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Abstract: We develop a generalized non-Hermitian Hamil-
tonian formalism for guided resonances in photonic crystal
slabs, derived directly from Maxwell’s equations through
a systematic guided-mode expansion. By expanding the
electromagnetic fields over the complete mode basis of an
unpatterned slab and systematically integrating out radia-
tive Fabry—Pérot channels, we obtain the analytical opera-
tor structure of the Hamiltonian, which treats guided-mode
coupling and radiation losses on equal footing. The resulting
Hamiltonian provides explicit expressions for both disper-
sive and radiative coupling terms in terms of modal overlap
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integrals and Fourier components of the permittivity modu-
lation. For specific geometries, the Hamiltonian coefficients
can be extracted from full-wave simulations, enabling accu-
rate modeling without phenomenological assumptions. As a
case study, we investigate hexagonal lattices with both pre-
served and broken C; symmetry, demonstrating predictive
agreement for complex band structures, near-field distribu-
tions, and far-field polarization patterns. In particular, the
formalism reproduces symmetry-protected bound states in
the continuum (BICs) at the I" point, accidental off-I" BICs
near the I" point, and the emergence of chiral exceptional
points (EPs). It also captures the tunable behavior of eigen-
modes near the K point, including Dirac-point shifts and the
emergence of quasi-BICs or bandgap openings, depending
on the nature of C; symmetry breaking. We further demon-
strate in the Appendix that the same formalism extends nat-
urally to other symmetry classes, including C, (1D grating)
and C, (square lattice) photonic crystal slabs. This approach
enables predictive and efficient modeling of complex pho-
tonic resonances, revealing their topological and symmetry-
protected characteristics in non-Hermitian systems.

Keywords: non-Hermitian photonics; photonic crystal;
bound states in the continuum; exceptional points; guided
resonances

1 Introduction

Understanding and engineering the resonant modes of pho-
tonic crystal (PhC) slabs [1]-[3] — and more broadly, non-
local metasurfaces composed of periodic subwavelength
lattice elements [4]-[7] - is a central theme in modern
nanophotonics, underpinning key applications in lasers, fil-
ters, sensors, and quantum optics. These systems exhibit
rich physics due to their intrinsic non-Hermiticity, which
arises from radiation leakage into the continuum and
leads to complex-valued eigenfrequencies. One of the most
intriguing phenomena associated with non-Hermitian pho-
tonic systems is the emergence of bound states in the contin-
uum (BICs) [8]-[12], which can be broadly categorized into
two types: symmetry-protected BICs and accidental BICs.
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Symmetry-protected BICs occur at high-symmetry points
in momentum space, where the confined electromagnetic
modes are forbidden from coupling to outgoing radiation
channels due to a symmetry mismatch. In contrast, acci-
dental BICs arise away from these high-symmetry points
as a result of destructive interference between multiple
radiation pathways, and are therefore highly sensitive to
geometric parameters of the structure. Another notable
non-Hermitian feature is the presence of exceptional points
(EPs) [13]-[18], where both eigenvalues and eigenmodes
coalesce in momentum space, leading to non-trivial topolog-
ical and spectral behaviors. A unified and accurate modeling
framework is thus essential for understanding and design-
ing these non-Hermitian resonances in structured photonic
media.

Guided resonances in PhC slabs — also referred to as
quasi-guided modes - arise from the coupling between
guided modes of an unpatterned dielectric slab and radia-
tion continua induced by periodic modulation. These modes
are characterized by complex eigenfrequencies encod-
ing both the resonance frequencies and radiative losses.
While full-wave numerical solvers (e.g., FEM, FDTD) can
directly compute these quantities, they are computationally
demanding for large parameter scans and often obscure the
underlying physical mechanisms. Conversely, analytical or
semi-analytical Hamiltonian approaches — such as temporal
coupled-mode theory (TCMT) [19], [20] and phenomenolog-
ical non-Hermitian models [14]-[16], [18], [21] — offer com-
pact descriptions but typically start from assumed operator
structures, which may restrict their applicability to specific
designs or symmetry configurations.

A powerful intermediate approach is coupled-mode
theory via permittivity perturbation, where the permittiv-
ity is written as e(r) = €,(r) + Ae(r), with €,(r) describing
the unperturbed slab and Ae(r) the periodic modulation.
This formulation enables the eigenmodes of the full sys-
tem to be expressed in terms of those of the homogeneous
slab, yielding an effective Hamiltonian that captures both
mode coupling and radiation leakage — particularly when
extended to the complex frequency plane. This strategy
dates back to distributed feedback laser theory [22], [23] and
has been extended to two-dimensional PhC slabs to describe
phenomena such as band inversion, symmetry-protected
BICs, and topological transitions in non-Hermitian photon-
ics [24], [25]. Complementary developments by Noda’s group
provided effective mode-coupling models for various lattice
geometries, offering insight into BIC formation and far-field
radiation control [26]-[30], consistent with experimental
observations from the MIT group [31]. However, a general
and systematic formalism that includes the full mode basis
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of the slab and treats non-Hermiticity from the outset has
remained unexplored.

In this work, we derive a generalized non-Hermitian
Hamiltonian for guided resonances by expanding the fields
onto the complete set of eigenmodes from the unpat-
terned slab — including both guided and Fabry—Pérot modes
(Figure 1). Starting from Maxwell’s equations, we systemat-
ically integrate out the Fabry—Pérot components to derive
the analytical operator structure of a non-Hermitian Hamil-
tonian - including diffractive coupling terms and radia-
tive self-energy — expressed as overlap integrals between
slab eigenmodes and the Fourier components of the per-
mittivity modulation. Our approach extends the guided-
mode expansion method developed by Andreani and col-
laborators [32], [33], which constructs a Hermitian Hamil-
tonian restricted to guided modes and treats radiation
perturbatively. In contrast, our method incorporates non-
Hermiticity at the core, enabling accurate modeling of leaky
modes and their complex interactions across the light cone.
In the numerical examples, the corresponding coupling
coefficients are extracted from full-wave simulations to
enable direct and quantitative comparison with complex
band structures, quality factors, and far-field patterns. This
approach avoids phenomenological assumptions about the
Hamiltonian form while remaining computationally effi-
cient and physically interpretable. To illustrate the effi-
ciency and generality of the formalism, we apply it to
hexagonal-lattice PhC slabs with both Cg-symmetric and
symmetry-broken configurations near the I and K points
of the Brillouin zone. Beyond the hexagonal lattices dis-
cussed in the main text, we further demonstrate in the
Appendix that the same formalism extends naturally to
other symmetry classes, including C, (1D gratings) and C,
(square lattices), confirming its generality across diverse
photonic crystal geometries. The derived non-Hermitian
Hamiltonian not only reproduces the complex photonic
band structure but also accurately captures near-field and
far-field distributions, including polarization textures, in
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Figure 1: Generalized guided-mode expansion. Guided resonances in a
PhC slab result from periodic permittivity perturbations coupling guided
modes and Fabry-Pérot modes of an unpatterned slab waveguide.
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excellent agreement with full-wave finite-element simula-
tions. The model predicts symmetry-protected BICs at the
I' point (monopolar, hexapolar, and quadrupolar modes),
accidental off-I' BICs from momentum-dependent destruc-
tive interference, and the emergence of chiral EP pairs in
momentum space. It further describes eigenmode behavior
near the K point under C; symmetry breaking: in triangular
lattices with broken C; symmetry, the Dirac point shifts
away from K while preserving degeneracy, with quasi-BIC
features in the lower band; in honeycomb lattices with bro-
ken inversion symmetry, the Dirac degeneracy is lifted and
a bandgap opens, with all modes becoming radiative. These
results establish the generalized guided-mode expansion as
a predictive and versatile framework for analyzing com-
plex resonant phenomena and symmetry-governed radia-
tion properties in non-Hermitian PhC slabs.

2 Theoretical framework

2.1 Eigenmodes of PhC slabs

PhC slabs are finite structures where light is confined verti-
cally (z-direction) within a slab that consists of multilayers
of high refractive index. The slab is periodically corrugated
in the x-y plane, and the vertical confinement is achieved by
the refractive index contrast between the slab material and
its surrounding lower refractive index environment (e.g.,
air and substrate). The in-plane periodicity gives rise to pho-
tonic band structures, while the vertical confinement allows
the PhC slab to support fully guided modes that are confined
by total internal reflection, useful for integrated photonic
on-chip applications, and leaky modes (guided resonances)
that interact with the radiation field in free space and are
critical for applications such as light-emitting devices, sen-
sors, or detectors. Guided resonances are specific to PhC
slabs and introduce non-Hermitian physics. In this work, we
focus solely on PhC slabs and sometimes refer to them as
PhCs for brevity.

