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Abstract
We obtain general continuous-wave (CW)solutions in the model of a spinor positronium
condensate in the absence of magnetic field. The CW solutions with both in-phase (n= 0) and
out-of-phase (n= 1) spin components exist, with their ranges limited by the total particle density,
ρ. In the limit of negligible population exchange between the spin components, the CW solutions
are found to be stable or unstable, depending on the particle density of the para-positronium.
Ortho-positronium, in the F=1 spinor state, forms a ferromagnetic condensate with stable in-
phase CW solutions only. Subsequent examination of the modulational instability is carried out
both in the limit case of identical wavenumbers in the spin components, k k k 01 1D º - =- , and
in the more general case of k 0D ¹ too. The CW solutions with n=0 and 1 solutions, which
are stable in the case of k 0D = , are unstable for k 0D ¹ , for the natural repulsive sign of the
nonlinearities. The total particle density, ρ, in the limit of k 0D = is found to have a significant
role in the stability of the condensate, which is determined by the sign of the self-interaction
nonlinearity.

Supplementary material for this article is available online
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1. Introduction

Positronium (Ps) is a commonly known bound state of an
electron and a positron, with the total angular momentum
F=0 or F=1. The spin configurations with F=0 and
F=1, viz., the para- S1

0( ) and ortho-Ps S3
1( ), are separated by

an energy gap, E 8.44 10 4D = ´ - eV, and annihilate,
respectively, by emitting two or three gamma-quanta [1, 2].
This makes positronium a useful source for 511 keV gamma-
ray lasers [3, 4]. The lifetime of the para-Ps is 0.125 ns, while
the ortho-Ps lives much longer, 142 ns. Referring to its longer

lifetime, Platzmann and Mills [5] proposed, in 1994, the
possibility of making ortho-Ps Bose–Einstein condensate
(BEC) in a cold silicon cavity. As the condensation temper-
ature is inversely proportional to the mass of the species under
consideration, and proportional to its density, for positronium
the condensation must occur at a much higher temperature
and/or density compared to that for the usual bosonic atoms
[6, 7]. Currently, spin-polarized ensembles of Ps atoms are
available, but with densities of at least two orders of magni-
tude less than that required to form the condensate [8].
Nevertheless, a specific method has been recently proposed
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for the realization of the Ps BEC [6]. The method relies on the
original cooling of Ps atoms through interaction with a cold
silica cavity and Ps–Ps two-body collisions, followed by laser
cooling.

Atomic condensates of rubidium 87( Rb) [9], sodium
23( Na) [10], and lithium 7( Li) [11] were first created in
magnetic traps. In such BECs, the spin degree of freedom is
frozen due to its coupling to the field, hence the system is
defined by a scalar order parameter. Unlike magnetic traps,
optical ones hold all spin components of a given hyperfine
state, without forcing the atoms to align their spins in a
specific direction. Spinor BECs with F2 1+ spin components
have been experimentally created in optical traps [12–14], thus
providing an opportunity to explore intrinsic spin dynamics in
the condensate. Spinor BECs display various phenomena, such
as spin domains [15], skyrmions [16], magnetism and its
dependence on scattering lengths [17], interaction-dependent
ferromagnetic phase transitions [18], modulational instability
(MI) in the case of repulsive nonlinearity [19–21], the existence
of multicomponent solitons [22], oscillatory coherent spin
mixing [23, 24], etc. Apart from these facts, spinor con-
densates, including nonlinear spin-exchange interactions, find
uses in magnetometry [25] and atom interferometry [26].

The objective of the present work is to examine con-
tinuous-wave (CW) solutions and their MI in the spinor-BEC
model of positronium. This is a relevant aim, as flat CW
backgrounds support various dynamical phenomena, includ-
ing modulational instability, dark and anti-dark solitons,
vortices, etc [27]. MI is the exponential growth of the
Bogoliubov modes of the miscible condensates [28]. In scalar
BECs, MI solely depends on the sign of the nonlinear inter-
actions, taking place for the attractive sign. However, in the
case of F=1 [21, 29] and F=2 [30] spinor condensates, it
was reported that the MI depends not only on the interaction,
but is also sensitive to phase shifts between components and
population ratios. Mixing the F = 0 and F=1 spin com-
ponents in positronium may lead to new interesting proper-
ties. Detailed experimental studies of the MI in self-attractive
BEC were recently reported in [31] and [32].

The presentation in the paper is organized as follows.
Section 2 introduces the theoretical model, based on the
Gross–Pitaevskii (GP) equations governing the mean-field
dynamics of the spinor condensate, ignoring effects produced
by the finite lifetime (spontaneous annihilation) of the ortho-
Ps. Section 3 addresses CW solutions, focusing on conditions
for their existence and stability. Section 4 discusses the MI
and dispersion relations in different cases. Section 5 sum-
marizes the results of the analysis of the MI in the spinor
positronium, and section 6 concludes the work. Section 6 also
includes a brief discussion of possible manifestations of the
obtained results in experimental studies of the MI.

