ADVANCES
IN PHYSICS:

Taylor & Francis
Taylor &Francis Group

Advances in Physics: X

ISSN: (Print) 2374-6149 (Online) Journal homepage: http://www.tandfonline.com/loi/tapx20

Artificial flat band systems: from lattice models to
experiments

Daniel Leykam, Alexei Andreanov & Sergej Flach

To cite this article: Daniel Leykam, Alexei Andreanov & Sergej Flach (2018) Artificial flat
band systems: from lattice models to experiments, Advances in Physics: X, 3:1, 1473052, DOI:
10.1080/23746149.2018.1473052

To link to this article: https://doi.org/10.1080/23746149.2018.1473052

8 © 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

@ Published online: 04 Jun 2018.

N
CJ/ Submit your article to this journal &

A
h View related articles &'

View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=tapx20


http://www.tandfonline.com/action/journalInformation?journalCode=tapx20
http://www.tandfonline.com/loi/tapx20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
http://www.tandfonline.com/action/authorSubmission?journalCode=tapx20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tapx20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/23746149.2018.1473052
http://www.tandfonline.com/doi/mlt/10.1080/23746149.2018.1473052
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2018.1473052&domain=pdf&date_stamp=2018-06-04
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2018.1473052&domain=pdf&date_stamp=2018-06-04

ADVANCES IN PHYSICS: X, 2018 Tavior &F .
VOL. 3, NO. 1, 1473052 aylor arrancis
Taylor & Francis Group

https://doi.org/10.1080/23746149.2018.1473052

REVIEW ART'CLE 8 OPEN ACCESS "') Check for updatesl

Artificial flat band systems: from lattice models to
experiments

Daniel Leykam, Alexei Andreanov and Sergej Flach

Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon, Republic
of Korea

ABSTRACT ARTICLE HISTORY
Certain lattice wave systems in translationally invariant settings Received 29 January 2018
have one or more spectral bands that are strictly flat or  Accepted 26 April 2018

independent of momentum in the tight binding approximation, KEYWORDS

arising from either internal symmetries or fine-tuned coupling. Frustration;

These flat bands display remarkable strongly interacting phases of Aharonov-Bohm cage;
matter. Originally considered as a theoretical convenience useful Lieb lattice; compact

for obtaining exact analytical solutions of ferromagnetism, flat localized state; line graph

bands have now been observed in a variety of settings, ranging
from electronic systems to ultracpld atomlc gases and' photonic 71.20.-b Electron density
devices. Here we review the design and implementation of flat of states and band
bands and chart future directions of this exciting field. structure of crystalline

solids; 78.67.Pt

Multilayers; superlattices;
=)
o o E
m
Momentum

photonic structures;

PACS

metamaterials; 42.82.Et
Waveguides, couplers,
and arrays; 03.65.Ge
Solutions of wave
equations: bound states

[ ]
[ ]
[ ]

1. Introduction

Certain tight binding Hamiltonians have the peculiar property that one of more
of their spectral bands are dispersionless, with a single-particle energy spectrum
E(k) independent of momentum k, forming flat bands [1-3]. The quenched
kinetic energy in a flat band suppresses wave transport; the wave group velocity
ViE vanishes. This results in a strong sensitivity to perturbations: any pertur-
bation, no matter how weak, can set a new dominant energy scale for the flat
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band states and qualitatively change their transport properties. The generality of
periodic media governed by Schrodinger-like equations id; = Hyr allows flat
bands to be explored in diverse settings from Hubbard models to Bose-Einstein
condensates and photonics.

Perfectly flat bands are not stable against generic perturbations, which typically
induce nonzero dispersion. For this reason, some authors broaden the definition
of flat bands to include partially flat bands that have vanishing dispersion only
along particular directions or in the vicinity of special Brillouin zone points [4-
6]. In this review, our focus is on bands that are perfectly flat, which require
either fine-tuning of system parameters, or protection by a lattice symmetry.
This limit of a perfectly flat band has provided useful settings for the study (and
exact solution) of effects ranging from ferromagnetism to Anderson localization
and superconductivity.

It is quite remarkable that the original theoretical papers predicting the exis-
tence of flat bands are now over 30-year old (e.g. from 1986 for the dice lattice
by Sutherland [7]), but in many settings fabrication technologies have only
recently caught up and achieved the precision required to realize artificial flat
band lattices. For example, the Lieb lattice was originally introduced in 1989 [8],
received renewed interest from 2010 with optical lattice proposals [9,10], and in
the last few years, the first experiments with cold atoms, photons and electrons
have finally been demonstrated. Many long-standing theoretical predictions of
flat band phenomena may finally be tested in experiment. Now is therefore the
ideal time to summarize and link the flat band literature from different fields,
re-examine old predictions to see whether they can now be verified and ask what
effects should be targeted in future experiments.