The behavior of electromagnetic waves in PhC slabs is
governed by Maxwell’s equations. Here, for the sake of sim-
plicity, we assume the materials are isotropic, lossless, non-
magnetic, and non-dispersive, simplifying the permeability
u =1 and the permittivity to spatially varying constants
e(r). For time-harmonic fields E(r, t) = E(r)e~!, the master
equation for the electric field is given by:

a)z
VX(VXE)= ?e(r)E. @

This eigenvalue equation describes the frequency o of elec-
tromagnetic waves as a function of the spatial variation
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of e(r), laying the foundation for the photonic band struc-
ture in PhCs. It is important to note that this equation is
not a standard eigenvalue equation but a generalized one,
requiring specific formulations for the inner product and
orthogonality, which involve weighting by the permittivity
e(r). Here the permittivity exhibits in-plane periodicity, sat-
istfying e(r) = e(r + R) with R being a lattice vector in the xy
plane. Since the periodicity exists in the in-plane directions
(x, y) but not along z, the eigen Bloch modes are given by:

E(r) = uy (r)e™i™, 2)

where k” = (k,, k,) is the in-plane wavevector, r = o,y
are the in-plane spatial coordinates, and uk"(r) is a peri-
odic function with the same periodicity as e(r). The eigen-
value problem yields the photonic band structure, w(k)),
which maps the allowed frequencies for each wavevector
k;, within the first Brillouin zone.

The emergence of complex eigenvalues for guided res-
onances arises from their interaction with the radiative
continuum. This coupling to the radiative continuum is a
hallmark of non-Hermitian physics in PhC slabs. Mathemat-
ically, the eigenvalue problem for guided resonances can
be written as HE = wE, where the Hamiltonian A is non-
Hermitian due to the inclusion of radiative losses. A non-
Hermitian Hamiltonian is characterized by H # H', mean-
ing it is not equal to its adjoint. This property introduces
complex eigenvalues, where the imaginary part typically
represents energy gain or loss in the system. In PhC slabs,
the non-Hermitian nature of A stems from the open-system
interaction between guided resonances and the radiative
continuum, which allows energy leakage. This is a direct
departure from Hermitian physics, where systems are typ-
ically closed and do not interact with an external environ-
ment. The non-Hermitian framework enables the study of
unique phenomena such as EPs and BICs, which are absent
in purely Hermitian systems.

2.2 Effective Hamiltonian from Ae
perturbation

Before discussing the Hamiltonian of generalized guided
modes expansion, we first introduce the common formalism
of the coupled mode theory via Ae perturbation. The unper-
turbed system, characterized by €,(r), has known eigen-
values w, and eigenmodes E,(r): VX V XE, = %ieo(r)En.
Introducing Ae(r) perturbs these eigenmodes and eigenval-
ues, allowing us to write: E(r) = chnEn(r), where ¢, are
expansion coefficients that account for the perturbation.
Substituting E(r) into the perturbed master equation V X
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VXE= %2 [eo(r) + Ae(r)]E and projecting onto the unper-
turbed basis modes {E,(r)} in the approximation w = ®,
to achieve an eigenvalue problem of w instead of w?, we
obtain:

H,+C = wC, 3)

where C = {c,} isthe vector of expansion coefficients. Here,
the effective Hamiltonian H.; includes the perturbative
contributions from Ae(r):

[Hegtlnm = ©@n6nm + AHppms 4)

with:
)

AH,, = 5 /E;lk - Ae(r)E,, dr. (5)

2.3 Field expansion in the generalized
guided mode expansion

In the generalized guided mode expansion, the unperturbed
system corresponds to the unpatterned slab with a permit-
tivity profile €,(z), representing the zeroth Fourier com-
ponent of e(r). The perturbation arises from the periodic
modulation in the x-y plane, expressed as:

Ae(r) = ) eg(2)e®™, (6)
G

where G denotes the reciprocal lattice vectors, and r =
(x, y) represents the in-plane coordinates.

The eigenmodes of the unpatterned slab €,(z) include
the guided modes of the planar waveguide and the radiative
Fabry-Pérot (FP) modes. In this work, we focus on the low-
energy regime, where the wave vectors Gn + Kk || primarily
describe guided modes with evanescent out-of-plane com-
ponents, while the wave vectors k;; correspond to modes
inside the light cone - i.e., radiative FP modes. The total
electric field in the PhC slab can thus be expanded as:

E= Y aE, + ) byEn )
n m

where E, = u,(2)e!®*¥)Ti are the guided modes confined
within the slab, having corresponding eigenvalues w,. And
Erp = Wy raq(2)e™171 are the radiative FP modes propa-
gating outside the slab, having corresponding eigenvalues
@y pp = Wy pp — ¥ pp- We note that in this study, we restrict
ourselves to the low-energy regime, where only the zeroth-
order FP modes contribute to radiation. However, the for-
malism can be naturally extended to higher-energy regimes
by including FP modes associated with higher-order diffrac-
tion channels. We also focus exclusively on transverse elec-
tric (TE) guided modes. The same formalism can be applied
to transverse magnetic (TM) guided modes by formulating
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the perturbation theory in terms of the magnetic field H,
rather than the electric field E as done here. We also neglect
TE-TM coupling, which is justified in our system due to the
strong spectral separation between TE and TM modes in
high-contrast dielectric slabs.

It is important to note that despite the radiative
Fabry—Pérot modes being quasinormal modes — charac-
terized by complex eigenfrequencies due to their leaky
nature, they can form a complete and orthogonal basis
under specific conditions. The completeness and orthogo-
nality of quasinormal modes in leaky optical cavities were
rigorously established by Leung, Liu, and Young in 1994 [34].
Their work demonstrated that, despite the non-Hermitian
nature of such systems, a discrete set of quasinormal modes
suffices to accurately describe the field distribution within
the cavity. Therefore, the guided modes (E,) and radiative
Fabry-Pérot modes (E,, p) together provide a complete and
orthogonal basis that ensures the expansion from Eq. (7) is
both accurate and comprehensive.

The perturbation Ae(r) introduces coupling between
these guided and radiative modes. The coupling matrix ele-
ments are:

AHﬁﬁded _ % / E' - Ae(r)E, dr

_ %/u:(z) - €g,-c,, (2Uy(2) dz,
AHEUded-TP _ % / E - Ae(r)E, pp dr
8)
_ % wi(z) - €_g, (20 1(2) dz,

AHiII;_guided — % / E:,FP . A€(I‘)Em dr

=2 [ up @ e, @up(@) dz.
These coupling terms correspond to three distinctive

mechanisms:

— Guided-to-Guided Coupling: The interaction between
two guided modes is mediated by the Fourier compo-
nent Aeg _g (z), which matches their momentum dif-
ference. This term is crucial for photonic band structure
modifications, such as band gaps.

—  Guided-to-FP Coupling: The coupling of a guided mode
to a radiative (Fabry—Pérot) mode depends on the
Fourier component Ae_g (z). This term introduces
radiative losses to guided modes, converting them into
quasi-normal modes.

— FP-to-Guided Coupling: Radiative modes contribute
to guided modes through the Aeg (z) term. This term
describes how energy can leak from FP modes back
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into guided modes. This is the reversed mechanism of
the guided-to-FP coupling, evidenced by AHE"F —
( A HFP—guided ) *

nm *

Note that as we restrict ourselves to the low-energy regime,
where only the zeroth-order FP is involved, there is no FP-
to-FP coupling.

2.4 Effective Hamiltonian for guided modes

The total Hamiltonian for the coupled system of guided and
radiative modes can be written as:

H= l ngided ngided—PP] , (9)
Hep_guiged Hp

which satisfies the eigenvalue problem:

o =<

where A = {a,} and B = {b,,} are the expansion coeffi-
cients of the total electric field E in Eq. (7). From the sec-
ond row of Eq. (10), we obtain a relation between the coef-
ficients of the radiative modes and those of the guided
modes B = (w —HFP)_lHFP_guidedA, where w — Hpp is a
diagonal matrix with entries A, + iy, ¢, and A, = ® —
@y raq denotes the detuning from the radiative FP mode
frequencies.

