝜋 = 0.0488

(Figure 5e). In both cases, their positions and properties

are accurately predicted by the effective model, confirming

that the mechanism of accidental destructive interference

is fully captured by our generalized guided-mode expansion

framework.

Interestingly, in the triangular lattice, the off-Γ BIC

occurs near an anticrossing between the third (quadrupo-

lar) and fourth (monopolar) bands, as highlighted in the

zoom-in inset of Figure 5a. The corresponding quality factor

profiles in Figure 5b reveal a clear loss exchange: at the anti-

crossingwavevector kac, the quality factor of themonopolar

band increases by five orders of magnitude, while that of

the quadrupolar band drops sharply. This strongly suggests

that the off-Γ BIC arises from two-band Friedrich–Wintgen

interference.

By contrast, the off-Γ BIC in the honeycomb lattice

does not coincide with any visible anticrossing in Figure 5d.

Figure 5: Eigenmodes near Γ for triangular and honeycomb lattice design. a, d) Real part of the photonic band energies as a function of the in-plane

wavevector. The zoomed-in insets highlight the crossing along ΓK(blue box) and anticrossing ΓM (green box) between the third and fourth bands

of the triangular lattice. b, e) Quality factors of the photonic bands. Green and blue dashed lines indicate reference curves proportional to 1∕k4
and 1∕k2, respectively. Red scatters represent numerically simulated photonic bands, while black lines show their corresponding analytical fitting

using the effective theory. c, f) Far-field polarization textures (i.e., the orientation of radiated polarization) of the photonic bands hosting monopolar,

quadrupolar, and hexapolar modes.
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Furthermore, the increase in quality factor for the hexap-

olar band is not accompanied by a corresponding drop in

any nearby band (Figure 5e), indicating that the BIC arises

from multi-band interference and cannot be reduced to a

two-mode interaction picture.

The far-field polarization textures (see Appendix E for

details) associated with the monopolar, quadrupolar, and

hexapolar modes are presented in Figure 5c and f for

the triangular and honeycomb lattices, respectively. The

expected topological charges – +1 for the monopolar, −2
for the hexapolar, and −2 total for the twofold-degenerate
quadrupolar modes – are clearly observed, confirming that

each quadrupolar mode carries charge−1. Additionally, six
off-Γ topological charges corresponding to accidental BICs

are identified along the Γ→M path, with their positions

and bands depending on the lattice type. These features,

in agreement with both simulations and analytical calcula-

tions of quality factors, further demonstrate that our effec-

tive theory captures not only the complex eigenfrequencies

but also the far-field polarization topology.

3.6.3 Emergence of chiral exceptional points

Beyond BICs, the effective theory also successfully pre-

dicts the emergence of EPs in the PhC slabs. As pointed

out in Ref. [44], EPs are expected to appear near cross-

ings of bands with opposite symmetry. To identify possible

EPs, we examine the band structures along high-symmetry

directions. In the triangular lattice, the third and fourth

bands cross along the Γ→ K direction (Figure 5a), suggest-

ing the emergence of EPs in their vicinity. Due to the C6
symmetry, there are six equivalent crossing points. With-

out loss of generality, we focus on kc = (0, kc). To probe

the EPs, we map the amplitude and argument of the com-

plex gap between the third and fourth bands around kc.

As shown in Figure 6a and b, two EPs are clearly identi-

fied by the vanishing of the gap amplitude and the pres-

ence of a singularity in the phase. The winding number of

each EP, 𝑤 = ± 1

2
, is computed from the gap argument as

𝑤 = 1

2𝜋
∮dk ⋅∇k arg

[
𝜔4(k)−𝜔3(k)

]
.

The phase map of the gap also reveals a bulk Fermi arc

(BFA) connecting the two EPs [15], [44], characterized by a

𝜋 jump in the argument (Figure 6b), marking a degeneracy

of the real parts of the eigenfrequencies. The agreement

between the effective theory and numerical simulations for

both the gap amplitude and phase confirms the robustness

of our model in capturing non-Hermitian degeneracies and

their topological features.