2. The model

We consider a uniform spinor BEC in an optical trap, without
external magnetic fields. Accordingly, positronium is free to
realize any of its four spin states, labeled as pñ∣ and 1ñ∣ , 0ñ∣ ,

1- ñ∣ , with pñ∣ representing the para state and 1, 0, 1- ñ∣
standing for three values of the magnetic quantum number M
in the ortho-state. Thus, different states F M, ñ∣ of the ortho
positronium are designated by M1, ñ∣ , while the para state
corresponds to 0, 0ñ∣ . The Hamiltonian of this system is a
combination of the non-interacting single-particle Hamiltonians
and the interaction energy (H int

ˆ ) [33, 34]:

H
m

V Hr
p

rd
2

, 1
j p

j j j
3

0, 1,

2

ext intò å y y= + + +
= 

⎡
⎣⎢

⎤
⎦⎥ˆ ( ) ˆ ( )†

where p is the momentum operator, V rext ( ) the trapping
potential, and j the internal energy of the spin state j. In the
mean-field approximation, the interaction Hamiltonian is (see
its detailed derivation in [33]):

H g gr
1

2
d 2 , 2pint

3
0

2
1 1 1 0

2 2 2ò r y y y y= + - +-ˆ ( ˜ ˜ ∣ ∣ ) ( )

where j p j0, 1,
2r y= å =  ∣ ∣ is the total atomic density, g0˜ and g1̃

are nonlinearity coefficients, defined by g a m40
2

1p=˜ and
g a a m1

2
1 0p= -˜ ( ) , while a0 and a1 are the scattering

lengths of the para (S= 0) and ortho (S= 1) positronium,
respectively (these parameters were theoretically calculated in
several theoretical works [35–38]). An independent para-ortho
scattering length does not appear in equation (2), as the inter-
action between the ortho- and para-positronium vanishes
for an odd spin channel. This fact follows from the
presentation of the atomic spin in the form of Fcollidingpair =
F F 1ortho para+ º [17, 34].

For the BEC confined in a cigar-shaped optical trap, the
corresponding Hamiltonian Ĥ with j o = for j 0, 1= 
produces a set of coupled one-dimensional GP equations,
following the usual procedure of the dimensional reduction
[33, 39, 40]:

H g g ai 2 , 3o p1 0 1 1
2

1 1 1
2

0
2* y y y y y y= + + + -- -

˙ ( ∣ ∣ ) ( ) ( )

H g g

b

i 2 ,

3
o p0 0 1 0

2
0 1 0 1 1

2* y y y y y y y= + + - +-˙ ( ∣ ∣ ) ( )
( )

H g g ci 2 , 3o p1 0 1 1
2

1 1 1
2

0
2* y y y y y y= + + + -- -˙ ( ∣ ∣ ) ( ) ( )

H g g di 2 3p p p p p0 1
2

1 1 1 0
2* y y y y y y y= + + + --˙ ( ∣ ∣ ) ( ) ( )

where the overdot stands for t¶ ¶ , and

H
m z

V z g
2

. 40

2 2

2 ext 0


r= -
¶
¶

+ +( ) ( )

The annihilation of the positronium is disregarded here, hence
the GP equations are valid on a limited time scale. The

nonlinear coefficients are now defined by g a
ma0
2

1
2

2

=
^

and

g a a
ma1 2 0 1

2

2

= -
^

( ) with a
m

=
w^
^
, and ŵ is the transverse

trap frequency. The terms ∼g1 in equation (3) govern the
population exchange between different spin states, while the
total density remains constant. Equations (3) may be nor-
malized to a dimensionless form by means of rescaling:

t t a5w¢ = ^ ( )

2
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z
z

a
b5¢ =

^
( )

V z V z c5ext ext w¢ = ^( ) ( ) ( )

z
z

a
d

2
5j

jy
y

¢ =
^

( )
( )
∣ ∣

( )

The resulting dimensionless GP equations have the same form
as above, but with 1 = and m=1 and new dimensionless
nonlinear coefficients g a a0 1¢ = ^ and g a a a1 0 1¢ = - ^( ) ,
while the internal energy of the jth state is measured in units
of ŵ . In the rest of the paper, the energies are shifted to

0p = and o º . These scaled variables are used in figures
displayed below, while equations are written in dimensional
units.

3. CWsolutions

We begin by considering the following general CW solutions
[41]:

A k z texp i , 6j j j j jy q w= + -[ ( )] ( )

where j p0, 1,=  represents, as above, the respective spin
components. Wavenumbers, phase shifts, and frequencies
(chemical potentials) k ,j jq and jw are real, while amplitudes
Aj are positive.