Substituting this relation into the first row of Eq. (10)
yields an effective operator acting on the guided-mode
amplitudes:

(10)

H = Hyyigeq + Z(w), an

where X(w) is the self-energy term, given by X(w) =
Hgyiged—rp (@ — Hgp)! Hpp_guigea- This effective operator
satisfies

HA = wA, (12)

but the equation remains nonlinear due to the explicit w-
dependence of the self-energy term 2(w). Physically, this
term encapsulates the modification of the guided-mode
dynamics via coupling to the radiative Fabry—Pérot modes.
The imaginary part of X(w) captures the irreversible cou-
pling to radiation and gives rise to the non-Hermitian
character of the guided resonances. Its real part produces
only a small dispersive frequency shift, which can be fully
absorbed into the guided-mode Hamiltonian through the
renormalization Hyigeq = Hguigea + R€ Z, thereby shifting
only the diagonal terms of Hyyq.q Without altering modal
profiles, radiation rates, or topological properties. This pro-
cedure is standard in open electromagnetic and quantum
systems — directly analogous to Lamb-shift corrections
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in QED, real-part self-energies in Green’s-function theory,
resonance-frequency shifts in temporal coupled-mode the-
ory, and on-site energy shifts in tight-binding models.

In the limit where the FP modes form a broadband and
rapidly decaying reservoir (e.g., for thin or weakly confined
slabs), the imaginary part of ¥ dominates over the real
part. However, even when this strict quasi-continuum con-
dition is not satisfied, in practice, the diagonal parameters
of Hgyigeq In Numerical examples are extracted from full-
wave simulations, so any dispersive contribution from ReX
is naturally absorbed into these extracted coefficients. This
makes the approximation robust. In the concrete examples
presented in Sec.3, this renormalization simply corresponds
to a small adjustment of the guided-mode resonance fre-
quencies wr and wyg. Retaining only the imaginary part of
the self-energy therefore yields a compact closed-form non-
Hermitian effective Hamiltonian acting on the guided-mode
subspace:

A . 4
H = Hyyigea— U Hguided—rp Im<pr )HFP—guided'
- S

'

H,

rad

13)

This is the non-Hermitian effective Hamiltonian we
set out to derive. It captures both the dispersive proper-
ties of the guided modes and their radiative losses through
coupling to the continuum. Importantly, the approximation
eliminates the w-dependence in the self-energy, so that A
now defines a standard linear eigenvalue problem.

Moreover, within the quasi-continuum regime of FP
modes, the radiation amplitudes B — corresponding to the
far-field leakage — can be directly computed from the eigen-
vector A of H using:

B ~ —i Im(Hpy ) Hpp_gyigeaA- (14)

2.5 Compact expression and physical
meaning of the non-Hermitian
Hamiltonian

The expressions of the coupling terms of H, given in Eq. (8),

are simplified by summing out the polarization cross prod-

ucts (see Appendix A). We now discuss the compact expres-
sion and physical meaning of each of these terms.

— The first term Hy,qq represents the unperturbed
guided modes and the diffractive couplings between
them. The diagonal elements correspond to the fre-
quencies of guided modes in the unpatterned slah:

HEM = g, (15)

n
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The off-diagonal elements describe direct coupling
between guided modes via diffractive mechanism:

Hﬁumided =Py menm’ (16)

where p,, p,, are the polarization vector of the guided

mode E,, E,, respectively; and the coupling strength

U, 18 given by:
U,=2 [u

nm 2 n . €Gn_Gm . um dZ. (17)

— The second term H,, 4 represents the radiative losses
and radiative coupling of the guided modes. The diag-
onal elements introduce imaginary components in the
eigenfrequencies of the guided modes due to coupling
with radiative modes:

HE2 = iy y 0, (18)
l

Here y,(l” represents the radiative losses of the guided

mode n via the radiative Fabry—Pérot mode [, and the
expression of y" is given by:

2
2 *
o _ wo’ J U e g, - U 02

(19)
" 4ct Yirad

The off-diagonal elements describe indirect coupling
between guided modes mediated by radiative modes:

HES = —ip, - Dy 2\ 7 7 €00, 20)
1
where coupling phase ¢ is given by:
¢£[l) = arg</ u - €_g, * Urad dz). 21

It is worth emphasizing that the coupling terms expressed
in Egs.(17) and (20), derived here from first-principles
Maxwell equations via the guided-mode expansion, cor-
respond directly to the so-called diffractive coupling and
radiative coupling often introduced phenomenologically in
the literature on 1D photonic gratings [21], [35] and 2D PhC
slabs [11], [36]. In particular, Eq.(20), which captures the off-
diagonal elements of the radiative loss operator, is in excel-
lent agreement with the inter-mode coupling terms found in
the radiative Hamiltonian of temporal coupled-mode theory
applied to non-orthogonal resonators [20]. This highlights
the consistency between the full-wave modal expansion
approach and reduced-order models, and provides a rig-
orous microscopic foundation for the coupling coefficients
often assumed in heuristic or fitted models.

Furthermore, we highlight that the radiative losses of
the guided mode n via the radiative channel [ is governed
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by the overlap integral [ u - €_g, * Uiraq 4z, as shown in
Eq. (19). It can be accidentally suppressed if the overlap
integral is zero, leading to the suppression of a radiative
channel for a given guided mode. In particular, for some
particular design, it is possible to render null the radiative
losses of every guided modes in the spectral window of
interest. In such a configuration, the eigenmode is evidently
lossless. This corresponds to an accidental BIC configura-
tion, well documented in the literature, whose emergence
is extremely sensitive to the slab thickness, effective index,
and requires a vertical symmetry design [37]-[39].

2.6 From eigenmodes to nearfield pattern
and farfield pattern of Bloch modes

The eigenmodes of the system are obtained by diagonal-
izing the effective non-Hermitian Hamiltonian A through
the characteristic equation det(H — @) = 0. Due to the non-
Hermitian nature of H, its eigenvalues Q, are generally
complex, and the corresponding eigenvectors |€2, ) describe
the resonant modes of the structure. If the imaginary part of
an eigenvalue vanishes, i.e. Im(€2,,) = 0, the corresponding
eigenmode |Q,) is lossless. Such states are known as BICs.
Conversely, if Im(£2,,) < 0, the mode exhibits radiative loss
and is referred to as a leaky mode. The eigenvector A, =
(ay,, Ay, @y, ..) associated with |2,) defines the near-field
spatial distribution of the electric field:

E|Qn> = Z aymEn = Z anmum(z)ei(Gerku)'rupm. (22)

m m

A similar superposition principle applies to the magnetic
field. Due to the TE nature of the guided modes, the magnetic
field is predominantly polarized along the z-direction. The
corresponding near-field profile of the magnetic field can
thus be expressed as a scalar field:

Hjg) & ) Gyl (2)eSnT2. 23)
m

The far-field radiation pattern is governed by the FP com-

ponents in the field expansion of Eq. (7). For a given eigen-

mode |€2,), the FP coefficients B, = (b, , by, by, ... ) can be

obtained from the eigenvector A, using Eq. (14). The result-

ing far-field electric field is given by:

Eﬁgf;ld = Z bnmEm,FP
" (24)

ik +,
o el&iry+ ZZ)Z A mPrs
m

where a,, = 3,1/, e’ accounts for the radiation ampli-
tude and phase into each far-field channel . We note a



DE GRUYTER

direct correspondence between the near-field and far-field
expressions in Eqs. (22) and (24): the far-field radiation is
derived from the near-field by replacing the mode pro-
files u,,(2), e6™ll with radiating plane wave components
el p . This procedure effectively represents the folding
of guided Bloch modes into the first Brillouin zone and their
subsequent coupling to the radiation continuum.

The polarization texture — including polarization ori-
entation, ellipticity, and topological charge of polarization
singularities — can be readily computed from the far-field
electric field (see Appendix E).