Finally, we compute the ellipticity of the far-field polar-

ization (see Appendix E for details) of the third and fourth

Figure 6: Chiral EPs in triangular lattice design. a, b) Amplitude (a) and

argument (b) of the complex gap between the third and fourth band

in the vicinity of the crossing point of Figure 5a. Left panels are results

obtained from numerical simulations, while right panels are from the

analytical models. c) Ellipticity of the far-field polarization of the third

and fourth bands in the vicinity of the crossing point kc = (0, kc)

of Figure 5a.

bands near kc. As shown in Figure 6c, the two EPs exhibit

opposite handedness in their polarization textures, confirm-

ing their chiral nature. To the best of our knowledge, this is

the first demonstration of chiral EPs in a triangular lattice

without explicit symmetry breaking.

3.7 Hexagonal lattices with broken C6

symmetry

The C6 symmetry is broken either by using elliptical holes

instead of circular ones in a triangular lattice, or by using

two circular holes of different sizes in a honeycomb lattice

(see Figure 7). In general, breaking the C6 symmetry lifts

the degeneracy of the quadrupolar and dipolar modes at

the Γ point, as well as the Dirac point degeneracy at the K
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Figure 7: Hexagonal lattices with broken C6 symmetry. a) Triangular

lattice with elliptical holes. b) Honeycomb lattice with two circular holes

of different sizes.

point. However, depending on the specific geometry of the

symmetry breaking, the form of the effective Hamiltonian

will differ. In this section, we focus specifically on the band

structure in the vicinity of the K point, where the lifting of

Dirac degeneracies gives rise to rich topological and non-

Hermitian phenomena [45]–[47].

3.7.1 Modification of the effective Hamiltonian

For the case of triangular lattice with elliptical holes, when

the elliptical holes are aligned along the x- or y-axis (see

Figure 7a), the two mirror symmetries x→ −x and y→−y,
corresponding to C2 operations, are preserved. As a result,

all Fourier components of Δ𝜖(r∥) remain real-valued, lead-
ing to real-valued coupling coefficients U (K )

nm , as defined in

Eq. (17). However, the C3 symmetry is broken, and the effec-

tive Hamiltonian near the K point now becomes:

Ĥ(1)
K
(k) = 𝜔K − i

⎛⎜⎜⎜⎜⎜⎝

𝛾1 − 1

2

√
𝛾1𝛾2 − 1

2

√
𝛾1𝛾3

− 1

2

√
𝛾1𝛾2 𝛾2 − 1

2

√
𝛾2𝛾3

− 1

2

√
𝛾1𝛾3 − 1

2

√
𝛾2𝛾3 𝛾3

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
𝑣Kk sin 𝜑 T1 T2

T1 −𝑣Kk sin
(
𝜑− 𝜋

3

)
T1

T2 T1 −𝑣Kk sin
(
𝜑+ 𝜋

3

)
⎞⎟⎟⎟⎟⎠
.

(39)

On the other hand, for the case of honeycomb lattice

with different hole sizes, the C3 symmetry is preserved,

but the difference in hole sizes breaks the mirror sym-

metry x→ −x (see Figure 7b), while the symmetry y→ −y
remains. Consequently, the Fourier components of Δ𝜖(r∥)

can be complex, resulting in complex coupling strengths

U (K )
nm with ÛK

mn
=
(
ÛK
nm

)∗
, being complex-valued as a direct

consequence of the brokenmirror symmetry. Therefore, the

effective Hamiltonian near the K point is given by:

Ĥ(1)
K
(k) = 𝜔K − i

⎛⎜⎜⎜⎜⎜⎝

𝛾1 − 1

2
𝛾1 − 1

2

√
𝛾1𝛾2

− 1

2
𝛾1 𝛾1 − 1

2

√
𝛾1𝛾2

− 1

2

√
𝛾1𝛾2 − 1

2

√
𝛾1𝛾2 𝛾2

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
𝑣Kk sin 𝜑 T T∗

T∗ −𝑣Kk sin
(
𝜑− 𝜋

3

)
T

T T∗ −𝑣Kk sin
(
𝜑+ 𝜋

3

)
⎞⎟⎟⎟⎟⎠
.