The substitution of the CW ansatz (6) for j p0, 1,= 
into governing equations (3) yields

k
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where n and s are integers, which are defined below in
equation (8c), and the following relations between the
wavenumbers, frequencies, and phase shifts of the different
components must hold:

k k k k a
1

2
, 8p 0 1 1= = + -( ) ( )

b
1

2
, 8p 0 1 1w w w w= = + -( ) ( )

s n c
1

2
8p 0 1 1q p q q q p+ = = + +-( ) ( )

For the compatibility of equation (8) with the other
equations, amplitude A0 of the 0y component must satisfy the
condition

A A A
A A

A A

1

2
1

2 1
, 9n

n

0
2

1 1
2 1 1

1
2

1
2

r
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= - - - +
-
+

-
-

-
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where

k k

mg g8 2
. 10

2
1 1

2

1 1

 
g º

-
+-( ) ( )

The second term on the right hand side of equation (10)
displays the competition between the internal energy difference ò
and the spin-mixing interaction with the effective 1D strength g1.
The ortho- to para- interconversion is substantial for g1  .

From the CW ansatz it follows that the condition of A0

being positive makes the left hand side of equation (9) real
and non-negative, thus giving a criterion for the existence of

Figure 1. Existence ranges of CW solutions in positronium for 1r = and 1g = g 01
¢ >( ). Different colors represent the corresponding

amplitude A0 in the CW solution. (a) The existence ranges for even n, represented by n=0. (b) The existence ranges for odd n, represented
by n = 1.
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the CW solutions. Thus, for the ground state of positronium
with g 01 > , CW solutions for both even n and odd n exist,
but with different existence ranges, as shown in figure 1.
These ranges for different CW solutions are found to depend
on the total number density, ρ, in addition to the magnitude
and sign of g1, which, in turn, can be tuned by means of the
Feshbach-resonance techniques [42]. In particular, the CW
solutions with even n (represented by n= 0) exist if

A A

A A
A A

2
. 111

2
1

2

1 1
1 1

2g r
+

- --

-
-

( ) [( ) ] ( )

There are CW solutions with odd n (represented by n= 1) if

A A

A A
A A

2
. 121

2
1

2

1 1
1 1

2g r
+

- +-

-
-

( ) [ ( ) ] ( )

Clearly, values which A1 and A 1- must assume for the ful-
fillment of the conditions for the existence of the respective
CW solutions are limited by the total density, ρ.

The case of g 01 < , which may be realized, as mentioned
above, with the help of the Feshbach resonance, modifies the
existence ranges of the CW solutions, as shown in figure 2.
There are CW solutions for even n when

A A

A A
A A

2
. 131

2
1

2

1 1
1 1

2g r
+

- --

-
-

( ) [ ( ) ] ( )

However, for odd n, CW solutions exist at

A A

A A
A A

2
. 141

2
1

2

1 1
1 1

2g r
+

+ --

-
-

( ) [( ) ] ( )

In accordance with equation (8b), and combining
equations (7b) and (7d) in the limit of g1  , we arrive at an
equation similar to the one obtained in [33], which relates the
ortho- and para- populations of the condensate:

A A A A2 1 . 15p
n2

0
2

1
2

1
2= - - -( ) ( )

The ground state is found to have the maximum para-
population for odd n 1=( ) CW solutions, which, for equal
amplitudes of the M 1=  components, becomes equal to the

density of the ortho- component:

A A2 1 16p o
n

1 1
2r r= - + - -( ( ) ) ( )

where Ap p
2r = and A A Ao 1

2
0
2

1
2r = + + - are densities of the

para- and ortho- components, respectively. The ortho- sector of
the condensate for equal densities of ortho- and para-components
is equivalent to a polar state of the F=1 condensate [17, 33].

For the stability analysis of the CW solutions, we neglect
the ortho-to-para interconversion, assuming g1  . Except
for the wavenumbers kj with j p0, 1,=  , CW parameters,
such as the amplitudes Aj and the phases jq , are made time-
dependent. The linearization of equations (3), taking into
account the conservation of total density, Aj p j0, 1,

2r = å =  ,

and magnetization, A A1
2

1
2--( ), and subsequent linearization

with respect to amplitude and phase perturbations (the latter
reduce to t t t t21 1 0dq q q q= + --( ) ( ( ) ( ) ( ))) shows that the
CW solutions are either stable or unstable, depending on the
density of the para-component relative to that of the one with
M=0 in the ortho-component. Oscillation eigenfrequencies
of infinitesimal perturbations are then given by

g A
A A

A A A A

A A

2 1

4
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n
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1
2

1
2 2

0
2 2

1
2

1
2


w = + -

+
- -

= -

-

-

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦
⎥⎥

( ( ) )