3 Non-Hermitian Hamiltonian
versus numerical simulations

3.1 Hexagonal lattices with C; symmetry

3.1.1 System description

We now apply our general non-Hermitian Hamiltonian to
described guided resonances in the vicinity of the I" and
K point of a PhC slab with hexagonal lattices. The case of
grating and square lattices is presented in the Appendix F.
The PhC slab of consideration is of a hexagonal lattice
with Cg symmetry, for example, a triangular lattice with
a single circular hole in the unit cell (see Figure 2a), or a

honeycomb lattice with two identical circular holes (see

Figure 2b). The unit vectors are givenbya; = A ( ¥l > and

272
a, = A(?
A= \/§a for the honeycomb lattice.
In the momentum space, the high symmetry points are
K, K, and M at the edge of the Brillouin zone, and I' at
the centre of the Brillouin zone (see Figure 2c). The corre-
sponding unit vectors in momentum space are given by:

by =b(}, L), and b, = b(%,—%), with b= *for the

triangular lattice, and b = ‘;—Z for the honeycomb lattice. We

—%) with A = a for the triangular lattice, and

( a) TRIANGULAR (b) HONEYCOMB

(c) momENTUM
LATTICE LATTICE

SPACE
e 2. ®®
[ I o0 100
) @g e o @é °®
® o0 ;00
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Figure 2: Geometry of hexagonal lattices. a) Triangular lattice.
b) Honeycomb lattice. c) First Brillouin zone in momentum space.
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Figure 3: Guided mode basis. a) Eigenmodes operating at the I" point
and above the light cone are described by six guided modes |I,)

of wave vector I',,, with n = 1 — 6. b) Eigenmodes operating at the K
point and above the light cone are described by three guided modes |K,)
of wave vector K,,, with n = 1 — 3. The green region indicates the first
Brillouin zone, the blue regions indicate the second Brillouin zone,

and the yellow region indicates the third Brillouin zone.

note that |b;| = |b,| = b is the distance between the I" point
of the first Brillouin zone (BZ) to the six closest I" points of
the neighbor (i.e. second) BZs (see Figure 3a).

3.2 Guided mode basis

In this work, we only focus on photonic modes above the
line cone. In this region, the lowest photonic bands at the
I" point is described by the basis consisting of guided modes
operating at the six I" points of the second BZs(see Figure 3a).
These correspond to six guided modes |I",), withn =1— 6,
that both originate from the fundamental TE-guided mode
of the slab €,(z) and have wavevector I (see Figure 3a).

On the other hand, the lowest photonic bands at the K
point is described by the basis consisting of guided modes
operating in three K points, two of them are in the second
BZ and the third one is in the third BZ (see Figure 3b). These
correspond to three guided modes |K,) withn = 1 — 3, that
both originate from the fundamental TE-guided mode of
the slab €,(z) and have wavevector K, (see Figure 3b). In
a general way, I', = n;b; + n,b, and K, = n;b; + n,b, + K
withK = b(%, ‘/g) is the position of the K point in the first
BZ. The couples (n,, n,) are given by:

((1,0)
(1,1

0,-1)
(0,1)

(g, Ny =3 and (ng, ny)|x =4(0,1)

(-1,0)

(=2,-1)
(-1,-1
[(0,-1)

(25)
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for |I';) — |[s) and |K;) — |K;), respectively. We note that
|Ty| = band |K,| = %b. Explicit expressions of ', and K,
are provided in the Appendix B.

The six guided modes |I",) have the same energy cr at
the I" point, and the three guided modes |K,) have the same
energy wy at the K point. Adding an in-plane momentum
k = (k cos @, k sin ¢) with |k| < b, the propagation vector
of |I',) and |K,,) becomes I';, + k and K;, + k, respectively.
Thus the energy of |I",) and |K,,) at k are given by o|r,, k) ~
or + vrfr"—'ll‘ and 60|Kn>(k) R wg + UK% where v and vy
are the gr[c‘)up velocities of the guided“mode at I and K,
respectively. Explicit expressions of a)lm(k) and W) k) K)
are provided in the Appendix C. Due to the TE nature, our
guided modes exhibit in-plane polarization that are perpen-
dicular to their wavevector. Thus Pir,) - (Fn + k) =Pk,
(K, + k) = 0.Inthelimit of k < b, the previous condition is
approximately reduced to Pir,) - r,= Pk, - K, = 0. Thus
one may easily obtain Pir,) and Pik,) (see Appendix D).

Finally, since |I",,) belongs to the same planar waveg-
uide mode, they exhibit the same vertical confinement pro-
file ur-(z). The same, all three |K,,) exhibit the same vertical
confinement profile ug(z). We note that each guided mode
is associated with a pair (n,, n,) that corresponds to a Bloch
vector G, = n;b; + n,hb,. Therefore, the electric field of our
two basis are given by:
i(G,+k;

E|Fn> = uF(Z)e ).er|Gn)’

, (26)
Eg,) = uK(z)el(GnJrkn)‘fupIK“>.

Here the momentum k; within the first BZ is given by k for
|T",) and K + k for |K,,).

3.3 Effective Hamiltonian

We now apply the general expressions derived in Section 2.5
to the two mode bases I';, and K,,. The diagonal elements of
the guided-mode Hamiltonian Hg;q.q are simply the disper-
sion relations of the corresponding modes:

Hﬁ;llided(r)(k) — a)ll"n>(k)s
guided(K) _ @)
HEOW) = o)y, (K).

The off-diagonal elements, corresponding to diffractive cou-
pling between guided modes, take the form:

nm’

guided(I') _ (") _ r
Hn ™ = U3 = Plo,) * Pl6 Vo 28)
uided(K) __ #(K) _ K
Hp, = Ui =P, " Pl Ui
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where the coupling coefficients are defined as:

w 2
Ugm = TF /lur(z)l 6"1—m1~"2—’"2(z) dz,
(29)
UK _ g 2 dz
m T g |uK(Z)| 6"1—m1s"2—mz(z) '

Here, €, _p, ,—m, denotes the Fourier component ¢ _g
of the in-plane permittivity modulation Ae(ry). Thanks to
the C¢ symmetry of the lattice and using the specific mode
indices (n, m) given in Eq. (25), along with the polarization
vectors pg,, and Pix,) defined in Eq. (47), the coupling
matrices acquire the simplified form:

AT _ Tl T 7T T —
Up=Uyp=Uy=Ug=Us=Uyg =V,

O = 01, = 05 = O, = 0T = 00 = w,

P 13 24 35 46 51 62 (30)

AT _ AT _ (T —
Uy=Uys=Ux=U,

AK _ (K — (K —
Up=Up=Uy=T.

The couplings U, V, W, and T are all real-valued and gov-
erned by specific Fourier components of Ae:

-

Vieyg = €1 =€ =€_19=€_1_1=€_1,
Wiey 1 =€ =€p=€11=€5_1=€_4_3

<

Uieyg = €35 = €,

Tiegy=€9=€__

The C; symmetry also simplifies the structure of the
radiative Hamiltonian H,,,. The diagonal elements are
given by:

ﬁ;‘;d(r) = _iyO’
. —iy; forn=1,2, (3D
dK) —
A =17
—iy, forn=3,

where y,, 71, and y, represent the radiative loss rates for the
modes at I" and K, respectively, under the assumption of a
single radiation channel. These are governed hy:

Yo' €10 = €11 = €91 = €10 = €_1,1 = €1,
71: €01 = €9,-1>
Y2 € 31

The off-diagonal elements are expressed as:

Arad(T) _ _;
Hﬁn( ) = ~W|g,) " Plc,) Yo

Frrad(K) _ ; Fyrad(K) fyrad(K)
Hnm = lp|Kn> 'p|Km) V Hy'Hp ™

(32)
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Finally, the full non-Hermitian effective Hamiltonians for guided resonances near the I" and K points are constructed

as.
T
ok cos<(p - §) % w U w v
vV vrk cos @ 14 w U w
) w V. ukcos(e+ ) v w U
Hr(k) = wr + P
U w % —vrk cos( — f) % w
3
w U w 14 —urk cos @ vV
T
v w U w v —opk cos<(p + §)
11 1 1
L S
ro, v v 1
2 2 2 2
1 1 11
Y vty 5 1t
4 11
2 2 2 2
1 11 1
5 b3 o2 by
L R S S
2 2 2 2
(33)
and
. 1 1
vk sin @ T T 121 —on —oVnr
A _ i _r ) 1 1
Hy(K) = oy + T vk Sm(“’ 3) T —if —on " —Vnn| 69
T T —vgk sin<(p + %)

3.4 Eigenmodes at I': emergence
of symmetry-protected BICs

Atthe ' point, A (k) can be diagonalized analytically, yield-

.....