(40)

3.7.2 Band structure: effective theory versus numerical

simulations near the K point

To investigate the role of C3 symmetry, we designed a

structure consisting of a triangular lattice of elliptical air

holes with lattice constant a = 440 nm, slab thickness h =
180 nm, and refractive index n = 2.02, placed on a glass sub-

strate with n = 1.46. The elliptical holes are defined by their

semi-axes p and q, allowing controlled breaking of higher-

order rotational symmetries. The results of three represen-

tative cases are presented in Figure 8, showing both the

band structure and the associated quality factors.

In Figure 8a, we consider the high-symmetry case

where p = q = 60 nm,which preservesC6 symmetry. In this

configuration, a Dirac point is formed at the K point by

the crossing of two upper bands, while the lowest band

remains isolated. Interestingly, this lowest band exhibits a

pronounced quasi-BIC character: its quality factor reaches
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Figure 8: Triangular lattice with elliptical holes. Red scatters represent numerically simulated photonic bands, while black lines show their

corresponding analytical fitting using the effective theory. The upper panel shows the band structures near the K point, while the lower panel depicts

the corresponding quality factor for each band. (a) p = q = 60 nm. (b) p = 50 nm and q = 70 nm. (c) p = 40 nm and q = 80 nm.

a sharp peak (exceeding 105) precisely at the momentum

corresponding to the Dirac point. We then break the C3 sym-

metry while preserving inversion symmetry (C2) by elon-

gating one semi-axis and reducing the other. Specifically, in

Figure 8b, we increase p by 10 nm and decrease q by 10 nm.

The Dirac point is no longer pinned to the high-symmetry

K point but shifts along the K → Γ direction, appearing

at 3(ky − kK )a∕4𝜋 = −0.0075. Notably, the quasi-BIC peak

in the lowest band follows this shift, indicating that the

momentum-space location of maximal radiation suppres-

sion remains locked to the displaced Dirac crossing. This

trend becomes more pronounced as the symmetry break-

ing increases. In Figure 8c, the semi-axes differ by 40 nm,

and the Dirac point moves further to 3kya∕4𝜋 = −0.015.
Owing to the preserved C2 symmetry, this displacement is

symmetric: if the major axis were instead aligned along the

y-direction, the shift would occur in the opposite direction.

These observations confirm that while the Dirac degen-

eracy persists due to inversion symmetry, its location in

momentum space is no longer protected by C3 symmetry

and becomes tunable through geometry.

Crucially, the momentum-dependent complex eigen-

frequencies obtained from full-wave simulations are in

excellent quantitative agreement with the calculations of

the effective non-Hermitian Hamiltonian. This confirms

that our analytical model faithfully captures both the band

dispersion and the quasi-BIC behavior induced by symme-

try breaking.

To investigate the role of inversion symmetry (C2) in

honeycomb lattices, we consider a slab similar to the pre-

vious cases, but with a reduced lattice constant of a =
400 nm and air holes of different radii r1 and r2. When

inversion symmetry is preserved (i.e., r1 = r2 = 50 nm), the

structure exhibits a Dirac point at the K point, as shown in

Figure 9a, consistent with the symmetry-protected degen-

eracy of the honeycomb lattice. However, when inversion

symmetry is broken by introducing a small size asymme-

try between the two sublattices (e.g., r1 = 50 nm and r2 =
55 nm), the Dirac point degeneracy is lifted, and a bandgap

opens at the K point, as seen in Figure 9b. This gap becomes

significantly larger with stronger symmetry breaking. In

Figure 9c, a larger contrast between r1 and r2 results in a

pronounced gap, demonstrating how geometric perturba-

tions directly control the topological features of the band

structure. Once again, the calculations of the effective non-

Hermitian Hamiltonian show excellent quantitative agree-

ment with the full-wave numerical simulations, confirming

the accuracy and robustness of the theoretical model.