To these aims, this brief review is structured as follows: we begin in Section 2
by recounting the history of how flat band models have been designed, starting
from the study of isolated examples to a more systematic classification of their
parameter space. We then discuss issues such as the behaviour of flat bands
under perturbations, with emphasis on disorder, interactions and topological
phases. In the subsequent sections, we summarize the progress in realizing
and probing artificial flat bands in different settings: electronic systems such as
superconducting wire networks (Section 3), cold atoms in optical lattices (Sec-
tion 4) and photonic systems including waveguide arrays and exciton-polariton
condensates (Section 5). In the concluding Section 6, we will highlight the most
recent theoretical advances which are promising to explore in future experiments
and ongoing topics of theoretical research.

The focus of this review is on artificial flat band lattices created by structured
potentials rather than the flat bands occurring in the atomic scale limit of
magnetic materials. For a review of models of flat band magnetism in frustrated
crystals, we recommend Refs. [1,11,12].
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Figure 1. The first flat band lattices depicted as sites (filled circles) coupled via bonds (lines). (a)
Dice lattice [7]. (b) Lieb's lattice [8]. (c) Kagome lattice (red) as the line graph of the honeycomb
lattice [13,14]. (d) Tasaki’s decorated square lattice [15,16].

2. Designing and perturbing flat bands

The study of flat band models originates with Sutherland’s observation [7] of
a flat band and its ‘strictly localized states’ in the dice lattice (which relates to
previous research on quasiperiodic lattices and Penrose tilings). Then came Lieb’s
seminal 1989 paper on the Hubbard model, where he proved that certain bipartite
lattices with chiral flat bands exhibit ferrimagnetism at half filling, resulting in a
macroscopic magnetization [8].

Two examples of such a bipartite lattice are Sutherland’s dice lattice shown in
Figure 1(a) and the edge-centred square lattice in Figure 1(b), now known as the
Lieb lattice. In both these examples, the sublattices can be divided into ‘hub’ and
‘rim’ sites. A bipartite symmetry emerges because the hub sites are only directly
coupled to rim sites, and vice versa.

Shortly afterwards Mielke and Tasaki independently generalized this idea to
examples of flat band ferromagnetism, occurring when the lowest single-particle
energy band is flat [13-16]. Mielke’s construction of flat band lattices was based
on line graphs, which are formed by promoting the links of an ordinary lattice
into sites. For example, Figure 1(c) illustrates how the Kagome lattice emerges
as the line graph of the honeycomb lattice. On the other hand, the flat bands
in Tasaki’s ‘decorated’ lattices emerge due to competition between fine-tuned
nearest- and next-nearest neighbour hopping, see Figure 1(d).

Tasaki subsequently proved the stability of the magnetic order under weakly
lifted degeneracy of the flat band, an important step in establishing that these flat
band models were not pathological and could help understand real materials [17].
In all cases, the researchers quickly realized that the macroscopic degeneracy of
the flat band allows construction of compactly localized Wannier-like eigenstates
from linear combinations of extended Bloch states, as shown in Figure 2.

Subsequent theoretical studies of flat band ferromagnetism have focused on
weakening the assumptions behind these rigorous results, e.g. by considering
different filling factors and other classes of flat band lattices (see review [1]).
The macroscopically degenerate ground states of ‘frustrated’ lattices, where the
lowest band is flat, host intriguing spin liquid phenomena [18,19], an active area
of research [20-23] and exotic excitations such as magnetic monopoles [24-27].
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Figure 2. Examples of compact localized eigenstates (CLS) of flat band lattices. White circles
indicate the sites excited by the CLS along with the signs of the eigenstate amplitudes required
to eliminate hopping to neighbouring unexcited sites. The flat band class U denotes the number
of unit cells occupied by the CLS. (a) Diamond ladder, U = 1. (b) Stub lattice, U = 2. (¢
Checkerboard lattice, U = 3. (d) Kagome lattice, U = 4.

Such frustrated lattices can also be fabricated artificially [28], providing a useful
tool to probe and understand their properties [29].

2.1. Different flat band classes and generators

In 1993, Shima and Aoki introduced a class of superlattices exhibiting symmetry-
protected chiral flat bands [30], which have received renewed interest from
2012 [31,32]. A later paper by Aoki et al. was the first (to our knowledge) to
introduce the name ‘compact localized state’ (CLS) for flat band eigenmodes
constructed as superpositions of the degenerate Bloch waves [33] (note that the
term ‘strictly localized state’ introduced by Sutherland in 1986 [7] and used
in the context of quasiperiodic Penrose lattices [34-36] did not spread in the
community).

Aoki et al. observed that the above flat band models are divided into two
classes based on their response to an applied magnetic field [33]. In Mielke’s and
Tasaki’s lattices, a magnetic field destroys the fine-tuned interference responsible
for the flat band and breaks it into a Hofstadter butterfly spectrum. In contrast,
sublattice symmetry-protected chiral flat bands such as in the dice and Lieb lattice
do not depend on the precise values of the coupling strengths, but only on the
‘local topology’ of the sublattice connectivity: the rim sites forming a ‘majority
sublattice’ hosting the flat band are only connected via an intermediate ‘minority’
sublattice, the hub sites. Consequently, chiral flat bands remain macroscopically
degenerate under an applied magnetic field, which only shifts the energies of a
few of the flat band states [7,37].