QP (k= 0) = wp + U +2V +2W,
QPK=0)=wp+U-V-W,

QP K=0=wp+U-V-W,

) (35)
QP (k=0)= oy —U-2V+2W,

QP (k=0) = wp — U+ V — W +3iy,,

Q" (k=0)=wp—U+V—W +3iy,

From these expressions, we identify four BICs at the I" point:
|Q§F)> and |Qflr)> are non-degenerate, while |Q§F)> and
|Q§F’> form a doubly degenerate pair. The remaining two

modes, |Q(5F)> and )Qg)>, are leaky modes and also form a
degenerate pair.

1 1
—i\/ 172 —2\/ 7172 1¢)

The corresponding eigenvectors, non-normalized, at
k =0 are:

AV =(1,1,1,1,1,1),
A" =(-1,0,1,-1,0,1),
1 1 1 1
A(F) = <_7 13_79_7’1 _7>
3 2’ 227 20
A = (-1,1,-1,1,-1,1),

(36)

A" =(1,0,-1,-1,0,1),

1 11 1
A(r) = <7919_7’ 79_1a _7>'
6 2 2°2 2

gD
|2

can be computed analytically. Remarkably, these

Using Egs. (22) and (23), the near-field distributions

and H(lg >
spatial field patterns are fully determined by the symme-
try of the eigenvectors and are independent of the specific
values of the coupling parameters U, V, and W. Figure 4
presents the calculated magnetic near-field profiles. Based

on the spatial symmetry of these modes, we assign:
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Figure 4: General near-field patterns. Calculated magnetic near-field
profiles H‘lg ) for the eigenmodes at the I" point. Arrows represent
n

the electric field vectors EL,

[2n)
‘.Qm > magnetic monopolar mode,
Qm magnetic quadripolar modes,

)
‘Q(F )> magnetic hexapolar mode,

‘an) >: magnetic dipolar modes.

These modal patterns can also be classified according to the
irreducible representations of the C; point group symmetry
[3], offering a clear group-theoretical interpretation of their
polarization textures. We emphasize that the general near-
field patterns predicted by our effective Hamiltonian model
are in perfect agreement with those reported in the liter-
ature using full-wave finite-difference time-domain (FDTD)
simulations [2], for the six photonic modes at the I" point
of a triangular lattice. This agreement not only validates the
accuracy of our model but also underscores its ability to cap-
ture the essential physics of PhC slabs with high symmetry.

Moreover, using Eq. (24), the radiation pattern of these
six photonic modes can be computed. One may confirm that
the farfield radiation of the monopolar mode corresponds
to a polarization singularity of topological charge 1, while
the topological charge of the hexapolar mode is —2, and the
degenerated quadipolar modes are pinned at a polarization
singularity of topological charge —2.

Interestingly, an accidental degeneracy between the
quadripolar modes and the hexapolar mode occurs when
the condition W = ZU;V is satisfied. Under this configura-
tion, the resulting triple degeneracy at the I" point consists of

DE GRUYTER

one quadratic band and a pair of Dirac cones. This acciden-
tal degeneracy, involving three BICs, is particularly relevant
for applications such as zero-refractive-index metamateri-
als [40], [41] and scalable lasing [42], [43], both of which
benefit from lossless Dirac cones at the I" point.

3.5 Eigenmodes at K: symmetry-protected
Dirac dispersion

In the vicinity of the K point, the non-Hermitian Hamil-
tonian H «(K) can be approximately diagonalized in the
regime T > y,,7,. This yields three eigenmodes |Q§f;’1’2,3>
with eigenvalues:

Q&) = oy — T+ vgk sin(q) + g) - z%

(Vi +2yR)”
T

QYK) = wy +2T - (V= V) \/_ +O(K).

Q) = = T = vk sin(p + 5) -

w

(37
The corresponding eigenvectors at k = 0 are:
AW ( —2(1+ sin @) 2(1 + sin @) 11
1 - . 9 . - 9 9
1+sin ¢ — \/§cos @ 14sin ¢ — \/§cos 0]
AB — —2(1 —sin @) 2(1 —sin @) —11
) - ) - 1,
1—sin (p+\/§cos @ 1—sin qo+\/§cos @
Al =(@,1,1).
(38)
The first two modes, |Q§K) and |Q;K) , are degenerate

at k=0 and split linearly with k, forming a Dirac cone
centered at the K point. This Dirac cone is robust against
variations in y,, y,, and T, as long as the condition T >
Y1, Vo holds.

3.6 Effective theory versus numerical
simulations near the I' point

In this section, we focus on the eigenmodes in the vicinity
of the I" point, where various symmetry-protected and acci-
dental BICs and EPs can emerge. The analysis of modes near
the K point — characterized by distinct degeneracy lifting
and topological transitions under C; symmetry breaking
— will be presented in the next section.

The simulated structures consist of air hole arrays in
dielectric slabs with two lattice geometries: triangular and
honeycomb. In both designs, the lattice constant is a =
400 nm, the air hole diameter is D = 0.35a, and the slab
thickness is h = 100 nm. The refractive index of the slab is
n = 2.0, and the structures are embedded in air.
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3.6.1 Complex band structures and symmetry-protected
BICs

We first show that the photonic band structures near the
I' point are accurately described by the effective non-
Hermitian Hamiltonians introduced in Eq. (33). To validate
this theory, we perform full-wave simulations using the
finite element method (FEM) implemented in comsor mut-
mipHysics. Floquet boundary conditions are applied in the
in-plane directions, while perfectly matched layers (PMLs)
along z model radiation into the far field. Complex eigen-
frequencies €,(k) are computed for a dense sampling of
k-points near the I" point, and are fitted using the analytical
eigenvalues of the effective Hamiltonians. The correspond-
ing fitting parameters are listed in Appendix G.

Figure 5a and d presents the real parts of the eigen-
frequencies for the triangular and honeycomb lattices,
respectively. The band structures show excellent agreement
between numerical simulations and the analytical calcula-
tions, both for the real and imaginary parts of the eigen-
frequencies, as evidenced by the quality factors plotted in
Figure 5b and e. In particular, the expected scaling laws
for BICs are recovered: Q  1/k*, where q is the topolog-
ical charge. The hexapolar mode with g = —2 follows Q «
1/k4, while the monopolar (g = +1) and each of the two
quadrupolar modes (q = —1) exhibit Q « 1/k?, fully consis-
tent with theoretical calculations.

TRIANGULAR LATTICE
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3.6.2 Accidental off-I"' BICs

While the presence of symmetry-protected BICs at the I
point is independent of the lattice details — as discussed in
Section 3.4 and confirmed above for both geometries — acci-
dental off-I" BICs can emerge in specific bands depending on
the lattice design.

In the triangular lattice, off-I" BICs are found in the
monopolar mode band at 3|k|a/47 = 0.0391 along the I —
M direction (Figure 5b). In the honeycomb lattice, off-I" BICs
appear in the hexapolar mode band at 3|k|a/2z = 0.0488
(Figure 5e). In both cases, their positions and properties
are accurately predicted by the effective model, confirming
that the mechanism of accidental destructive interference
is fully captured by our generalized guided-mode expansion
framework.

Interestingly, in the triangular lattice, the off-I" BIC
occurs near an anticrossing between the third (quadrupo-
lar) and fourth (monopolar) bands, as highlighted in the
zoom-in inset of Figure 5a. The corresponding quality factor
profiles in Figure 5bhreveal a clear loss exchange: at the anti-
crossing wavevector k., the quality factor of the monopolar
band increases by five orders of magnitude, while that of
the quadrupolar band drops sharply. This strongly suggests
that the off-I" BIC arises from two-band Friedrich—-Wintgen
interference.

By contrast, the off-I" BIC in the honeycomb lattice
does not coincide with any visible anticrossing in Figure 5d.

HONEYCOMB LATTICE

@ K-—r—m® ~ K—T—M (d K—T—M () K—TI—M
0.530
Hexapol A

0.742 Dip%lars ;6 1010 exapasr ' o 1019
g crossing anticrossing| § 108 E Quadripolars %
AN Nk | S <
2 0.71 [/\_’/\_ b ] e ,\§\0'507 Dipolars E
Q Mono- =10 Polars | Mono- R)
~ polar 'C_(ﬁ polar Ny e 'T"; 106
[ ) o .