( ) ( )
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These frequencies are real, and hence the CW solutions are
stable, if A Ap0

2 2> . If A Ap0
2 2< , then, for n=0, the CW

solutions are stable if

A A
A A

A A

2
. 18p

2
0
2 1 1

1 1

2

< +
-
-

-

⎛
⎝⎜

⎞
⎠⎟ ( )

Likewise, for n=1 and A A1 1¹ - , the CW solutions are
stable if

A A
A A

A A

2
. 19p

2
0
2 1 1

1 1

2

< +
+
-

-

⎛
⎝⎜

⎞
⎠⎟ ( )

Figure 2. Existence ranges of CW solutions in positronium for 1r = and 1g = - g 01
¢ <( ). Different colors represent the corresponding amplitude

A0 in the CW solution. (a) The existence ranges for even n, represented by n=0. (b) The existence ranges for odd n, represented by n = 1.
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The respective spin oscillations with real frequency ω repre-
sent the exchange of populations between the different spin
states [43, 44].

In the limit of 0pY = , we are left with the ortho-Ps
condensate only, the system being equivalent to the F=1
spinor condensate. The spinor ortho-Ps condensate with
g 01 > supports solely even n 0=( ) CW solutions for all
values of A1 and A 1- with

A A A
A A

2 1 1
1

, 20n mg

k

n0
2

1 1
2 2

2

1 1
2

2

1



= - +
+ -

-

D

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )
( )

( ( ) )
( )

where k k k1 1D º - - . This is a peculiarity of the ferromag-
netic states of the F=1 spinor condensate [41]. Thus, the
CW states of the ortho-Pt only represent a ferromagnetic
condensate. The conditions for the existence of the possible
CW solutions in spinor Ps are summarized in table 1.

The stability analysis of the CW solutions by means of
the linearization with respect to the amplitude and the phase
perturbations show that the CW solutions are stable against
the infinitesimal perturbations, with real perturbation eigen-
frequencies

g A A A

A A

A A

A

8
. 21n 0

2 1 0
2 2

1
2

1
2 2

1
2

1
2

1 1
2

0
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w =
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+
+

=
-

-

-
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

These are frequencies of the coherent spin mixing, which
account for the exchange of populations between the different
spin states of the ortho-Ps.

4. Modulational instability (MI)

To investigate MI in the Ps BEC, described by the dynamical
equations (3), we start by addressing small perturbations

z t,df ( ) added to the CW solutions [20, 21, 28, 41, 45, 46]:

A z t k z t, exp i 22j j j j j jf df q w= + + -[ ( )] [ ( )] ( )

where j defines the spin index 0, ±1 and p.
Assuming that the system size is greater than the healing

length, which determines the characteristic length scale for MI,
we assume the perturbations to be in the form of plane waves,

z t kz t kz t, cos i sin , 23j j jdf l w h w= - + -( ) ( ) ( ) ( )

where jl and jh are perturbation amplitudes, while k and ω are the
wavenumber and the (generally complex) frequency, respectively.

The substitution of equations (22) and (23) into
equation (3), for the four spin indices, gives a set of eight
homogeneous equations, with respect to jl and jh , in the
matrix form:

k

m
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unit matrix and
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Table 1. Possible CW solutions with respective conditions for their existence in the spinor condensate of positronium for different values of
k k m4
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 g = - +-[ ( ) ]. A1 and A 1- are allowed amplitudes of the respective spin components, and r is the total density.
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Frequency ω of the perturbations, the average wave-
number, k kp

k k
0 2

1 1= = + -( ) , and the wavenumber difference,
kD , are diagonal entries of the stability matrix. In the most

general case, the wavenumber difference assumes a nonzero
value, k 0D ¹ , while k 0D = corresponds to the limit case,
in which all the wavenumbers are equal. The off diagonal
elements depend upon various CW parameters, either expli-
citly or implicitly via A0 (see equation (9)) and Ap (see
equation (15)).

Equation (24) represents an eigenvalue problem for
matrix . The solution to the problem aims to identify all
possible eigenvalues w and the corresponding eigenvectors

j, ; 1, 2, , 8j jh l = ( ). In this study, we produce solutions
for eigenvalues w for both cases of k 0D = and k 0D ¹ .
Complex eigenvalues w, if obtained by solving the disper-
sion equation, det 0 =( ) , for some positive values of k2,
render the spinor condensate modulationally unstable. In the
present case, this is the eighth-order equation with respect to
w, with the dependence on the CW parameters implied in the
coefficients, Ck

n
,

0,1
w

=
a b , while α and β are integer numbers:

C k C k

C k C k

C k C k

C k C k 0
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The coefficients Ck
n

k,
0,1 1 =w a b w

= ¶
¶

¶
¶a b

a

a

b

b ∣ ∣
! !

represent a blend

of nonlinearity coefficients and various CW parameters, being
too cumbersome to be included in the main text. They are
explicitly displayed in Supplement 1, which is available
online at stacks.iop.org/JPB/51/045006/mmedia.