Compared to the case of triangular lattices with

elliptical holes, where breaking C3 symmetry (while

preserving inversion symmetry C2) causes the Dirac point to

shift inmomentum spacewithout lifting the degeneracy, the



V. A. Nguyen et al.: Non-Hermitian Hamiltonian in photonic crystal slab — 5243

Figure 9: Honeycomb lattice bands with different hole sizes. Red scatters represent numerically simulated photonic bands, while black lines show

their corresponding analytical fitting using the effective theory. (a) r1 = r2 = 50 nm. (b) r1 = 50 nm and r2 = 55 nm. (c) r2 = 40 nm and r2 = 60 nm.

honeycomb lattice exhibits a qualitatively different

response: breaking inversion symmetry directly opens

a bandgap at the K point. This contrast underscores the

distinct roles of C2 and C3 symmetries in protecting Dirac

points. Moreover, the energetic ordering and radiative

properties of the bands also differ significantly between the

two cases. In the triangular lattice, the singly degenerate

band with quadratic dispersion lies below the Dirac

point and exhibits a quasi-BIC character, with strongly

suppressed radiation losses at the Dirac momentum. In

contrast, for the honeycomb lattice, this quadratic band lies

above the Dirac point, and all three bands near the K point

exhibit significant radiation losses. No quasi-BIC behavior

is observed in this case, reflecting the absence of symmetry

protection and destructive interference mechanisms that

suppress radiation. These differences further highlight how

lattice geometry and symmetry breaking govern both the

topological and radiative characteristics of the photonic

band structure.

3.8 Parameter retrieval and computational
efficiency

To determine the parameters of the analytical Hamiltonian,

full-wave simulations are required only at a single

high-symmetry point (e.g., Γ or K). From the complex

eigenfrequencies at this point, we extract all model

coefficients – including the coupling parameters U , V , W ,

the diagonal frequencies 𝜔Γ and 𝜔K , and the radiative

loss rate 𝛾0 (numerical values of parameters used in the

results are reported in Appendix G. Once these coefficients

are known, the effective Hamiltonian reproduces the full

complex band structure in the vicinity of the high-symmetry

point, including both the radiative linewidths and the

far-field polarization textures, through instantaneous

matrix diagonalization.

In our examples, subtle non-Hermitian features such as

off-Γ bound states in the continuum and chiral exceptional

points were first revealed by the analytical Hamiltonian.

Only after their approximate locations were identified did

we refine our full-wave simulations – using significantly

increased mesh density and finer k-space sampling – to

confirm these features numerically. This highlights the pre-

dictive power of the analytical model and its ability to guide

full-wave solvers toward the relevant regions of parameter

space.

For a representative hexagonal-lattice structure, a

full-wave FEM sweep (∼50, 000 mesh elements) required

approximately 5 h on a standard desktop computer (AMD

Ryzen 7 processor, 3.3 GHz; RAM 16 GB) to evaluate 1,000-

points and 7 frequency samples. In contrast, once theHamil-

tonian parameterswere extracted, the analyticalmodel gen-

erated the corresponding results within a fraction of a sec-

ond on the same hardware. This demonstrates the substan-

tial computational advantage of the proposed framework,

particularly for broad parameter scans or for exploring

high-Q resonances.

4 Conclusion and perspectives

In this work, we have developed a general and system-

atic formalism for modeling complex resonances in PhC

slabs within a non-Hermitian framework. Starting from

Maxwell’s equations, we derive an effective non-Hermitian

Hamiltonian by expanding the electromagnetic fields onto

the complete set of guided and radiative modes of an

unpatterned slab. This approach provides a unified and

physically grounded alternative to earlier phenomenolog-

ical models that have been applied to periodic photonic

structures such as gratings [35], [48], square [36], and

rectangular lattices [11]. We illustrated the effectiveness

of our approach through a case study on hexagonal PhC
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slabs, under both preserved and broken C6 symmetry. The

effective Hamiltonian accurately reproduces complex band

structures, near-field mode profiles, and far-field polariza-

tion textures, in excellent agreement with full-wave simula-

tions. These results demonstrate that the formalism reliably

captures how lattice symmetry and geometry govern radia-

tion and resonance properties.

