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ABSTRACT

Conventional spectral probes of quantum chaos require eigenvalues, and sometimes, eigenvectors of the quantum Hamiltonian. This
involves computationally expensive diagonalization procedures. We test whether an unsupervised neural network can detect quantum chaos
directly from the Hamiltonian matrix. We use a single-body Hamiltonian with an underlying random graph structure and random coupling
constants, with a parameter that determines the randomness of the graph. The spectral analysis shows that increasing the amount of
randomness in the underlying graph results in a transition from integrable spectral statistics to chaotic ones. We show that the same
transition can be detected via unsupervised neural networks, or more specifically, self-organizing maps by feeding the Hamiltonian matrix
directly into the neural network, without any diagonalization procedure.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0034346

1. INTRODUCTION

Chaotic dynamics is ubiquitous in classical physics: from the
dynamics of particles constrained on billiards of irregular shapes
to the behavior of complex systems, it is extremely rare to find sit-
uations in which the equations of motion can be solved exactly in
a closed analytical form. For all the other cases, it is well-known
that evolution turns out to be chaotic, with tiny differences in the
initial conditions leading to large discrepancies in the evolution of
the system at later times. Conceptually, the notion of classical
chaos finds its roots in the concept of trajectory and the exponen-
tial divergencies (controlled by the Lyapunov exponents) that
nearby trajectories develop under time evolution, see for
instance.1,2

Like any notion based on trajectories, talking about quantum
chaos (or, more precisely, about quantum signatures of chaos) has
been an outstanding problem, going back to the early days of
quantum mechanics. Indeed, it is completely non-obvious how a
quantum mechanical system should reflect the chaoticity of its
classical counterpart at the quantum level. Along this line, a

groundbreaking achievement has been reached with the celebrated
Bohigas–Giannoni–Schmit (BGS) conjecture3 which, in a nutshell,
says that quantum mechanical systems, having a chaotic classical
limit, display specific and universal features on the correlations
among the energy levels of their quantum Hamiltonian, H. More
precisely, the conjecture states that quantum chaotic systems have
energy levels whose correlations can be described as if the energy
levels were extracted from a completely random Hamiltonian, and
therefore agree with the predictions of random matrix theory
(RMT).4 On the other hand, systems having integrable classical
counterparts usually display uncorrelated energy levels, and the
Berry–Tabor (BT) conjecture5 states that the spectral statistics of
integrable systems follows a Poissonian distribution which is the
distribution gotten from the spacings between uncorrelated points
distributed uniformly on a line. The dichotomy between these two
different behaviors has been extensively tested analytically, numeri-
cally, and even experimentally, and, by now, the BGS conjecture is
often regarded as a definition of what quantum chaos really is (see,
e.g., Refs. 6–8.
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Moving to condensed matter problems, the distinction
between RMT-like and non-RMT-like Hamiltonians plays a crucial
role in the phenomenon of Anderson localization,9–11 as it can be
heuristically argued following a Mott-like argument. When the
eigenstates are exponentially localized, they behave as if they are
isolated from the other eigenstates, and therefore the spectral statis-
tics show clear deviations from the RMT predictions. At the same
time, the delocalized phase, in which different eigenstates are
largely overlapping, manifests with RMT-like correlations due
to the hybridization between overlapping eigenstates.8 The same
kind of argument can be applied to Dyson-like problems—a sort of
dual of the standard Anderson problem, in which the position-
dependent disorder is entering in the hopping terms rather than in
the on-site energies (which are usually set to zero).12,13 Generalized
Chalker–Coddington network models describing novel symmetry
classes in two-dimensional disordered superconductors also exhibit
correspondence between extended (localized) states and RMT
(Poissonian) spectral distributions.14–17 Generalizing further, the
underlying interactions can be described by an adjacency matrix of
a (directed) graph. In this work, we focus on a particular type of
random graphs and study their spectral statistics. For other works
on the spectral statistics and chaos on random graphs see, e.g.,
Refs. 18–25.

As is often the case, the possibility of analytically studying the
energy correlations for non-trivial Hamiltonians is quite scarce.
This difficulty, in turn, forces the use of numerical techniques.
Among those, following their astonishing successes in many differ-
ent areas, are machine learning (and, more specifically, neural
network) techniques26—the latter being the actual focus of this
paper.