Equation (26) can be solved analytically only in a few
limit cases, as shown below.

For the ortho-Ps condensate 0py =( ), for which only the
in-phase CW solutions (with n= 0) exist, the sixth-order
dispersion equation is

C k C k

C k C k

C k C k 0. 27
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Expressions for coefficients, Ck
n

,
0
w

=
a b, are again too cumber-

some for the main text and can be found in the online sup-
porting information, Supplement 2.

In the case of zero fields with M 1=  , the dynamics of
the system is governed by a pair of coupled GP equations, and
the resulting characteristic polynomial of the fourth order is
analytically soluble:

C k C k

C k C k 0. 28
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Here coefficients Ck ,wa b, being functions of the nonlinearity
coefficients g0 and g1, and can be found in the online sup-
porting information, Supplement 3. These coupled GP
equations have been extensively studied interms of optics
[47, 48] and BEC [49, 50].

5. Results and discussions

Below we discuss cases for which the dispersion relations of
different orders obtained above are solved for the perturbation

Z g
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frequency in the limiting case of equal wavenumbers,
k 0D = , when simple analytical solutions are obtained, as

well as in the general case when wavenumbers of different
components are not equal, and related solutions are not
available. In the latter case, results are plotted for difference

k 1D = between scaled wavenumbers of the spin components
with M 1=  .

5.1. Limit cases with simple analytic solutions

The simplest and the most generic case corresponds to the
single-component model with three of the four spin compo-
nents equal to zero. In this case, the CW frequency (chemical
potential) is

k

m
gA

2
, 29j

j
j

2 2
2


w = + + ( )

and the eigenfrequency of the perturbations is given by

k

m
k

k

m

k

m
gA

2 2
2 , 30j j

2 2 2 2 2
2   

w =  +
⎛
⎝⎜

⎞
⎠⎟ ( )

with g g0= for spins j 1=  , g g g0 1= + for spins
j p0,= , and 0 = for the para component. Equation (30) is
the Bogoliubov dispersion relation [51] for the propagation of
small perturbations (sound waves) on top of CW solutions
(6). The results obtained here are found to be in complete
agreement with the previously reported ones [52–54].
Namely, for the attractive nonlinearity (g 0< ), there is MI
against the perturbations in the wavenumber range

k g m A0 2 j < < ∣ ∣ , characterized by the MI gain, x = Im
w( ). The maximum MI gain,

g A , 31jmax x = ∣ ∣ ( )

is attained at

k g m A2 . 32jmax = ∣ ∣ ( )

In the case of zero components with M 1=  , the BEC
consists of a mixture of 1, 0ñ∣ and 0, 0ñ∣ spin components with
vanishing interspecific interaction. The frequency of the
perturbations is in fact solutions of equation (28) for the same
wavenumbers (k k kp0 = = ) and the Bogoliubov dispersion

relation with A Ap2 0
2 2r = + and A A g8 p0

2 2
1
2a = modifies as

k

m

k

m

k

m
g g

k

m

k

m
g

g

g

g

g

2 2
2

2 2
2 1

2 2 33

2 2 2 2 2 2

2 0 1

2 2 2 2

2 0
2 0

1

2
0

1

2

1
2

1
2

   

 

w r a

r a

r a a

=  + + +

 + -

+ - +

⎪

⎪

⎪

⎪

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎫
⎬
⎭

⎤
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( )

From the above equation (33), it is found that MI in the
system for a proper choice of A0 and Ap, as shown in figure 3,
is possible if either of the nonlinearities, g0 or g1, is attractive
(g 00 < or g 01 < ), which in fact does not hold for the Ps
BEC, hence the system is modulationally stable. The com-
putation of relations for kmax, and maximum growth rate ξ in
terms of the nonlinearities and the respective wavenumbers, is
too complex to be performed analytically.

In accordance with the above result, and aiming to
properly choose A0 and Ap, we studied the variation of the
largest MI gain for a range of values of A0 and Ap. In the limit
case of equal wavenumbers, figure 4 shows the peak MI gain
versus amplitudes of the two spin components for g 00 < and
g 00 > , respectively. In the latter case, the system is mod-
ulationally unstable if and only if condition g 01 < holds, and
amplitudes of the spin components are different, as seen in
figure 4(b).