In 2008, the idea of classifying flat bands through the properties of their
compact localized eigenmodes emerged. Bergman et al. [38] showed that the
set of CLS in two dimensions can turn linearly dependent precisely when the
flat band touches a nonflat (dispersive) band at one or more points in the
Brillouin zone. This linear dependence implies that the basis formed by the
CLS is incomplete and does not span all states belonging to the flat band. The
missing states are line states, which are delocalized (Bloch wave-like) along one
direction, and compactly localized in the perpendicular direction. In the case
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of chiral flat bands, an additional extended state also resides on the minority
sublattice [39].

Since 2014, compact localized states were used to construct ‘generators’ of
flat band networks, which goes beyond the original construction approaches
of Mielke and Tasaki. Rather than identifying flat bands in particular lattice
models, one can assume a flat band with a given CLS exists and obtain a family
of lattice Hamiltonians compatible with this constraint. The size of the CLS U -
the number of unit cells the CLS occupies - serves as an important parameter of
the generators.

Whenever the CLS can be localized to a single unit cell of the lattice (U = 1),
the flat band states can be completely decoupled from the rest of the lattice by a
local change of basis, i.e. the flat band is protected by a local symmetry associated
with this transformation [40], which also presents the most general flat band
generator for these CLS types in any lattice dimension.

On the other hand, when the CLS occupy multiple unit cells, the location of flat
bands with respect to other dispersive bands becomes constrained; the flat band
arises due to fine-tuning, rather than a local symmetry. The parameter space of
these flat bands (U = 2 cells) assuming short-ranged hopping was determined
systematically in 2017 [41]. Higher U flat bands can also be generated from their
compact localized states by solving an inverse eigenvalue problem, suggesting a
systematic way to obtain flat bands with a desired class U.

Compact localized state-based construction methods have so far been limited
to one-dimensional lattices; a complete generalization to higher dimensions
remains an open problem. In 2017, Ramachandran et al. [39] introduced the
most general flat band generator for bipartite lattices with chiral flat bands, where
the first example (to our knowledge) of a chiral flat band in a three-dimensional
network was obtained. Other novel approaches for obtaining flat band lattices
involve origami rules [42], the repetition of oligomers [43], local symmetries [44]
and self-similar (fractal) constructions [45,46].

2.2. Disorder and interactions

Different classes of flat bands respond qualitatively differently to perturbations.
One can understand their behaviour by considering the projection of the per-
turbation to the flat band subspace. In the simplest U = 1 case, the projected
perturbation acts locally, but is resonantly enhanced for eigenmodes close to the
flat band energy. Roughly speaking, this effective resonant enhancement occurs
because the perturbation sets the only relevant energy scale for the flat band
states. When U > 1, the projected interaction is no longer local, but decays
exponentially with distance if the flat band is gapped [47], and with a power law
if a symmetry forces the flat band to touch a dispersive band edge [48].

One important class of perturbations is disorder, which induces Anderson
localization in regular (nonflat band) lattices. In a flat band, the renormalization
of the effective disorder potential transforms disorder distributions with finite
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variance into heavy-tailed distributions with diverging variance, modifying the
scaling of the localization length in 1D [49-51]. Mobility edges can also be
obtained if the disorder potential has correlations that preserve the shape of the
CLS [52].

In two dimensions, the long range decay of the projected interaction induces
multifractality of the flat band eigenstates in the weak disorder limit [48]. An
‘inverse’ Anderson transition has been demonstrated numerically by Goda et al.
in three-dimensional disordered flat bands: all eigenstates are localized for weak
disorder and delocalize at a critical disorder strength, before localizing again at a
second transition at stronger disorder [53,54]. Such localization-delocalization-
localization behaviour as a function of the disorder strength also occurs in the
level spacing statistics of certain two-dimensional flat bands [55]. In the past
year flat bands under nonquenched (evolving) disorder [56], disorder-induced
topological phase transitions [57], and the temporal dynamics of disordered flat
band states [58] started to attract attention too.

A second active area of theoretical study is the dynamics of interacting quan-
tum particles in flat bands, where interactions can induce spontaneous symmetry
breaking and a variety of strongly correlated quantum phases [57,59-64]. The
vanishing wave group velocity in flat bands simplifies numerical studies by
guaranteeing that even weak interactions are capable of producing rich phase
diagrams. On the other hand, exact ground states and analytical solutions can
be obtained at certain filling factors [47,60]. Exact solutions where interactions
induce flat dispersion in an otherwise dispersive band have also been demon-
strated [65].

Interestingly, the CuO; planes in cuprate high temperature superconductors
have a Lieb lattice structure and it is conjectured that flat band effects may
be responsible for their high critical temperature [66-72]. In ordinary dispersive
bands, the superfluid weight is inversely proportional to the effective mass. While
this vanishes in a flat band due to the diverging effective mass, nevertheless
interactions can induce ballistic transport due to nonzero overlaps between the
Wannier functions [71]. This leads to additional contributions to the superfluid
weight, that are not universal to all flat energy dispersions but sensitive to the
geometrical and topological properties of the band [67-69,72]. This geometrical
contribution to the superfluid weight is proportional to the interaction strength,
rather than the hopping strength as is the case for regular dispersive bands.