Neural networks have found wide application in various fields
of modern science, including solid-state physics. Among other
things, they can also be utilized to construct phase diagrams of
quantum systems. Using so-called supervised learning, one can
teach a neural network to distinguish between previously known
phase states of the system and then let the network scan the phase
plane to clarify the boundaries of a particular phase.27 Sometimes,
with the help of supervised learning, it is also possible to solve the
inverse problem—such as constructing the Hamiltonian of a
system based on its energy spectrum.28 For other works on the use
of machine learning methods to study quantum chaos and
quantum phases of matter, see, e.g., Refs. 29–35.

Up to now, the vast majority of the studies applying neural
network techniques to investigate quantum chaos have been based
on supervised methods. The use of supervised methods, in turn,
requires at least 2 reference Hamiltonians, one known to be chaotic
and the other integrable, from which a large amount of data can be
generated. These data are then used to train the neural network.
Finally, the trained network is used on new and unknown models,
to infer their chaotic properties. The obvious drawback of this
supervised framework is that it requires the presence of some refer-
ence Hamiltonians, from which the training data can be extracted.
Moreover, to improve the neural network’s performance on the
unknown Hamiltonians, these reference Hamiltonians must be
sufficiently similar to the Hamiltonians under investigation or
the results of the generalization procedure will be in general
rather poor.

In this paper, to alleviate the aforementioned drawbacks, we
propose the use of unsupervised techniques to detect the quantum
chaotic properties of a given Hamiltonian under investigation.36

More in detail, we will use the so-called self-organizing maps
(SOMs)37 to detect a chaos/integrability transition in a set of
single-particle Hamiltonians, without assuming any prior knowl-
edge of the properties of the Hamiltonians considered: In the
process of unsupervised learning, the SOM, following an algorithm
that we will describe, distinguishes and classifies the quantum
Hamiltonians by itself. Two of the authors have already used the
SOM approach to classify white noise38—a problem that would be
difficult to solve by other methods since the power spectra of the
signals under consideration were identical.

Our results will show that a SOM can detect the onset of a
chaotic/integrable transition in a set of single-particle Hamiltonians
that make a transition from being Poisson-like uncorrelated to
RMT-like correlated in terms of a single parameter. As intrinsic in
the SOMs framework, the algorithm can detect the transition
without the need for any previous knowledge of the Hamiltonian
under consideration. We will validate the results of the SOM via a
standard RMT analysis, finding results in good agreement between
the two approaches, thus providing convincing evidence for further
study of the use of unsupervised methods in the field of quantum
chaos

The paper is organized as follows. In Sec. 2, we give a quick
review of the field of quantum chaos and RMT. In Sec. 3, we
describe the single-particle Hamiltonians that we consider in this
paper and their interpretation in terms of adjacency matrices of
weighted directed graphs. In Sec. 4, we present an RMT analysis of
the chaos/integrability transition for the Hamiltonians introduced
in Sec. 3, and in Sec. 5, we show that, in good agreement, the
results can be reached by considering an SOM approach. Finally, in
Sec. 6, we summarize our findings, discuss the results and present
some speculations for future investigations.

2. QUANTUM CHAOS AND RANDOM MATRIX THEORY

Random matrices and random matrix theory are intimately
related to quantum chaotic systems. According to the celebrated
Bohigas–Giannoni–Schmit conjecture, a quantum system is consid-
ered chaotic if certain aspects of its spectrum (namely, the correla-
tions among its energy levels) follow a similar behavior to those of
a random matrix. More specifically, a quantum chaotic system
described by a Hermitian Hamiltonian will have the same spectral
statistics (in the bulk of its spectrum) of one of the universality
classes of random matrix theory, see, e.g., Ref. 4. Hamiltonians of
quantum chaotic systems are not necessarily dense random matri-
ces; on the contrary, they may have a very particular structure and
may be sparse. However, the spectral statistics of such systems, par-
ticularly for highly excited energy levels (i.e., in the bulk of the
spectrum), often exhibit spectral statistics that largely agree with
the RMT predictions. More specifically, their energy levels satisfy
the property of level repulsion: very small probability for two
energy levels to lie very close to one another. The strength of repul-
sion depends on some basic underlying symmetries of the
Hamiltonian—this is known as the property of universality. While
quantum chaotic Hamiltonians are expected to follow random
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matrix spectral statistics, quantum integrable systems have rather
different spectral statistics: their eigenvalues are not correlated and
do not exhibit level repulsion.