This framework paves the way for designing non-local

metasurfaces with controlled radiation losses, enabling

applications in high-Q lasers, filters, and sensors. It also

provides a powerful tool for exploring topological photon-

ics in open systems, including bulk–radiation correspon-

dence [49], [50] and non-Hermitian effects such as EPs and

spectral degeneracies [16]. Future extensions to multilayer

slabs, moiré superlattices, or aperiodic structures will fur-

ther broaden its scope, enabling the study of flatbands [41],

[51], [52] and other exotic radiative phenomena [53]–[55].
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Appendix

A Summing out the polarization products

We can simplify the expression of the coupling terms of

H, given in Eq. (8), by summing out the polarization cross

products. To do so, we write separately the polarization and

the amplitude of the periodic function un(r) and um,rad(r).

While un(z) = un(z)pn, we note that um,rad(z) are counted

twice, once for um,rad(z)x̂ and one for um,rad(z)ŷ. As conse-

quence, we obtain:

∫ u
∗
n
⋅ 𝜖Gn−Gm

⋅ um dz

= pnpm ∫ u∗
n
⋅ 𝜖Gn−Gm

⋅ um dz, (41)

∑
l

| ∫ u∗
n
⋅ 𝜖−Gl

⋅ ul,rad dz|2
𝛾l,rad

=
∑
l

| ∫ u∗
n
⋅ 𝜖−Gl

⋅ ul,rad dz|2
𝛾l,rad

, (42)

∑
l

∫ u∗
n
⋅ 𝜖−Gn

⋅ ul,rad dz ∫ u∗
l,rad

⋅ 𝜖Gm
⋅ um dz

𝛾l,rad

= pnpm

∑
l

∫ u∗
n
⋅ 𝜖−Gn

⋅ ul,rad dz ∫ u∗
l,rad

⋅ 𝜖Gm
⋅ um dz

𝛾l,rad
.

(43)

B Wavectors of the 𝚪 points and K points
for guided modes inside the light cone

The six Γ points corresponding to ||Γn⟩, and the three

K points corresponding to ||Kn⟩,shown in Figure 3, are of

wavevectors:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1 = b1 = b

(
1

2
,

√
3

2

)
,

G2 = b1 + b2 = b(1, 0),

G3 = b2 = b

(
1

2
,−

√
3

2

)
,

G4 = −b1 = b

(
− 1

2
,−

√
3

2

)
,

G5 = −b1 − b2 = b(−1, 0),

G6 = −b2 = b

(
− 1

2
,−

√
3

2

)
,

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K1 = −b2 + K = b

(
0,

2√
3

)
,

K2 = b2 + K = b

(
1,− 1√

3

)
,

K3 = −2b1 − b2 + K = b

(
−1,− 1√

3

)
.

(44)
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C Energy of ||𝚪n
⟩ and ||Kn⟩ out of 𝚪 and K

points

Using the approximation:

𝜔|Γn⟩(k) = 𝑣Γ
(||𝚪n + k||− ||𝚪n

||) ≈ 𝜔Γ + 𝑣Γ
𝚪n ⋅ k||𝚪n

|| ,
𝜔|Kn⟩(k) = 𝑣K

(||Kn + k||− ||Kn
||) ≈ 𝜔K + 𝑣K

Kn ⋅ k||Kn
|| .

(45)

We obtain:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜔|G1⟩(k) ≃ 𝜔Γ + 𝑣Γk cos
(
𝜑− 𝜋

3

)
,

𝜔|G2⟩(k) ≃ 𝜔Γ + 𝑣Γk cos 𝜑,

𝜔|G3⟩(k) ≃ 𝜔Γ + 𝑣Γk cos
(
𝜑+ 𝜋

3

)
,

𝜔|G4⟩(k) ≃ 𝜔Γ − 𝑣Γk cos
(
𝜑− 𝜋

3

)
,

𝜔|G5⟩(k) ≃ 𝜔Γ − 𝑣Γk cos 𝜑,

𝜔|G6⟩(k) ≃ 𝜔Γ − 𝑣Γk cos
(
𝜑+ 𝜋

3

)
,

and

⎧⎪⎪⎨⎪⎪⎩

𝜔|K1⟩(k) ≃ 𝜔K + 𝑣Kk sin 𝜑,

𝜔|K2⟩(k) ≃ 𝜔K − 𝑣Kk sin
(
𝜑− 𝜋

3

)
,

𝜔|K3⟩(k) ≃ 𝜔K − 𝑣Kk sin
(
𝜑+ 𝜋

3

)
.