In the mean field approximation the interactions in flat bands can be described
by discrete nonlinear Schrodinger equations. Nonlinearity breaks the super-
position principle, nevertheless compact localized flat band modes can persist
provided each site excited by the mode experiences the same nonlinear frequency
shift. The nonlinear compact localized modes or solitons can be stable if they
avoid resonance with other dispersive bands, e.g. if the flat band is gapped [73,74].
In two-dimensional flat band lattices, the soliton threshold power (nonzero in
regular lattices) can vanish because solitons can bifurcate immediately from the
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compact localized states existing in the linear limit [75,76]. For this to occur, the
weak nonlinearity must shift the CLS into a band gap; this mechanism does not
work in lattices such as the 2D Lieb, where the flat band is embedded within
dispersive bands [77]. It is also possible to use nonlinearity to generate compact
localized states when no flat bands exist in the linear limit [78].

2.3. Topological flat bands

Another interesting direction is to use flat bands to study novel strongly in-
teracting topological phases of matter. This requires models that exhibit flat or
near-flat bands while simultaneously having nontrivial topological invariants. In
one dimension, this is relatively simple to achieve and was explored by Creutz
as early as 1999 [79]. Another direction is to introduce flat bands to existing
topological models, such as by imposing a bipartite symmetry, allowing the zero
energy topological edge started to interact with the zero energy flat band [80].
Generalizing these ideas to higher dimensions has turned out to be a much more
challenging task.

Wide interest in two-dimensional topological flat band models was sparked
by a trio of back to back papers published in Physical Review Letters in 2011 [81-
83] predicting room temperature fractional quantum Hall states in suitably
designed topological flat band models. Their idea was to start with a topologically
nontrivial lattice Hamiltonian, and then optimize hopping parameters and on-
site energies to maximize the ratio of the band width to band gap. When this
ratio is sufficiently small interactions can induce fractional quantum Hall-like
eigenstates. Such models are frequently referred to as fractional Chern insulators
in the literature [2,3].

Despite intense theoretical activity on topological flat bands [2,3,84-86], in-
cluding generalization of the original models to higher Chern numbers [87-
89], these lattice fractional quantum Hall states have not yet been observed in
experiment due to a number of challenges, both fundamental and practical.

First, optimization of the band flatness ratio is not a trivial task. It is trivial to
obtain a perfectly flat band from any lattice model by dividing the Hamiltonian by
the energy of one of its bands, but this will typically induce unphysical long range
hopping terms. Truncating the hopping to a finite range often spoils either the
nontrivial topology or the band flatness. It is therefore challenging to maintain a
near-flat band while keeping the hopping short-ranged.

In fact, subsequent papers have revealed topological obstructions to achieving
simultaneously nontrivial topology, perfectly flat bands, and short-range hop-
ping; at best one can have only two of the three [90-92]. Furthermore, while
lattice fractional quantum Hall effects have been numerically demonstrated in
a variety of models, if one wants exact analogues of the continuum fractional
quantum Hall states, other quantities characterizing the band such as the Berry
curvature and quantum metric should also be flat, giving additional less in-
tuitive design constraints [3]. Last year, Lee et al. [93] introduced an efficient
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Figure 3. (a) Aharonov-Bohm cage in superconducting wire network. The superconducting
transition width AT shows a broad peak in the flat band limit f = 1/2, associated with the
formation of decoupled compact localized states. Inset is an image of the dice lattice network [97].
(b) Selective imaging of dispersive and flat band states of an electronic Lieb lattice by changing
the applied bias voltage and performing spatially resolved conductance measurements [98].

way to simultaneously optimize all these constraints using an elliptic function
parametrization of the band’s Bloch functions.

Despite the lack of simple topological flat band models in two or more
dimensions, flat band-inspired ideas can still be useful for understanding the
behaviour of topological surface states. Kunst et al. have designed exactly solvable
models of topological surface and corner states [94,95], based on stacking layers
and fine-tuning the interlayer coupling. The advantage of this approach is that,
given the exact analytical solution for surface states, it is then straightforward to
calculate their response to perturbations or interactions.

For further reading related to topological flat bands, we recommend the recent
review articles Refs. [2,3].

3. Electronic flat bands

Until 1998, flat bands were largely studied in the context of spin models. That year
an influential paper by Vidal et al. [96] found that in certain periodic electronic
networks, such as the dice lattice, a critical magnetic field strength induces a
completely flat spectrum [96], in contrast to the complex Hofstadter butterflies
that had previously been studied [33,36]. They called this effect ‘Aharnonov-
Bohm (AB) caging’ because the completely flat spectrum occurred when each
unit cell was threaded by a 7 magnetic flux, inducing interferences analogous to
the Aharonov-Bohm effect. They proposed that this effect could be most easily
observed in superconducting wire networks, where the required magnetic flux
quantum is significantly reduced compared to atomic-scale systems (mT fields
versus 10°T).