The most well-studied random matrices are dense matrices
with entries taken from a Gaussian distribution, known as: the
Gaussian orthogonal ensemble (GOE) which are real symmetric
matrices, the Gaussian unitary ensemble (GUE) which are complex
Hermitian matrices, and the Gaussian symplectic ensemble (GSE)
which are complex Hermitian matrices with quaternionic structure.

The level repulsion feature mentioned above is usually studied
via the distribution of spectral nearest-neighbor spacings. The three
random matrix ensembles, GOE, GUE, and GSE, correspond to the
three possible distributions of nearest-neighbor spacings for
Hermitian Hamiltonians (with real eigenvalues), and make up the
three universality classes of Hermitian random matrices.

In this work, the symmetries of the Hamiltonian of the
quantum system we will study tell us that the spectral statistics will
fall into the universality class of the GUE ensemble—when the
Hamiltonian is in its chaotic regime.

One drawback of using the spectral spacing statistics as a
probe of quantum chaos is that the eigenvalue spectrum needs first
to be unfolded, to remove any global system-specific energy density
dependence of the eigenvalues before comparing the system’s statis-
tics with those of random matrices. To avoid the need to unfold
the spectrum, a different local spectral property is studied, namely
the spectral ratio statistics, which we describe in Sec. 4.

3. RANDOM GRAPH ADJACENCY MATRICES WITH
RANDOM WEIGHTS AS SINGLE-PARTICLE
HAMILTONIANS

In this work, we will consider Hermitian random matrices
that can be obtained from adjacency matrices of random graphs,
with an extra degree of randomness given by random weights in
their entries. The graph structure, GN ,k, of a graph with N vertices
and Nk edges is encoded in an N � N adjacency matrix with
entries {Aab}

N
a,b¼1 with jAabj ¼ 1 if vertex a is connected with

vertex b, and Aab ¼ 0 otherwise. Clearly, since we assume that the
graph has in total Nk edges, Aab turns out to be quite sparse, with
only 2Nk non-vanishing entries. We also assume that Aab is a
directed adjacency matrix, with Aab ¼ �Aba. On top of the random
graph structure, we add random weights to the edges, such that the

entries of the matrix we will be studying are given by

Hab ¼ i rabAab (1)

with rab ¼ rba are real random numbers taken from a Gaussian dis-
tribution with zero mean, and variance

r2ab ¼
N � 1
2N k

:

The imaginary i is put in to make the matrix Hermitian.
All-in-all, the matrix defined in Eq. (1) can be seen as the

quantum Hamiltonian for a single-particle disordered problem,
hopping on the graph GN ,k with random hopping weights given by
rab. Notice that, given the antisymmetric nature of the Hamiltonian
Hab, the diagonal elements of Hab are vanishing, i.e., Hab defines a
Dyson-like problem. The type of Hamiltonian described in (1) can
also be thought of as the single-particle sector of a 2-body interac-
tion Hamiltonian, such as the sparse 2-body Sachdev–Ye–Kitaev
model.39–45 See also Ref. 46 for a review of quantum dynamics on
networks.

Note that (1) is a complex Hermitian matrix and thus is
expected to fall into the GUE universality class of RMT. Next, we
define the type of random graph we study in this work.

3.1. Watts–Strogatz small world graphs

A Watts–Strogatz (WS) graph47 consists of N vertices, each
connected on average to 2k neighbors. The starting point is a
closed chain where each vertex is connected to its nearest-neighbor
and next-to-nearest neighbor (i.e., k = 2), see Fig. 1(a). Then, with
probability p, called the rewiring probability, an existing edge from
vertex a to vertex b is deleted and connected to another vertex c =
a, b: We choose only graphs which after this process remain con-
nected. See Fig. 1 for a visualization of the resulting graphs as a
function of the rewiring probability. It should be stressed that the
number of edges, and thus, the number of non-zero entries in the
adjacency matrix is unchanged by the rewiring procedure.