The analytic solutions for the perturbation frequency
around the n=0 CW background in the case of the ortho Ps
condensate, i.e., the three-component system with identical

Figure 3. The MI gain for the CW states in the two-component positronium for A0
1
3

= and Ap
1
2

= . The CW background is modulationally

unstable for a proper choice of the amplitudes of the spin components if either of the nonlinearities are repulsive. (a) The MI gain for
g 10
¢ = - and g 11

¢ = (b) The MI gain for g 10
¢ = and g 11

¢ = - .
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wavenumbers are

k

m
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2
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2 2
 
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The results given by equation (34) are in exact agreement
with the previously known results for the ferromagnetic
F=1 spinor condensates [41]. Thus, the n=0 CW back-
ground of the ferromagnetic ortho Ps with g 00 > is stable
against the exponential growth of perturbations when the
wavenumbers are equal, and it is modulationally unstable if

g 00 < , so that the largest MI gain, g A A
max 0

1 1
2


x = - + -( ) ,

occurs at k mg2 A A
max 0

1 1
2


= - + -( ) .

Analytical solutions of equation (26) in the form of
Bogoliubov dispersion relations are obtained for the pertur-
bations propagating on top of the CWs with n=0 and 1 CW,
in the case of identical wavenumbers:
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From the above equations it is clear that, in the limit case of
identical wavenumbers, the CW backgrounds with n=0 and
1 give rise to MI and, thereby, formation of solitons if
and only if condition g 00 < holds, with the largest growth

Figure 5. The MI gain for the CW solutions with n = 0,1, for 1r = , A1
1
2

= and A 1
1
3

=- . The CW solutions with both n=0 and n=1 are

modulationally unstable for g 00
¢ < . (a) The MI gain for n=0, g 11

¢ = or n=1, g 11
¢ = - . (b) The MI gain for n=0, g 11

¢ = - or n=1,
g 11
¢ = .

Figure 4. The dependenece of the largest MI gain on the amplitudes of the two CW components with identical wavenumbers, k kp 0= .
(a) The dependence of the maximum gain on A0 and Ap for g 10

¢ = - and g 11
¢ = . (b) The dependence of the maximum gain on A0 and Ap for

g 10
¢ = and g 11

¢ = - .
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rate, 1
g n A A

g A Amax
0 1 1

1 1
2

1
2

x r= - + -
+

-

-( )( )
( )

, corresponding to

k mg2 1 n A A

g A Amax
1

0
1 1

1 1
2

1
2

r= - + -
+

-

-( )( )
( )

. Thus, the Ps

condensate with repulsive nonlinearities is modulationally
stable in such a case. The total particle density, ρ, together
with the densities of the components with M 1=  , have a
significant impact on the stability of the CW solutions, while
the order n( ) of the CW solution does not affect the stability.
However, the structure of the CW solution and the non-
linearity coefficient g1 affect the instability strength for
g 00 < , with a larger MIgain for n=0, g 01 > and n=1,
g 01 < , as shown in figure 5.

For g 00 < , figure 6 shows the dependence of the gain on
the g1 nonlinearity coefficient in the limit case of k k1 1= - . It
is evident that the CW backgrounds with both n=0 and 1
exhibit similar MI regions for opposite signs of nonlinearity
g1. The MI gain is larger at g 01 > for the CW solutions with
n=0, and at g 01 < for the CW with n=1, respectively, for
a fixed attractive g0 nonlinearity. Note that, on either side of
g 01 = at fixed g0, the gain attains constant value after an
initial change.

5.2. General case with no simple analytic solutions

We have derived the dispersion relations for different cases in
the limit case of identical wavenumbers in different spin
components. However, in the general case, when the wave-
numbers of the components with M 1=  are different, such
simple analytic results cannot be obtained. Note that even if
k1 and k 1- assume different values, wavenumbers kp and k0
are constrained to be equal, according to equation (8a), unless
the field components with M 1=  vanish. The effect of the
CW order n, and of the nonlinearity coefficients g0 and g1, on
the condensate’s MI, for both zero and nonzero differences in
the wavenumbers of the M 1=  components, were analyzed
by plotting the gain, Imx w= ( ), versus the perturbation
wavenumber k for suitable values of the parameters, including
A1 and A 1- . The possibility of having attractive nonlinearities,
achievable via the Feshbach resonance, and their effect on the
stability of the condensate, are also discussed in the respective
cases.

We chose A1, 1
1

2
r = = and A 1

1

3
=- for the case when

the wavenumbers are identical, and 1r = and A A1 1
1

2
= =- ,

Figure 6. The dependence of the MI gain on g1 for the CW solutions with n 0= and 1 for 1r = , A1
1
2

= , A 1
1
3

=- and k k 01 1- =- . Both

CW solutions with n=0 and 1 are modulationally unstable for g 00
¢ < . (a) The dependence of the MI gain on g1

¢ for n=0 and g 10
¢ = - .

(b) The dependence of the MI gain on g1
¢ for n=1 and g 10

¢ = - .