3.1. Superconducting networks

In superconducting networks, one cannot directly observe the single-particle
band structure and measurements are limited to transport properties such as
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the conductivity. Furthermore, one can only probe the ground state properties,
requiring the lowest band to be flat and excluding lattices such as the Lieb.
In 1999, following the proposal by Vidal et al. [96], Abilio et al. reported the
following indirect observations of flat bands in an AB cage [97]:

(i) Anomalies in the critical temperature T, & 1.24K. T, measures the
eigenvalue of the tight binding model’s ground state. While anomalies typically
occur at rational flux quanta, an especially strong anomaly reducing T, by a few
percent occurs in the AB cage limit of a half a flux quantum [99].

(ii) A broadened superconducting transition width AT, illustrated in Fig-
ure 3(a). Because the AB cage eigenmodes are compactly localized, the phases at
different plaquettes are no longer correlated, resulting in a broadened transition
width.

(iii) Vanishing critical current, which measures the band curvature at the
ground state. The critical current typically peaks at rational values of the flux,
except for the AB cage limit where it forms a minimum. The measured value
of critical current was nonzero (17% of zero field value), which Abilio et al.
attributed to either edge states or interaction effects.

Subsequent experiments in 2001 observed signatures of AB caging in the
magnetoresistance oscillations of a low-temperature (30mK) normal metal dice
lattice [100]. In both cases, the experiments used a lattice period of ~ 1um to
minimize the required magnetic field.

Theoretical studies have generalized AB caging to disordered and interacting
networks [101] and Josephson junction arrays [102]. In the latter, transport in
the AB cage limit can be induced by two-body interactions between Cooper
pairs, resulting in a novel four-electron superconducting state [103,104]. In two-
dimensional systems, the suppression of single-pair transport can be used to
achieve superconducting qubits that are topologically protected from local noise
by parity symmetry [105,106]. The 4e superconducting state was first observed
in 2009 [107], and there are now efforts to scale these experiments to large two-
dimensional arrays [108].

3.2. Engineered atomic lattices

Advances in fabrication of 2D materials have enabled engineering of nanoscale
artificial lattices for electrons using techniques such as lithography and atomic
manipulation [109,110].In 2017, 2D Lieb lattices were embedded onto a substrate
surface with a scanning tunnelling microscope (STM) using two different tech-
niques [98,111]. Drost et al. removed atoms from a chlorine monolayer, leaving
the desired lattice structure [98]. In contrast, Slot et al. added carbon monoxide
molecules to a substrate, which similarly structured the repulsive potential felt by
the surface electrons [111], an idea independently proposed by Qiu et al. [110].
In both cases, the energy scale of the electron hopping is approximately 0.1eV,
and the STM allows the spatially resolved measurement of the electron density
through conductance spectroscopy. By changing the bias voltage, one can also
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Figure 4. An optical Lieb lattice for cold atoms. (a) Lattice potential formed by five interfering
standing waves (indicated by oppositely aligned arrows). Lattice sites lie at the potential minima
in blue. (b) Band structure for shallow (red dashed lines) and deep (solid black lines) lattices
computed in Ref. [119].

selectively measure either the flat or dispersive band Bloch waves, as shown
in Figure 3(b). On the other hand, in the experiments to date, the Fermi level
is not tunable and does not coincide with the flat band. In the future, using
heavier atoms, it may also be possible to observe spin-orbit coupling effects in
this platform.

Evidence of a kagome lattice flat band has also been reported in a multilayer
silicene structure imaged with an STM [112].

4. Optical lattices with flat bands

In the cold atom community, the Lieb lattice stands out as the prototypical model
for exploring flat band phenomena in optical lattices. Not only does it host a
wealth of novel effects when interactions are introduced, but it is also relatively
simple to transfer atoms into the flat band. This distinguishes the Lieb lattice from
earlier-studied lattices such as the dice [113,114] and kagome [115,116], the latter
realized experimentally as early as 2012 by Jo et al. [117]. For example, while the
kagome lattice is easier to implement in experiment, only requiring interference
between two triangular lattices, its flat band forms the highest excited state in
the tight binding approximation. This makes it more challenging to probe the
kagome lattice’s flat band with cold atoms compared to the Lieb lattice.

4.1. The beginning

The first proposal for an optical Lieb lattice by Shen et al. in 2010 [9] was based
on six detuned standing wave laser beams. Changing the relative amplitude of
the laser beams tunes the depths of the sublattices and can gap out one of the
dispersive bands. In Ref. [9], the main interest was not in the flat band itself, but
rather in the conical intersection formed by the dispersive bands [118], which was
shown to support wide-angle Klein tunnelling of wavepackets through potential
barriers.
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One can see in Figure 4 that in contrast to the ideal tight binding model of
the Lieb lattice, in shallow or moderately deep optical lattices the next-nearest
neighbour hopping is typically nonzero, giving the ‘flat’ band a finite width.
Apaja et al. numerically computed the exact Bloch wave spectrum for this family
of optical lattices, finding that the relative intensities of the interfering laser beams
could be optimized to obtain an almost-flat band with width only 1.5% of the total
bandwidth [10]. Performing numerical simulations of wavepacket dynamics,
they further showed that fermionic atoms could remain confined by the flat bands
while repulsively interacting bosons typically tunnel to the dispersive bands and
escape. Later studies found that these effects are also observable in a variety of
quasi-1D flat band lattices [62,120].