0.678 2 104 ) -
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Fipo 1 ] /m
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Figure 5: Eigenmodes near I" for triangular and honeycomb lattice design. a, d) Real part of the photonic band energies as a function of the in-plane
wavevector. The zoomed-in insets highlight the crossing along I'K(blue box) and anticrossing I'M (green box) between the third and fourth bands

of the triangular lattice. b, e) Quality factors of the photonic bands. Green and blue dashed lines indicate reference curves proportional to 1/k4

and 1/k%, respectively. Red scatters represent numerically simulated photonic bands, while black lines show their corresponding analytical fitting
using the effective theory. c, f) Far-field polarization textures (i.e., the orientation of radiated polarization) of the photonic bands hosting monopolar,

quadrupolar, and hexapolar modes.
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Furthermore, the increase in quality factor for the hexap-
olar band is not accompanied by a corresponding drop in
any nearby band (Figure 5e), indicating that the BIC arises
from multi-band interference and cannot be reduced to a
two-mode interaction picture.

The far-field polarization textures (see Appendix E for
details) associated with the monopolar, quadrupolar, and
hexapolar modes are presented in Figure 5¢c and f for
the triangular and honeycomb lattices, respectively. The
expected topological charges — +1 for the monopolar, —2
for the hexapolar, and —2 total for the twofold-degenerate
quadrupolar modes — are clearly observed, confirming that
each quadrupolar mode carries charge —1. Additionally, six
off-I" topological charges corresponding to accidental BICs
are identified along the I' > M path, with their positions
and bands depending on the lattice type. These features,
in agreement with both simulations and analytical calcula-
tions of quality factors, further demonstrate that our effec-
tive theory captures not only the complex eigenfrequencies
but also the far-field polarization topology.

3.6.3 Emergence of chiral exceptional points

Beyond BICs, the effective theory also successfully pre-
dicts the emergence of EPs in the PhC slabs. As pointed
out in Ref. [44], EPs are expected to appear near cross-
ings of bands with opposite symmetry. To identify possible
EPs, we examine the band structures along high-symmetry
directions. In the triangular lattice, the third and fourth
bands cross along the I' » K direction (Figure 5a), suggest-
ing the emergence of EPs in their vicinity. Due to the Cg
symmetry, there are six equivalent crossing points. With-
out loss of generality, we focus on k. = (0, k.). To probe
the EPs, we map the amplitude and argument of the com-
plex gap between the third and fourth bands around k..
As shown in Figure 6a and b, two EPs are clearly identi-
fied by the vanishing of the gap amplitude and the pres-
ence of a singularity in the phase. The winding number of
each EP, w = i%, is computed from the gap argument as
w = k- Vi arg[o,k) — wy(K)].

The phase map of the gap also reveals a bulk Fermi arc
(BFA) connecting the two EPs [15], [44], characterized by a
7 jump in the argument (Figure 6b), marking a degeneracy
of the real parts of the eigenfrequencies. The agreement
between the effective theory and numerical simulations for
both the gap amplitude and phase confirms the robustness
of our model in capturing non-Hermitian degeneracies and
their topological features.

Finally, we compute the ellipticity of the far-field polar-
ization (see Appendix E for details) of the third and fourth
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Figure 6: Chiral EPs in triangular lattice design. a, b) Amplitude (a) and
argument (b) of the complex gap between the third and fourth band
in the vicinity of the crossing point of Figure 5a. Left panels are results
obtained from numerical simulations, while right panels are from the
analytical models. c) Ellipticity of the far-field polarization of the third
and fourth bands in the vicinity of the crossing point k. = (0, k)

of Figure 5a.

bands near k.. As shown in Figure 6c, the two EPs exhibit
opposite handedness in their polarization textures, confirm-
ing their chiral nature. To the best of our knowledge, this is
the first demonstration of chiral EPs in a triangular lattice
without explicit symmetry breaking.

3.7 Hexagonal lattices with broken Cg
symmetry

The Cy symmetry is broken either by using elliptical holes
instead of circular ones in a triangular lattice, or by using
two circular holes of different sizes in a honeycomb lattice
(see Figure 7). In general, breaking the C; symmetry lifts
the degeneracy of the quadrupolar and dipolar modes at
the I" point, as well as the Dirac point degeneracy at the K
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Figure 7: Hexagonal lattices with broken C; symmetry. a) Triangular
lattice with elliptical holes. b) Honeycomb lattice with two circular holes
of different sizes.

point. However, depending on the specific geometry of the
symmetry breaking, the form of the effective Hamiltonian

1 1
71 —E\/}’ﬂ’z —E\/Yﬁ’a
~ | 1 1
HY () = wy — i —Vnr v2 — V|t
1 1
—E\/ 16VE] _QV V2Ys3 73

On the other hand, for the case of honeycomb lattice
with different hole sizes, the C; symmetry is preserved,
but the difference in hole sizes breaks the mirror sym-
metry x — —x (see Figure 7b), while the symmetry y - —y
remains. Consequently, the Fourier components of Ae(r))

1 1
41 _57’1 _EV 1172
N . 1 1
Hg)(k) =wg —1 —ohn " AL +

1 1
—5\/3’172 —i\/Vﬂ’z )g)

3.7.2 Band structure: effective theory versus numerical
simulations near the K point

To investigate the role of C; symmetry, we designed a
structure consisting of a triangular lattice of elliptical air
holes with lattice constant a = 440 nm, slab thickness h =
180 nm, and refractive index n = 2.02, placed on a glass sub-
strate with n = 1.46. The elliptical holes are defined by their
semi-axes p and g, allowing controlled breaking of higher-
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will differ. In this section, we focus specifically on the band
structure in the vicinity of the K point, where the lifting of
Dirac degeneracies gives rise to rich topological and non-
Hermitian phenomena [45]-[47].

3.7.1 Modification of the effective Hamiltonian

For the case of triangular lattice with elliptical holes, when
the elliptical holes are aligned along the x- or y-axis (see
Figure 7a), the two mirror symmetries x - —x and y — —y,
corresponding to C, operations, are preserved. As a result,
all Fourier components of Ae(r”) remain real-valued, lead-
ing to real-valued coupling coefficients U'X) as defined in
Eq. (17). However, the C; symmetry is broken, and the effec-
tive Hamiltonian near the K point now becomes:

vk sin @ T T,
(39)
T, T —vgk sin(qo + —)

can be complex, resulting in complex coupling strengths
U with 0K = (ﬁﬁm)*, being complex-valued as a direct
consequence of the broken mirror symmetry. Therefore, the
effective Hamiltonian near the K point is given by:

vk sin @ T T*

T —uvgk sin(<p - %) T w0

T T* —vgk sin<(p + %)

order rotational symmetries. The results of three represen-
tative cases are presented in Figure 8, showing both the
band structure and the associated quality factors.

In Figure 8a, we consider the high-symmetry case
where p = q = 60 nm, which preserves C; symmetry. In this
configuration, a Dirac point is formed at the K point by
the crossing of two upper bands, while the lowest band
remains isolated. Interestingly, this lowest band exhibits a
pronounced quasi-BIC character: its quality factor reaches
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Figure 8: Triangular lattice with elliptical holes. Red scatters represent numerically simulated photonic bands, while black lines show their
corresponding analytical fitting using the effective theory. The upper panel shows the band structures near the K point, while the lower panel depicts
the corresponding quality factor for each band. (a) p = g = 60 nm. (b) p = 50 nm and ¢ = 70 nm. (c) p = 40 nm and g = 80 nm.

a sharp peak (exceeding 10°) precisely at the momentum
corresponding to the Dirac point. We then break the C; sym-
metry while preserving inversion symmetry (C,) by elon-
gating one semi-axis and reducing the other. Specifically, in
Figure 8b, we increase p by 10 nm and decrease q by 10 nm.
The Dirac point is no longer pinned to the high-symmetry
K point but shifts along the K — I" direction, appearing
at 3(k, — kg)a/4x = —0.0075. Notably, the quasi-BIC peak
in the lowest band follows this shift, indicating that the
momentum-space location of maximal radiation suppres-
sion remains locked to the displaced Dirac crossing. This
trend becomes more pronounced as the symmetry break-
ing increases. In Figure 8c, the semi-axes differ by 40 nm,
and the Dirac point moves further to 3k,a/4x = —0.015.
Owing to the preserved C, symmetry, this displacement is
symmetric: if the major axis were instead aligned along the
y-direction, the shift would occur in the opposite direction.
These observations confirm that while the Dirac degen-
eracy persists due to inversion symmetry, its location in
momentum space is no longer protected by C; symmetry
and becomes tunable through geometry.