4. DIAGNOSING THE CHAOS/INTEGRABLE TRANSITION

To study how chaotic properties of H given in (1) build up as
a function of the graph’s rewiring probability, p, we will use a

FIG. 1. Watts–Strogatz graphs of N = 10 and 2k = 4 with increasing rewiring probability. Note that as p increases, generally more and more of the original (p = 0) degree-4
vertices are gone.
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spectral indicator constructed from local spectral statistics. For an
ordered set of eigenvalues E1 � E2 � � � � � EN , the nearest-
neighbor level spacings are given by the set {si}

N�1
i¼1 , where

si ¼ Eiþ1 � Ei. As mentioned above, to study nearest-neighbor level
spacings statistics and compare them with those of random matri-
ces, the spectrum needs to be unfolded to a flat, unit average
density, see, e.g., Ref. 48. To avoid the need to perform this unfold-
ing, a different local spectral indicator is used, which effectively
eliminates the dependence of the local spectral statistics on the
global density of states, namely, the spectral ratios.49,50

The ratios of level spacings are given by the set {Ri}
N�2
i¼1 ,

where Ri ¼ siþ1/si. The single-number indicator, often dubbed as
“r-ratio” and defined as the average value of

ri ¼ min Ri,
1
Ri

� �
, (2)

turns out to be particularly useful as a quick indicator of spectral
chaos vs integrability. For matrices taken from the GUE, it can be
shown that their spectrum satisfies hri � 0:5996, while for a spec-
trum with uncorrelated energy levels, where the level spacings
follow a Poissonian distribution, hri � 0:386 29.

In Fig. 2, we show the transition from a Poissonian to a GUE
value of hri as the rewiring probability p increases from near zero
to 1. The figure also shows that by increasing the system size the
crossover becomes steeper and steeper, with a fixed point (where
all curves meet) located at p � 0:02.

In summary, the analysis of the r-ratio clearly shows that the
set of Hamiltonians defined by Eq. (1) make a transition from

being Poissonian (at small p) to being RMT-correlated (at large
values of p). By considering the behavior of this crossover while
increasing the system size, we are led to conjecture that this cross-
over turns out to be a genuine transition (i.e., a step function in the
large N limit) located at p � 0:02.

5. SELF-ORGANIZING MAP NETWORKS

Having established the presence of a crossover/transition by
varying p, with the well-established method of spectral statistics, for
the set of Hamiltonians defined by Eq. (1) in the case of Watts–
Strogatz graphs, our goal is now to investigate if and how a self-
organizing map can detect the same transition or not.

Although the principles of self-organizing neural networks
are extensively discussed in various sources,51,52 to make the
paper more self-contained, we will provide a brief overview of
their operational principles. SOMs are designed to organize high-
dimensional input data, such as sequences of random numbers,
into clusters with shared characteristics among the neurons
comprising the output layer. Typically, this layer adopts a two-
dimensional rectangular or hexagonal lattice for clarity and
visualization purposes.53 A typical SOM application involves the
following steps.

1. Input normalization: Before inputting data into the network,
each element of the input vector is normalized using the formula

xk ! xkffiffiffiffiffiffiffiffiffiffiffiPi
l¼1

x2l

s , (3)

where xk represents the kth element of the input vector with a
total length of i.

2. Training: The weight vectors wm with 1 � m � j of output
neurons are initialized randomly. Each of the j weight vectors
contain i elements corresponding to the number of input layer
neurons. Subsequently, the cth neuron with the smallest
Euclidean distance to the input vector,

kx(N)� wc(N)k ¼
Xi

l¼1

(wcl(N)� xl(N))2, (4)

is selected as the winner neuron. Here, wc denotes the weight
vector of the cth neuron of the output level, and N is the itera-
tion number. In the next iteration, the weight vector of each
neuron w1�m�j is updated using the formula

wm(N þ 1) ¼ wm(N)þ α(N) exp �kwc(N)� wm(N)k2
2σ2(N)