4.2. Experimental Lieb lattice

The first realization of an optical Lieb lattice for bosonic cold atoms was reported
in 2015 by the group of Takahashi [119]. They found that only five standing waves
are enough to produce a flat band if the lattice is made sufficiently deep.

In their experiment, they used dynamic tuning of the optical lattice to transfer
the condensate from the ground state into the flat band. First, the depth of the
corner sites (minority sublattice) was reduced to transfer the condensate into the
rim sites (majority sublattice). Secondly, an imbalance between the horizontal
and vertical rim sites was used to imprint a 7 -phase difference between them.
Quickly resetting the lattice to the ideal Lieb lattice configuration, the final state
corresponds to a flat band eigenstate.

Consistent with the prediction by Apaja et al. [10], interactions were observed
to induce a decay of the condensate into the lower dispersive band. While
gapping the flat band (by detuning the hub sites) can suppress this interband
tunnelling, the limiting factor to the measured flat band lifetime of ~ 0.5ms was
the condensate decay, which is insensitive to the gap size.

The group of Takahashi has subsequently published two further studies, both
in 2017. In the first, Ozawa et al. [121] used a weak external force to move
the condensate through the Brillouin zone and map the band structure by
measuring the local group velocity of the lowest band and the gaps to higher
bands. Interactions were found to shift the energy of the flat band at the edge of
the Brillouin zone, resulting in nonzero dispersion. These measurements were
consistent with the tight binding limit of the Gross—Pitaevski equation.

The second study by Taie et al. implemented for the first time fermionic
cold atoms in the Lieb lattce and demonstrated a dark state-mediated adiabatic
transport of particles between the horizontal and vertical rim sites, analogous to
stimulated Raman adiabatic passage [122]. To date these are the only experimen-
tal studies of the Lieb lattice flat band with cold atoms.

Other optical lattice flat band lattice geometries are also starting to attract
interest. For example, in 2017 An et al. [123] realized a flat band in a quasi-1D
sawtooth lattice with an effective magnetic flux.
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4.3. Future directions

Experiments have so far been limited to single component (spinless) atoms.
While novel topological Mott insulating phases have been predicted for spinless
Rydberg atoms with long range interactions [124], perhaps the most interesting
future direction is to extend the present experiments to spinful atoms.

Using multi-component atoms, it is possible to implement the synthetic gauge
fields originally proposed by Goldman et al. in 2011 [125], based on laser-assisted
tunnelling between different hyperfine states. The resulting spin-orbit coupling is
predicted to gap the flat band while preserving its flatness, inducing a topological
insulating phase with helical edge states similar to that studied by Weeks and
Franz [126]. In contrast to the fractional Chern insulator models of Refs. [81-
83], here the flat band remains perfectly flat and topologically trivial; it is the
dispersive bands that become topologically nontrivial.

A similar assisted tunnelling scheme can also implement an Aharonov-Bohm
cage on the dice lattice, which has the advantage that the flat band is the lowest
band rather than an excited state [127]. These synthetic gauge fields can also
potentially induce strongly interacting topological phases in one-dimensional
flat bands [128].

A second opportunity oftered by spinful atoms is to observe the long-predicted
flat band ferromagnetism. This will require cooling of the atoms to even lower
temperatures; while recent experiments in simple square and cubic lattices have
started to observe evidence of antiferromagnetic ordering, the temperatures
achieved so far remain above the critical temperature T, at which magnetically
ordered phases emerge [129,130]. Promising however is a recent prediction that
T. may be enhanced in flat bands [131].

In the above two-dimensional lattices, an additional confining potential along
the third dimension is required to trap the atoms. Noda et al. [131,132] con-
sidered the case where this confining potential is also periodic, resulting in a
multilayer Lieb lattice. Using dynamical mean field theory, they showed that
flat-band ferromagnetism occurs for odd layer numbers. The ferromagnetic
ground state can advantageously be detected by measuring the magnetization
of the different layers, rather than different sublattices. Therefore, the transition
to an antiferromagnetically ordered state is potentially easier to measure using
multilayer optical lattices.

5. Photonic flat bands

In photonics flat bands are closely related to the technologically important
concept of slow light [133], where the suppression of the wave group velocity
offers enhanced nonlinear effects and is useful for pulse buffering. In applications,
one always has the trade-off between reducing the group velocity and maintaining
auseful bandwidth of operation (delay-bandwidth product constraint), with ideal
‘flat bands’ corresponding to a diverging delay with a vanishing bandwidth.
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Figure 5. Examples of photonic flat bands: (a) Kagome lattice for terahertz spoof plasmons,
displaying an omnidirectional minimum in the transmission at the flat band frequency (dashed
line) [141]. (b) Femtosecond laser-written Lieb lattice waveguide arrays and an observed compact
localized flat band state [143]. (c) Structured microcavity forming a 1D stub lattice and its
photoluminescence spectrum revealing a middle flat band [144].