Figure 7. The dependence of the maximum MI gain on amplitudes of two-component condensate with the wavenumbers difference
k k 1p0 - = . (a) The dependence of maximum MI gain on A0 and Ap for g 10

¢ = - and g 11
¢ = . (b) The dependence of maximum MI gain on

A0 and Ap for g 10
¢ = and g 11

¢ = - .
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as the total particle density and the dimensionless amplitudes
of the field components with M 1=  , respectively, in the
case of the wavenumber difference k 1D = . The case of

k 0D ¹ with different amplitudes A A1 1¹ - is not analyti-
cally solvable.

In accordance with the above set parameters, for a CW
solution with zero M 1=  components, we chose Ap

1

2
=

and A0
1

3
= in the case when the wavenumbers are identical,

the MI sets in for g 01 < if and only if the amplitudes of the
spin components 1, 0ñ∣ and 0, 0ñ∣ are different. However,
when the wavenumbers of the two spin components are dif-
ferent, MI occurs even if A0 and Ap share the same values for
repulsive g0 and attractive g1 nonlinearities, as shown in
figure 7.

Comparison of figures 4(a) and 7(a) makes it obvious
that, for g 00 < , the CW states with the zero M 1= 
component and nonzero difference between the wavenumbers
of the other components are less vulnerable to the MI in a
larger domain of values of the A0 and Ap amplitudes, than in
the limit case of identical wavenumbers.

As demonstrated in the previous subsection, the CW
states of spinor Ps with both n=0 and 1, g 00 > , and
identical wavenumbers are modulationally stable. Never-
theless, when the wavenumbers of the M 1=  components
are different, the n=1 CW solution is modulationally
unstable for the natural repulsive signs of the g0 and g1
nonlinearities, as shown in figure 8 . The gain is found to
increase with the increase in magnitude of g0 for fixed g 01 > .

The effect of the CW parameter n and the nature of the
nonlinearity on the stability of the Ps condensate can be
understood by comparing the subplots (a) and (b) in figures 8
and 9, respectively. The CW background with n=0 and the
attractive sign of g1 is modulationally unstable for all values
of g0, and for the CW solutions with n=1; the same is true
for the repulsive sign of g1. For small kD , even CW solutions
n 0=( ) are found to be stable for identical signs of g0 and g1
nonlinearities and g 01 > , while odd CW backgrounds
n 1=( ) are stable for opposite signs of the nonlinearities and

g 01 < . Large differences in the wavenumbers of the spin
components with M 1=  give rise to the MI even in such
backgrounds, which might be expected to be stable. The final

Figure 8. The dependence of the MI gain on g0 in the out-of-phase CW solution for 1r = , A A1 1
1
2

= =- and k 1D = . The CW solutions

with n=1 are modulationally stable if the nonlinearities g0
¢ and g1

¢ have opposite signs and g 01
¢ < . (a) The variation of the MI gain for

g 11
¢ = . (b) The variation of the MI gain for g 11

¢ = - .

Figure 9. The dependence of the MI gain on g0 for CW solutions with n=0 for 1r = , A A1 1
1
2

= =- and k 1D = . These solutions are

modulationally stable if the nonlinearities g0
¢ and g1

¢ have identical signs and g 01
¢ > . (a) The variation of the MI gain for g 11

¢ = . (b) The
variation of MI gain for g 11

¢ = - .
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conclusion in the case of the nonzero wavenumber difference
between the spin components is that the nonlinearities and the
CW parameter, n, in equation (35d) tend to increase the
susceptibility of the CW backgrounds to MI.

Throughout the paper, we have studied CW solutions and
their MI in the condensate of positronium, which is a mixture
of F=1 and F=0 spinor components with vanishing
interaction between them. The n 0, 1= CW solutions in the
case of F=1 spinor condensates (CW solutions with n= 1
do not exist for the ferromagnetic case) were found to be
completely stable, with the existence ranges independent of
the density of the condensate. However, for the spinor posi-
tronium condensate, the existence ranges of the n 0, 1= CW
solutions is found to be limited by the density of the con-
densate. In addition, such CW solutions can be stable or
unstable depending on the relative densities of the different
constituents and the order (n) of the CW solution.

The absence of the inter-species interaction between the
F=1 and F=0 spinor components invalidates the familiar
MI condition g g g12

2
1 2>( , where g1, g2 and g12 are, respec-

tively, strengths of the intra-species and inter-species inter-
actions) for the case of vanishing fields with M 1=  . Note
that spin–orbit coupling is also found to alter the MI condition
[50]. MI is possible if either of the nonlinearities, g0 or g1, are
attractive. In the case of the attractive spin-mixing interaction,
g 01 < , binary condensates of 1, 0ñ∣ and 0, 0ñ∣ spin compo-
nents are stable for equal amplitudes of the components
and g 00 > .