� �
� (x(N)� wm(N)), (5)

where α(N) and σ(N) are monotonically decreasing scalar func-
tions of N. After updating the weight vectors, they are

FIG. 2. The average value of (2) for a Watts–Strogatz graph with k ¼ 2 and dif-
ferent values of N as a function of the rewiring probability p. The graphs are
weighted with random coefficients taken from a Gaussian distribution with zero
mean. To obtain this plot, we generated a WS graph for each p, endowed it with
50 different realizations of random weights, and computed hri from the middle
25% of eigenvalues for each realization, finally taking the average value over all
the realizations. We repeated this process 15, 19, 14, 10, 13 times for N = 1000,
2000, 3000, 4000, 5000, respectively. For N = 6000, we averaged over 50
random realizations twice and 30 random realizations 8 times.
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normalized:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi

l¼1

w2
ml(N)

vuut ¼ 1: (6)

This process repeats for each new data vector x(N þ 1) until
convergence is achieved or the number of iterations exceeds a
certain limit.

3. Post-processing: After completing the training process and
obtaining the final map, the input data undergoes clustering or
other necessary analytical procedures.54

For the case at hand, we need to decide what kind of data we
want to use as input for the SOM. As discussed in the previous sec-
tions, quantum chaos is usually detected via the energy levels (or,
more precisely, via their correlations). It is not known, at the
moment, a way to diagnose the onset of quantum chaos from the
Hamiltonian matrix itself, although it can be heuristically argued
that such a diagnosis must exist since the energy eigenvalues are
computed in terms of the Hamiltonian matrix only. Moreover,
within the supervised learning framework, it has been possible to
reconstruct the Hamiltonian of a system from its energy
spectrum.28

Based on these considerations, we will feed the SOM with the
Hamiltonian matrix itself, without proceeding with any diagonal-
ization procedure. To perform SOM analysis of the input data, the
initial matrix of N � N size was converted into an input one-
dimensional vector of size N2. We generated 105 samples in the
[10�4, 1:0] interval of rewiring probabilities, obeying log-uniform
distribution (i.e., the rewiring probabilities, p, are distributed such
that the number of values falling within each interval of log (δp) is
constant) from which, after converting into vectors of dimension
N2, a data array was generated for unsupervised learning of a
neural network. Then, to classify phase states for each rewiring
probability value appearing in Figs. 3 and 4, 500 matrices were gen-
erated for each value of p.

The classification performed by the trained neural network
assigned each analyzed matrix to one of the N output neurons.
After normalizing the number of hits in each of the output
neurons, we noticed that only some neurons respond to changes in
rewiring probability. The number of hits in these neurons increased
sharply as the rewiring probability approached the value of 0.2.
Indeed, the serial numbers of these neurons depend on the size of
the system and do not obey a particular pattern. The analysis of the
results for such neurons is presented in Fig. 3. For small system
sizes (N ¼ 16, 20), the number of hits remains essentially
unchanged up to the value p ¼ 0:2 and only then begins to grow
monotonically. However, as the size of the system increases
(N ¼ 56, 84), the plot of dependence on rewiring probability
changes, and three easily identifiable regions are found on it, differ-
ing in the slope of the resulting line.

This pattern becomes even more noticeable after a vertical
shift of the plots for the larger system sizes (N ¼ 56, 84): in Fig. 4,
we see that after performing such a shift the two plots almost coin-
cide. In the figure, three sections with different slopes can be
clearly distinguished, and the transition points between them

correspond to the values of p ¼ 5 � 10�3 and p ¼ 0:2 for the rewir-
ing probability. We could expect these three sections to merge in
the large N limit into a single transition/crossover, which will then
happen in the region p [ (5 � 10�3, 0:2).

FIG. 4. Normalized number of hits in neurons responding to changes in rewiring
probability for systems of dimensions 56 × 56 and 84 × 84. The graphs are com-
bined by adding a constant to one of them to demonstrate general trends in
behavior.

FIG. 3. Normalized number of hits in neurons responding to changes in rewiring
probability for different system sizes.
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It is interesting to emphasize that these probability values are
in very good agreement with the probability values presented in
Fig. 2 and are consistent with the boundaries of the transition from
Poissonian spectral statistics to GUE spectral statistics.