An early proposal by Takeda et al. in 2004 for achieving flat band models was
based on photonic crystal slabs of high-index dielectric rods, which exhibit band
structures well-described by the tight binding approximation [134]. At the time,
however, it was far easier to fabricate ‘inverse’ structures based on air holes in
high index substrates, which cannot be easily mapped to tight binding lattices,
and this proposal was not successfully pursued.

Instead, the design of slow light structures was larely focused on 1D waveg-
uides or 2D lattices formed by defects in triangular photonic crystals optimized
using numerical or intuitive approaches [133,135,136]. In 2017, Schulz et al.
found that flat band model-inspired alternatives to the standard triangular struc-
tures, such as kagome lattices, can offer improved group velocity reduction [137].

Interest in flat band structures was reinvigorated in 2010 with proposals for
achieving tight binding bands in plasmonic waveguide networks [138,139], and
with the experimental demonstration of geometric frustration in a kagome lattice
coupled laser array [140]. Flat bands in kagome [141] and Lieb [142] structures
were later realized for terahertz spoof plasmons (Figure 5a), and there is now
a significant body of literature implementing flat band models in dielectric
waveguide arrays.

5.1. Femtosecond laser written waveguide arrays

The femtosecond laser-writing technique has been used to fabricate dielectric
waveguide arrays since 2004 [145], but flat band phenomena have only become
accessible in the last few years with the development of aberration-correction
techniques that allow precise fabrication of two-dimensional arrays of suffi-
ciently deep waveguides. The advantages of femtosecond laser writing over other
photonic platforms is the ability to achieve long dimensionless propagation
distances combined with near-arbitrary control over the inter-waveguide
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coupling, allowing exploration of effects such as time-periodic (Floquet) lattice
modulations, and Bloch oscillations induced by weak potential gradients.

The first demonstration of a two-dimensional Lieb lattice was reported in
2014 [146], but the single waveguide input in this original experiment excited
a superposition of all the bands, so the presence of the flat band could only be
inferred indirectly. The following year Vicencio et al. and Mukherjee et al. [143,
147] used a phase modulated, multi-waveguide input beam to directly excite the
flat band’s CLS and observe their nondiffracting behaviour see Figure (5b).

Since then, several further experiments have been reported in various lat-
tices [43,148-154], studying quasi-1D flat bands [43,148], flat bands induced by
periodic driving [150-152], forming optical logic gates out of CLS [153] and
using superlattice structures to minimize the detrimental effect of next-nearest
neighbour coupling on the band flatness [149,154].

5.2. Optically induced lattices

Optically induced lattices are created by applying a lattice-writing beam to a
photorefractive medium, which results in modulation of the refractive index
proportional to the lattice beam’s intensity. Because of its very different char-
acteristics, the optical induction platform is complimentary to the laser-writing
technology, capable of accessing effects that are difficult to achieve in fused silica.

Whereas the femtosecond laser-writing technique is based on permanently
damaging the host glass, lattices created by the optical induction technique can
be written and erased at will, making significantly easier to obtain large ensemble
averages (e.g. of disordered systems). Nonlinear wave dynamics are observable
with low-power continuous wave laser beams. However, arbitrary waveguide
geometries are not possible, and the waveguides tend to be shallower and more
anisotropic (more like a photonic crystal than a discrete lattice). The accessible
dimensionless propagation distances are also significantly shorter, both due to
the smaller crystal sizes (2cm compared to up to 10cm for fused silica), and the
weaker effective coupling strength required to minimize detrimental next-nearest
neighbour coupling.

The first observations of flat bands in photorefractive crystals were published
in 2016 [155,156]. The 2D Lieb lattice was generated using a superposition of
mutually incoherent square lattices [155], similar to the methods used for optical
lattices for cold atoms, while the Kagome lattice can be generated with a single
induction beam [156]. A different approach used to induce several quasi-1D
flat band lattices originally popularized by Hyrkas et al. [120] was based on
incoherent superpositions of nondiftracting Bessel beams, with each Bessel beam
inducing a single waveguide [157].

5.3. Polariton condensates

Similar to the above wavewguide lattices, polariton condensates are described
by a (24+1)D Schrodinger equation. Experiments with a microcavity exciton-
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polariton condensate in a frustrated kagome lattice potential were originally
reported in 2012 [158], where photoluminescence was used to measure the single-
particle band structure. At the time, fabrication methods were limited to relatively
shallow potentials, requiring a trade-off between keeping the lattice period small
enough so that its band structure could still be resolved, and minimizing the next-
nearest neighbour interactions which induce nonzero dispersion. Furthermore,
as the flat band is not the ground state, condensation in the flat band could not
be observed into these experiments.