(46)

D Polarization of ||𝚪n
⟩ and ||Kn⟩

Using the condition p|𝚪n⟩ ⋅ 𝚪n = p|Kn⟩ ⋅ Kn = 0 and Eq.(44),

we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p|G1⟩ =
(
−
√
3

2
,
1

2

)
,

p|G2⟩ = (0, 1),

p|G3⟩ =
(√

3

2
,
1

2

)
,

p|G4⟩ =
(√

3

2
,− 1

2

)
,

p|G5⟩ = (0,−1),

p|G6⟩ =
(
−
√
3

2
,− 1

2

)
,

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p|K1⟩ = (−1, 0),

p|K2⟩ =
(
1

2
,

√
3

2

)
,

p|K3⟩ =
(
1

2
,−

√
3

2

)
.

(47)

E Polarization texture of the farfield

Using the effective non-Hermitian Hamiltonian, the farfield

electric field of the eigenmodes is computed via Eq. (24). For

a given eigenmode, the farfield electric field is expressed as

E
farfield(k) = Ex(k) x̂+ Ey(k) ŷ, where Ex(k) and Ey(k) are

the complex field components in the Cartesian basis. The

polarization orientation, defined as the angle 𝜙 between

E
farfield(k) and the x̂ axis, is given by [56]:

tan 2𝜙 =
2 Re

(
E∗
x
Ey
)

|Ex|2 − |Ey|2 . (48)

The ellipticity of the polarization, characterized by the angle

𝜒 , is given by [56]:

sin 2𝜒 =
2 Im

(
E∗
x
Ey
)

|Ex|2 + |Ey|2 . (49)

In the presence of a polarization singularity at k = k0,

the associated topological charge is defined as the winding

number of the polarization orientation𝜙(k) around a closed

contour  encircling k0:

q = 1

2𝜋∮

dk ⋅∇k𝜙(k). (50)

F Non-Hermitian Hamiltonian for 1D grating
and square-lattice photonic crystal slabs

To demonstrate the broad applicability of the generalized

guided-mode expansion framework, we extend our anal-

ysis to two additional photonic crystal slab geometries:

a one-dimensional (1D) grating (Figure 10a) and a two-

dimensional (2D) square lattice (Figure 10b). These struc-

tures possess distinct point-group symmetries – C2 for the

grating and C4 for the square lattice – thereby providing

complementary test cases to the triangular and honeycomb

lattices discussed in the main text. Applying the same for-

malism to these different symmetry classes allows us to

verify the generality and robustness of the effective non-

Hermitian Hamiltonian approach.

F.1 Grating

For a one-dimensional photonic grating, the lowest photonic

bands at the Γ point can be described by a basis consisting

of two counter-propagating guided modes located at the

two equivalent Γ points of the second Brillouin zone (see

Figure 10b). These modes, denoted ||Γ1⟩ and ||Γ2⟩, both orig-
inate from the fundamental TE-guided mode of the unpat-

terned slab 𝜖0(z) and possess in-plane wavevectors 𝚪1 and

𝚪2.

Applying the general expressions derived in Section 2.5,

and using the C2 symmetry of the unit cell, we obtain the

effective non-Hermitian Hamiltonian in the vicinity of the

Γ point:



5246 — V. A. Nguyen et al.: Non-Hermitian Hamiltonian in photonic crystal slab

Figure 10: Grating and square lattice. a, e) Geometries of the two photonic crystal slabs. b, f) Guided-mode bases for the eigenmodes at the Γ point

above the light cone: two guided modes ||Γ1,2

⟩
for the 1D grating, and four guided modes ||Γ1→4⟩ for the square lattice. The green region indicates

the first Brillouin zone, the blue regions indicate the second Brillouin zone, and the yellow region indicates the third Brillouin zone. c, g) Real parts

of the photonic band energies as functions of the in-plane wavevector. d, h) Quality factors of the photonic bands. Red markers show the numerically

simulated complex eigenfrequencies, while black lines show the corresponding analytical bands obtained from the effective non-Hermitian

Hamiltonian.