Finally, Fig. 5 shows the slope behavior of the final section of
the dependence presented in Figs. 3 and 4. The monotonic increase
of the slope angle with the system size suggests that the transition
line between GUE and Poissonian distributions becomes steeper
and steeper when approaching the thermodynamic limit, thus sup-
porting the hypothesis suggested at the end of Sec. 4 of the poten-
tial phase transition from chaotic to integrable behavior when the
system approaches the large N limit.

6. DISCUSSION AND CONCLUSIONS

In this work, we have tested the ability of unsupervised neural
networks to detect quantum chaos vs integrability of a quantum
Hamiltonian, without using eigenvalues or eigenvectors.

Using self-organizing maps, we presented some evidence that
this is indeed possible and that the predictions of the neural
network are in excellent agreement with conventional spectral
methods to test chaos vs integrability, namely the spectral r-ratios.

Our analysis focused on a set of single-body Hamiltonians
where the random hopping terms are described by a random graph
structure with random coupling constants. We chose the random
graphs to be small-world Watts–Strogatz graphs whose structure
depends on a rewiring probability parameter p.

The r-ratios show a transition from integrability to chaos as
the rewiring probability is increased, and the transition seems to
happen around p ¼ 0:02, see Fig. 2. Interestingly, a quantum
many-body system, whose single particle underlining model is
based on the same Watts–Strogatz graphs, showed the same
chaotic/integrable transition at approximately the same values of
the rewiring probability.43 These two results, when combined, hint
at the very intimate connection between single-particle and many-
body quantum chaos.55–59

The same transition is detected by our unsupervised neural
network, where we see that the output neurons respond to an
increase in the rewiring probability, and increase sharply when the
rewiring probability approaches p � 0:01, see Fig. 4.

This result exemplifies the ability of unsupervised neural net-
works, and in particular, self-organizing maps to study quantum
chaos, without the need to perform computationally time and
space-consuming diagonalization procedures on matrices, necessary
for conventional spectral analysis.

Of course, these results prompt many future developments,
that will be important to pursue in future.

As already remarked, at the moment there are no known
methods to determine the chaotic properties of a given
Hamiltonian from the Hamiltonian matrix itself. It is therefore
somehow surprising that the SOM can detect the chaotic-integrable
transition when fed with the Hamiltonian matrix itself. On the
other hand, the good agreement between the transition detected by
the spectral analysis and by the SOM suggests that the two
methods are detecting the same transition. On this point, we see
two possible scenarios. The first scenario is that it is indeed possi-
ble to detect the transition from the Hamiltonian matrix itself. The
second scenario is that the SOM is not detecting the chaos/integra-
ble transition, but it is detecting the change in geometry of the
graph. We find both these alternative scenarios potentially very
attractive. In the first case, it would be extremely interesting to
understand what the neural network has learned to detect chaos or
integrability from the Hamiltonian matrix. In the second scenario,
it would be a signal of a very intimate relation between quantum
chaos on Dyson Hamiltonians and the geometry of the underlining
graphs. In both cases, the study of this agreement could be very
instructive to improve our understanding of quantum chaos on
random graphs.

Regarding the specific Dyson models considered in this paper,
we are not aware of any previous studies investigating the chaos/
integrable transition for Dyson models on Watts–Strogatz graphs.
Similar problems addressed in the literature include the very
debated investigation of Anderson models on the Cayley tree and
random regular graphs,60–70, and a recent discussion on Dyson
models defined on Erdös–Renyi graphs.24 It will be very interesting
to further investigate the Hamiltonians defined in this paper with
standard large-scale sparse diagonalization techniques,43,71,72 to
understand similarities and differences with the cases already
studied in the literature.

The results presented in this paper have been obtained for
systems of moderate dimension. It will be therefore imperative to
extend these results to systems of high-dimensionality. While, as
already mentioned, there are already well-established techniques
that make possible the diagonalization of large sparse matrices (up
to dimensions of order 106) it will be extremely interesting to see
which challenges arise when trying to extend the use of SOMs to
systems of very high-dimensionality.
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