With improved fabrication techniques such as etching of micropillar cavities,
it is now possible to implement ideal flat bands in their tight binding limit. In
2014, Jacqmin et al. made the first observation of polariton flat bands in the
photoluminescence spectrum of the P orbital bands of a honeycomb array [159].
Subsequently, Baboux et al used a 1D stub lattice shown in Figure (5¢) combined
with spatially structured pumping to achieve polariton condensation into a flat
band [144]. Due to intrinsic disorder and suppression of transport in the flat
band, they observed multiple condensates corresponding to different CLS instead
of a single coherent condensate. These experiments only considered relatively
weak pump powers, at which polariton-polariton interaction effects could be
neglected. Going to higher powers, this platform is promising for the study of
mean field nonlinear effects such as flat band solitons.

In contrast to waveguide arrays, polariton condensates can display strong
spin-orbit coupling due to TE-TM splitting, which leads to a spin-dependent
hopping strength. At the single-particle level, this results in CLS with nontrivial
spin textures in symmetry-protected flat bands such as the 2D Lieb [160,161]
and is predicted to induce nonzero dispersion in line graphs such as the kagome
lattice [162]. In the interacting regime, the spin-orbit coupling enables the
emulation of spin chain models. Recent experiments have observed the formation
of tunable ferromagnetic and antiferromagnetic ordering in coupled condensate
chains [163], as well as frustration in 2D arrays of up to 45 spins [164]. Further
increases in the array size offer the exciting prospect of quantum simulation of
systems intractable on classical computers.

6. Outlook

The last few years have seen significant experimental advances in our ability to
engineer and probe flat bands for electrons, cold atoms and photons. Specifically,
we now have the ability to fine-tune lattices to create the desired flat band lattice
geometry, and to probe the lattices with high resolution to spatially resolve the
sublattice structure and compact localized states. Linear properties of the flat
bands have now been observed in all these settings, and in platforms such as cold
atoms and polaritons attention is now focused on observing novel quantum,
nonlinear and interaction effects to pursue very recent theoretical predictions
such as novel superconductivity.
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There are a few notable platforms where flat bands have been proposed, but
not yet demonstrated in experiment: optomechanical arrays [165] and cavity
QED systems at microwave and optical frequencies [166]. Dissipation and in-
teractions in these settings are predicted to induce transport and novel quantum
correlations of the flat band states [167-173]. This is an area ripe for experimental
studies. Similar quantum multi-photon flat band states may also be explored in
optical waveguide arrays [174].

External fields perturb flat bands and lead to strongly anharmonic Bloch
oscillations of wave packets [175]. Applying DC fields in dimension d = 2
turns a flat band into an infinite Wannier-Stark ladder set of one-dimensional
flat bands with nontrivial topology [176,177]. The details of the impact of the
DC field direction, and the extension to dimension d = 3 are still waiting to
be explored. Perturbed compact localized states from a flat band act as Fano
scatterers for dispersive waves and can be useful for spectroscopy [178].

The driven-dissipative nature of systems such as polaritons and coupled-cavity
arrays offers the interesting prospect of studying non-Hermitian effects in flat
bands. There have been a few theoretical proposals on this topic. The first class
considered effect of adding non-Hermiticity to existing Hermitian flat bands,
e.g. by replacing each site in a flat band lattice by non-Hermitian dimers with
balanced gain and loss [179-183]. In these examples, it was found that either the
existing compact localized states become amplified or attenuated, or the compact
localized states are destroyed by unflattening of the energy spectrum [184].

In 2017, two theoretical studies proposed flat bands induced by a non-Hermitian
potential: one based on fine-tuning of gain and loss in a sawtooth chain [185], and
the other based on non-Hermitian coupling that preserves a bipartite sublattice
symmetry [186]. In both cases, the non-Hermitian flat bands coincided with
non-Hermitian degeneracies embedded in a continuum; the flat band was not
isolated but is immersed in a dispersive band. This however does not appear to
be a generic situation, as the combination of non-Hermitian on-site potentials
and coupling terms allows for isolated non-Hermitian flat bands [187].

So far only ideal non-Hermitian flat bands are considered in detail, but
typically perturbations will break the balance between gain and loss and induce
preferential amplification of certain modes, which will dominate in the resulting
dynamics. This is a topic that needs to be understood further, as it will have an
important impact on future experiments.

A second outstanding issue raised by the case of non-Hermitian Hamiltonians
is what is the most appropriate definition of a flat band. One has in principle three
alternatives: both the real and imaginary parts of the band are flat, or just the real
part [184], or just the imaginary part. Furthermore, in practical realizations one
might only require the band flatness to hold locally rather than over the entire
band [4-6].

In summary, advances in fabrication techniques make flat bands an increas-
ingly exciting area of study. Models previously regarded as mere theoretical
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conveniences are now becoming accessible in experiments with electrons, atoms
and photons. This not only motivates the continued study of disordered, quan-
tum, and strongly interacting flat band systems, but sets the stage for harnessing

flat band physics in future micro- and nano-scale devices.
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