ĤΓ(k) = 𝜔Γ +

⎛⎜⎜⎜⎜⎝
𝑣Γ

[
k cos 𝜑+ (k sin 𝜑)2

2

]
U

U 𝑣Γ

[
k cos(𝜋 − 𝜑)+ (k sin 𝜑)2

2

]
⎞⎟⎟⎟⎟⎠
− i𝛾0

(
1 −1

−1 1

)
. (51)

Here, the diffractive coupling U is governed by the

second-order Fourier components 𝜖2 = 𝜖−2 ofΔ𝜖, while the
radiative loss rate 𝛾0 is governed by the first-order compo-

nents 𝜖1 = 𝜖−1.

Diagonalizing Eq. (51) yields two eigenmodes with

eigenvalues:

Ω(Γ)
1

= 𝜔Γ + U, Ω(Γ)
2

= 𝜔Γ − U − 2i𝛾0, (52)

and normalized eigenvectors:

A
(Γ)
1

= 1√
2
(1, 1), A

(Γ)
2

= 1√
2
(−1, 1). (53)

These results are consistent with Refs. [24], [35], where

the two lowest band edges correspond to a symmetry-

protected BIC (darkmode) and a bright mode. The sign ofU ,

controlled by the sign of 𝜖2 (e.g., via filling fraction), deter-

mines whether band inversion occurs.

F.2 Square lattice

For the square lattice, the lowest photonic bands near the

Γ point arise from four guided modes associated with the

four Γ points of the second Brillouin zone (see Figure 10f).

These modes form two pairs of counter-propagating states,

(||Γ1⟩, ||Γ3⟩) and (||Γ2⟩, ||Γ4⟩), each derived from the funda-

mental TE-guided mode of the slab.

For a unit cell with C4 symmetry, the effective non-

Hermitian Hamiltonian in the basis {||Γ1⟩,… , ||Γ4⟩} takes

the form:
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ĤΓ(k) = 𝜔Γ +

⎛⎜⎜⎜⎜⎜⎜⎝

𝑣Γk cos
(
𝜑− 𝜋

2

)
V W V

V 𝑣Γk cos(𝜑) V W

W V −𝑣Γk cos
(
𝜑− 𝜋

2

)
V

V W V −𝑣Γk cos(𝜑)

⎞⎟⎟⎟⎟⎟⎟⎠
− i𝛾0

⎛⎜⎜⎜⎜⎜⎝

1 0 −1 0

0 1 0 −1
−1 0 1 0

0 −1 0 1

⎞⎟⎟⎟⎟⎟⎠
. (54)

The diffractive coupling V between counter-

propagating guided modes is governed by the second-order

Fourier components 𝜖±2,0 and 𝜖0,±2, while the radiative loss

𝛾0 is governed by 𝜖±1,0 and 𝜖0,±1.

In contrast, the couplingW between orthogonally prop-

agating modes vanishes at first order due to orthogonal

polarization, but appears via second-order processes involv-

ing guided modes at the four Γ points of the third Brillouin

zone (n = 5→ 8), consistent with Ref. [26]:

W =
8∑

n=5
⟨Γ1

||Δ𝜖||Γn⟩⟨Γn
||Δ𝜖||Γ2⟩

=
8∑

n=5
⟨Γ3

||Δ𝜖||Γn⟩⟨Γn
||Δ𝜖||Γ4⟩. (55)

This indicates thatW depends on combinations of first-

and higher-order Fourier components such as 𝜖±1,±3 and

𝜖±3,±1.