The n 0, 1= CW states in the spinor positronium are
stable against MI similar to the stability of n=0 CW states in
the condensate with F=1 for repulsive nonlinearities.
Nevertheless, the instability gain in the n=0 CW states in

the case of F=1 spinor condensates depends solely on the
interaction strength, while for the spinor condensate of posi-
tronium, the order n of the CW state, in the combination with
the nonlinear spin-exchange interaction, g1, modifies the
instability gain for g 00 < . Wavenumber differences between
the different spin components are found to have significant
destabilizing effects.

The summary of the results of the MI analysis for the CW
solutions with n=0 and 1 for zero and nonzero values of
k k1 1¹ - is presented in table 2.

6. Conclusion

We have obtained the CW solutions in spinor BEC of posi-
tronium, composed of para- F 0=( ) and ortho- F 1=( ) spin
fields in the absence of external magnetic fields. For the
condensate without the para- component, 0py = , the BEC is
tantamount to a spinor F=1 ferromagnetic condensate with
CW solutions existing only for even n, which determines the
phase shift, mp , between the different components (i.e., for
the in-phase components). The CW solutions in such a case
are stable.

In the presence of the para- component 0py ¹( ), there
exist CW solutions with both n=0 and n=1, whose exis-
tence ranges are limited by the total density, ρ. The ground
state of positronium for g1  is found to have equal den-
sities of ortho- and para- components for n=1 CW solu-
tions, provided that the amplitudes of the M 1= 
components are equal, and the condensate is a polar one.
Since the ortho-to-para interconversion is minimal, if mea-
sured in units of the scaled energy difference, for g1  and
can be neglected. In such a case, the CW solutions are stable
if the density of the para-Ps obeys either condition A Ap

2
0
2< ,

or the conditions given by equations (18) and (19).
The obtained CW solutions with n=0 and 1 in spinor Ps

were subsequently examined for the MI, using the linear
stability analysis for the small perturbations. In the case of
zero fields with M = ±1, the stability of the CW background
is found to depend on the amplitudes of the respective com-
ponents, and on the nonlinearity coefficients g0 and g1. For
g 00 > and g 01 < , the CW solutions with identical wave-
numbers are modulationally unstable only for different
amplitudes of the components. In the limit case of identical
wavenumbers of all the spinor components, MI for both CW
backgrounds with n=0 and n=1 depends on the sign of g0
alone. The result is that, both for n=0 and 1, the CW
backgrounds are stable for g 00 > . The total particle density,
ρ, with the help of individual densities of the M 1= 
components, suppresses the influence of the CW parity, n, on
the MI. For g 00 < , the gain attains a constant value after a
rapid initial change with the variation of the g1 nonlinearity
coefficient.

In the general case of the nonzero differences between
the wavenumbers of the M 1=  spin components, the n=1
(out-of-phase) CW background is unstable for the natural
repulsive signs of g0 and g1, with the gain maximum large for
larger values of g0 at a fixed value of g1. The wavenumber

Table 2. Summary of the results of the MI analysis for different
combinations of the parameters.

k k k1 1D = - -( ) n g1 g0 Inference

0 0 + + The n 0, 1= CW backgrounds
are modulationally unstable
for the attractive g0 non-
linearity g 00 <( ). It is inde-
pendent of the nature of g1.

−
− +

−
1 + +

−
− +

−

0¹ 0 + + stable for small values of kD
− unstable

− + unstable
− unstable

1 + + unstable for natural values of
nonlinearities

− unstable
− + stable for small values of kD

− unstable
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difference k k k 01 1D º - ¹- , thereby making the CW
solutions with n=0 and 1 much more vulnerable to MI.

Finally, it is relevant to briefly discuss peculiarities of
possible experimental realization of the MI in the positronium
BEC. The MI directly applies if its characteristic growth time,

1 maxx~ (see equation (31)) does not exceed the (ortho-)
positronium lifetime, 140» ns [55]. However, it is possible to
realize the MI in a less extreme form if the positronium
condensate is permanently replenished from an external
source. Then, an essential difference of the expected exper-
imental situation from that typical for usual atomic con-
densates [31, 32] is the fact that the scattering length for the
positronium is smaller by a factor of approximately ten
[35–38], and, most essentially, its mass is smaller than the
atomic mass of 7Li by a large factor 6300» . For this reason,
equation (32) demonstrates that the same range of spatial
scales of the MI as in the experiments with atomic gases
(∼0.1 mm) may be achieved for the positronium density
exceeding the atomic one by approximately five orders of
magnitude, which may be achieved in the experiment. Then,
equation (31) suggests that, in this region of the densities, the
characteristic growth time of the MI may be approximately
four orders of magnitude smaller than in the atomic BEC, i.e.,
roughly on the microsecond scale, which is closer to the
above-mentioned positronium lifetime.
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