Crucially, the momentum-dependent complex eigen-
frequencies obtained from full-wave simulations are in
excellent quantitative agreement with the calculations of
the effective non-Hermitian Hamiltonian. This confirms
that our analytical model faithfully captures both the band

dispersion and the quasi-BIC behavior induced by symme-
try breaking.

To investigate the role of inversion symmetry (C,) in
honeycomb lattices, we consider a slab similar to the pre-
vious cases, but with a reduced lattice constant of a =
400 nm and air holes of different radii r; and r,. When
inversion symmetry is preserved (i.e., r; = r, = 50 nm), the
structure exhibits a Dirac point at the K point, as shown in
Figure 9a, consistent with the symmetry-protected degen-
eracy of the honeycomb lattice. However, when inversion
symmetry is broken by introducing a small size asymme-
try between the two sublattices (e.g., r; =50 nm and r, =
55 nm), the Dirac point degeneracy is lifted, and a bandgap
opens at the K point, as seen in Figure 9b. This gap becomes
significantly larger with stronger symmetry breaking. In
Figure 9c, a larger contrast between r, and r, results in a
pronounced gap, demonstrating how geometric perturba-
tions directly control the topological features of the band
structure. Once again, the calculations of the effective non-
Hermitian Hamiltonian show excellent quantitative agree-
ment with the full-wave numerical simulations, confirming
the accuracy and robustness of the theoretical model.

Compared to the case of triangular lattices with
elliptical holes, where breaking C; symmetry (while
preserving inversion symmetry C,) causes the Dirac point to
shift in momentum space without lifting the degeneracy, the
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Figure 9: Honeycomb lattice bands with different hole sizes. Red scatters represent numerically simulated photonic bands, while black lines show
their corresponding analytical fitting using the effective theory. (a) r;, = r, = 50 nm. (b) r, =50 nm and r, = 55 nm. (c) r, =40 nm and r, = 60 nm.

honeycomb lattice exhibits a qualitatively different
response: breaking inversion symmetry directly opens
a bandgap at the K point. This contrast underscores the
distinct roles of C, and C5 symmetries in protecting Dirac
points. Moreover, the energetic ordering and radiative
properties of the bands also differ significantly between the
two cases. In the triangular lattice, the singly degenerate
band with quadratic dispersion lies below the Dirac
point and exhibits a quasi-BIC character, with strongly
suppressed radiation losses at the Dirac momentum. In
contrast, for the honeycomb lattice, this quadratic band lies
above the Dirac point, and all three bands near the K point
exhibit significant radiation losses. No quasi-BIC behavior
is observed in this case, reflecting the absence of symmetry
protection and destructive interference mechanisms that
suppress radiation. These differences further highlight how
lattice geometry and symmetry breaking govern bhoth the
topological and radiative characteristics of the photonic
band structure.

3.8 Parameter retrieval and computational
efficiency

To determine the parameters of the analytical Hamiltonian,
full-wave simulations are required only at a single
high-symmetry point (e.g., I' or K). From the complex
eigenfrequencies at this point, we extract all model
coefficients — including the coupling parameters U, V, W,
the diagonal frequencies wr and wyg, and the radiative
loss rate y, (numerical values of parameters used in the
results are reported in Appendix G. Once these coefficients
are known, the effective Hamiltonian reproduces the full
complex band structure in the vicinity of the high-symmetry
point, including both the radiative linewidths and the
far-field polarization textures, through instantaneous
matrix diagonalization.

In our examples, subtle non-Hermitian features such as
off-I" bound states in the continuum and chiral exceptional
points were first revealed by the analytical Hamiltonian.
Only after their approximate locations were identified did
we refine our full-wave simulations — using significantly
increased mesh density and finer k-space sampling — to
confirm these features numerically. This highlights the pre-
dictive power of the analytical model and its ability to guide
full-wave solvers toward the relevant regions of parameter
space.

For a representative hexagonal-lattice structure, a
full-wave FEM sweep (~50,000 mesh elements) required
approximately 5h on a standard desktop computer (AMD
Ryzen 7 processor, 3.3 GHz; RAM 16 GB) to evaluate 1,000-
points and 7 frequency samples. In contrast, once the Hamil-
tonian parameters were extracted, the analytical model gen-
erated the corresponding results within a fraction of a sec-
ond on the same hardware. This demonstrates the substan-
tial computational advantage of the proposed framework,
particularly for broad parameter scans or for exploring
high-Q resonances.

4 Conclusion and perspectives

In this work, we have developed a general and system-
atic formalism for modeling complex resonances in PhC
slabs within a non-Hermitian framework. Starting from
Maxwell’s equations, we derive an effective non-Hermitian
Hamiltonian by expanding the electromagnetic fields onto
the complete set of guided and radiative modes of an
unpatterned slab. This approach provides a unified and
physically grounded alternative to earlier phenomenolog-
ical models that have been applied to periodic photonic
structures such as gratings [35], [48], square [36], and
rectangular lattices [11]. We illustrated the effectiveness
of our approach through a case study on hexagonal PhC
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slabs, under both preserved and broken C; symmetry. The
effective Hamiltonian accurately reproduces complex band
structures, near-field mode profiles, and far-field polariza-
tion textures, in excellent agreement with full-wave simula-
tions. These results demonstrate that the formalism reliably
captures how lattice symmetry and geometry govern radia-
tion and resonance properties.

This framework paves the way for designing non-local
metasurfaces with controlled radiation losses, enabling
applications in high-Q lasers, filters, and sensors. It also
provides a powerful tool for exploring topological photon-
ics in open systems, including bulk-radiation correspon-
dence [49], [50] and non-Hermitian effects such as EPs and
spectral degeneracies [16]. Future extensions to multilayer
slabs, moiré superlattices, or aperiodic structures will fur-
ther broaden its scope, enabling the study of flatbands [41],
[51], [52] and other exotic radiative phenomena [53]—-[55].
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Appendix
A Summing out the polarization products

We can simplify the expression of the coupling terms of
H, given in Eq. (8), by summing out the polarization cross

DE GRUYTER

products. To do so, we write separately the polarization and
the amplitude of the periodic function u,(r) and u,, .,4(r).
While w,(z) = u,(2)p,, we note that u,, ,4(z) are counted
twice, once for u,, ,q(2)X and one for uy, ,4(2)y. As conse-
quence, we obtain:

=p,Pn / u: “€g,—,, U dz, (41)
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(43)

B Wavectors of the I' points and K points
for guided modes inside the light cone

The six I" points corresponding to |I',), and the three
K points corresponding to |K,),shown in Figure 3, are of
wavevectors:

13
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CEnergy of |I;) and |K,) out of I' and K
points

Using the approximation:

I -k
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) a)|63>(k) ~ wp + vpk COS((p + 2) i
0|6y (K) = op — vpk cos(qo - §>,
|6, (K) = wr — vrk cos @, (46)
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a)lK2>(k) ~ i — vgk sin((p - %),
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D Polarization of |I';)) and |K,,)

Using the condition pjp,, - I'y =g, - Ky = 0 and Eq.(44),
we obtain:
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E Polarization texture of the farfield

Using the effective non-Hermitian Hamiltonian, the farfield
electric field of the eigenmodes is computed via Eq. (24). For
a given eigenmode, the farfield electric field is expressed as
ER(K) = E,(K) X + E,(K) §, where E, (k) and E, (k) are
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the complex field components in the Cartesian basis. The
polarization orientation, defined as the angle ¢ between
E™feld (k) and the % axis, is given by [56]:

2Re(E(E,)

tan2¢ = ——"2%5.
d) |Ex|2 - |Ey|2

(48)

The ellipticity of the polarization, characterized by the angle
., is given by [56]:

2Im(EE,)

— X F2 (49)
|E F + |E,

sin 2 y =

In the presence of a polarization singularity at k = k,,

the associated topological charge is defined as the winding

number of the polarization orientation ¢»(k) around a closed
contour C encircling Kk:

=1 fax.
q= 5 ?{ dk - V, (k). (50)
c

F Non-Hermitian Hamiltonian for 1D grating
and square-lattice photonic crystal slabs

To demonstrate the broad applicability of the generalized
guided-mode expansion framework, we extend our anal-
ysis to two additional photonic crystal slab geometries:
a one-dimensional (1D) grating (Figure 10a) and a two-
dimensional (2D) square lattice (Figure 10b). These struc-
tures possess distinct point-group symmetries — C, for the
grating and C, for the square lattice — thereby providing
complementary test cases to the triangular and honeycomb
lattices discussed in the main text. Applying the same for-
malism to these different symmetry classes allows us to
verify the generality and robustness of the effective non-
Hermitian Hamiltonian approach.