Diagonalizing Eq. (54) yields four eigenmodes:

Ω(Γ)
1

= 𝜔Γ − 2V +W ,

Ω(Γ)
2

= 𝜔Γ + 2V +W ,

Ω(Γ)
3

= 𝜔Γ −W − 2i𝛾0,

Ω(Γ)
4

= 𝜔Γ −W − 2i𝛾0,

(56)

with corresponding normalized eigenvectors:

A
(Γ)
1

= (−1, 1,−1, 1), A
(Γ)
2

= (1, 1, 1, 1),

A
(Γ)
3

= (0,−1, 0, 1), A
(Γ)
4

= (−1, 0, 1, 0).
(57)

These results agree with previous analyses of square-lattice

photonic crystal slabs [26], [50], where the band edges

consist of two degenerate bright modes (here
|||Ω(Γ)

3

⟩
and

|||Ω(Γ)
4

⟩
) and two symmetry-protected BICs corresponding to

monopolar and quadrupolar field profiles (here
|||Ω(Γ)

2

⟩
and|||Ω(Γ)

1

⟩
).

F.3 Effective theory versus numerical
simulations near the 𝚪 point

We consider dielectric slabs (n = 2.5) patterned into a 1D

grating or a square lattice, with lattice constant a = 300 nm

and slab thickness h = 100 nm. The grating consists of air

grooves of width𝑤 = 0.3a, while the square lattice consists

of circular air holes of diameter D = 0.4a.

Figure 10(c,d) and 10(g,h) present the complex band

structures obtained from full-wave simulations and from

the analytical Hamiltonian. The agreement is excellent for

both the real and imaginary parts of the eigenfrequencies,

demonstrating that the generalized Hamiltonian frame-

work extends naturally to other lattice geometries beyond

the triangular and honeycomb cases discussed in the main

text.

These examples confirm that the proposed effective

Hamiltonian is broadly applicable to diverse photonic lat-

tices and accurately captures both dispersion and radiation

characteristics.

G Fitting parameters

All parameters are normalized to the lattice constant. They

were used to fit the data shown in Figures 5, 8–10, with axis

units specified in each respective figure. The corresponding

fitting parameters are listed in the tables below:

1. Fitting parameters for photonic modes near theΓ point
(see Figure 5):
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𝝎𝚪 𝒗𝚪 V W U 𝜸

Triangular lattice 0.6968 0.3228 1.54E-2 −1.4E-2 −2.13E-2 2.26E-3

Honeycomb lattice 0.5035 0.2033 −3.33E-3 −6.18E-3 5.83E-3 3.87E-4

2. Fitting parameters for photonic modes near the K point in triangular lattices with elliptical holes (see Figure 8):

𝝎
K

𝒗
K

T T 𝜸 𝜸 𝜸

p= q= 60 nm 0.7704 −0.3333 −8.14E-3 −8.14E-3 1.75E-3 1.75E-3 1.75E-3

p= 50 nm, q= 70 nm 0.7699 −0.3333 −6.9E-3 −8.11E-3 2.4E-3 1.3E-3 1.7E-3

p= 40 nm, q= 80 nm 0.7686 −0.3333 −4.81E-3 −7.4E-3 2.8E-3 8E-4 1E-3

3. Fitting parameters for photonic modes near the K point in honeycomb lattices with varying hole sizes (see Figure 9):

𝝎
K

𝒗
K

T 𝜸 𝜸

r1 = r2 = 50 nm 0.7823 −0.1666 8.94E-3 7.3E-4 2.43E-3

r1 = 50 nm, r2 = 70 nm 0.7852 −0.1666 9.64E-3+ i8E-4 1.2E-3 1.2E-5

r1 = 40 nm, r2 = 80 nm 0.783 −0.1666 8.8E-3+ i3.4E-3 1.2E-3 1.2E-5

4. Fitting parameters for photonic modes near theΓ point
in 1D grating (see Figure 10):

𝝎𝚪 𝒗𝚪 U 𝜸

0.5939 0.218 −0.0568 0.0194

5. Fitting parameters for photonic modes near theΓ point
in square lattice (see Figure 10):

𝝎𝚪 𝒗𝚪 V W 𝜸

0.663 0.16 −0.0069 0.00216 0.0021
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