F.1 Grating

For a one-dimensional photonic grating, the lowest photonic
bands at the I" point can be described by a basis consisting
of two counter-propagating guided modes located at the
two equivalent I' points of the second Brillouin zone (see
Figure 10b). These modes, denoted |I';) and |I,), both orig-
inate from the fundamental TE-guided mode of the unpat-
terned slab €,(z) and possess in-plane wavevectors I'; and
r,.

Applying the general expressions derived in Section 2.5,
and using the C, symmetry of the unit cell, we obtain the
effective non-Hermitian Hamiltonian in the vicinity of the
I point:
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Figure 10: Grating and square lattice. a, e) Geometries of the two photonic

crystal slabs. b, f) Guided-mode bases for the eigenmodes at the I" point

above the light cone: two guided modes |1"1’2> for the 1D grating, and four guided modes |I';_,) for the square lattice. The green region indicates
the first Brillouin zone, the blue regions indicate the second Brillouin zone, and the yellow region indicates the third Brillouin zone. ¢, g) Real parts

of the photonic band energies as functions of the in-plane wavevector. d, h)
simulated complex eigenfrequencies, while black lines show the correspond
Hamiltonian.

Quality factors of the photonic bands. Red markers show the numerically
ing analytical bands obtained from the effective non-Hermitian

i 2
ur |k cos @ + (kSl;\(p)] U 1 -1
Hr(k) = o + R %( ) (51)
U Ur [k cos(zw — @) + (ksuzup)] -1 1

Here, the diffractive coupling U is governed by the
second-order Fourier components €, = e_, of A¢, while the
radiative loss rate y is governed by the first-order compo-
nents e; = €_;.

Diagonalizing Eq. (51) yields two eigenmodes with
eigenvalues:

an =wr+U, Qgr) = wr — U — 2iy,, (52)
and normalized eigenvectors:
O=lan A=l ®
2 V2

These results are consistent with Refs. [24], [35], where
the two lowest band edges correspond to a symmetry-
protected BIC (dark mode) and a bright mode. The sign of U,

controlled by the sign of €, (e.g., via filling fraction), deter-
mines whether band inversion occurs.

F.2 Square lattice

For the square lattice, the lowest photonic bands near the
I" point arise from four guided modes associated with the
four I" points of the second Brillouin zone (see Figure 10f).
These modes form two pairs of counter-propagating states,
(|T'y), |T3)) and (|Ty), [T'y)), each derived from the funda-
mental TE-guided mode of the slab.

For a unit cell with C, symmetry, the effective non-
Hermitian Hamiltonian in the basis {|I"}),...,|T’y)} takes
the form:
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T

vrk cos(qo - E) v w vV 1 0 -1 0

N 14 vrk cos(¢) 1% w 10 1 -
ArK) = wp + r . — iy, (54)

w % —urk cos<(p— E) 14 -
v w |4 —urk cos(p) 0 -1 0 1
The diffractive coupling V between counter-

propagating guided modes is governed by the second-order
Fourier components €, , and ¢ ,,, while the radiative loss
Yo is governed by €, and € 4.

In contrast, the coupling W between orthogonally prop-
agating modes vanishes at first order due to orthogonal
polarization, but appears via second-order processes involv-
ing guided modes at the four I" points of the third Brillouin
zone (n = 5 — 8), consistent with Ref. [26]:

8
W =) (3| Ae|T, (T, |Ae|Ty)
n=5

(55)

8
D (T3] Ae|T, (T, | Ac|T,).

n=5

This indicates that W depends on combinations of first-
and higher-order Fourier components such as e.;.; and

€ 43,41
Diagonalizing Eq. (54) yields four eigenmodes:

Q" =wp —2v+ W,

QP =wp +2V+W,

(56)
Qgr) = wr — W = 2iy,,
QEIF) = or — W —2iy,,
with corresponding normalized eigenvectors:
AP =(-11,-11, AP =111,
(57)

A" =(0,-1,0,1), Al =(-1,0,1,0).

These results agree with previous analyses of square-lattice
photonic crystal slabs [26], [50], where the band edges

consist of two degenerate bright modes (here |Q§r)> and

|Qflr)>) and two symmetry-protected BICs corresponding to

monopolar and quadrupolar field profiles (here |Q§r’> and
)
).

F.3 Effective theory versus numerical
simulations near the I' point

We consider dielectric slabs (n = 2.5) patterned into a 1D
grating or a square lattice, with lattice constant a = 300 nm
and slab thickness h = 100 nm. The grating consists of air
grooves of width w = 0.3a, while the square lattice consists
of circular air holes of diameter D = 0.4a.

Figure 10(c,d) and 10(g,h) present the complex band
structures obtained from full-wave simulations and from
the analytical Hamiltonian. The agreement is excellent for
both the real and imaginary parts of the eigenfrequencies,
demonstrating that the generalized Hamiltonian frame-
work extends naturally to other lattice geometries beyond
the triangular and honeycomb cases discussed in the main
text.

These examples confirm that the proposed effective
Hamiltonian is broadly applicable to diverse photonic lat-
tices and accurately captures both dispersion and radiation
characteristics.

G Fitting parameters

All parameters are normalized to the lattice constant. They

were used to fit the data shown in Figures 5, 8-10, with axis

units specified in each respective figure. The corresponding

fitting parameters are listed in the tables below:

1. Fitting parameters for photonic modes near the I point
(see Figure 5):
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or Ur 4 w u Yo
Triangular lattice 0.6968 0.3228 1.54E-2 —1.4E-2 —2.13E-2 2.26E-3
Honeycomb lattice 0.5035 0.2033 —3.33E-3 —6.18E-3 5.83E-3 3.87E-4

2. Fitting parameters for photonic modes near the K point in triangular lattices with elliptical holes (see Figure 8):

Wy Uk T T, |4 Y2 Y3
p=g=60nm 0.7704 —0.3333 —8.14E-3 —8.14E-3 1.75E-3 1.75E-3 1.75E-3
p=50nm,q=70nm 0.7699 —0.3333 —6.9E-3 —8.11E-3 2.4E-3 1.3E-3 1.7E-3
p=40nm,q=280nm 0.7686 —0.3333 —4.81E-3 —7.4E-3 2.8E-3 8E-4 1E-3

3. Fitting parameters for photonic modes near the K point in honeycomb lattices with varying hole sizes (see Figure 9):

@y Uk T 71 Y2
r=r,=50nm 0.7823 —0.1666 8.94E-3 73E-4 2.43E-3
ry=50nm,r, =70 nm 0.7852 —0.1666 9.64E-3 + i8E-4 1.2E-3 1.2E-5
ry=40nm,r, =80 nm 0.783 —0.1666 8.8E-3 + i3.4E-3 1.2E-3 1.2E-5
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pp. 1544—1709, 2025.
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@r Ur u 14 metamaterials and metasurfaces,” Nat. Rev. Phys., vol. 7, no. 6,
0.5939 0.218 —0.0568 0.0194 Pp. 299312, 2025.
[8] C.W.Hsu, B.Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic,
L . . “Bound states in the continuum,” Nat. Rev. Mater., vol. 1, no. 9,
5.  Fitting parameters for photonic modes near the I" point 0. 16048, 2016.
in square lattice (see Figure 10): [9] H.M. Doeleman, F. Monticone, W. d. Hollander, A. Alt, and A. F.
Koenderink, “Experimental observation of a polarization vortex at
an optical bound state in the continuum,” Nat. Photon., vol. 12,
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