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Abstract

We present a theory of the photovoltaic valley-dependent Hall effect in a two-dimensional (2D) Dirac
semiconductor subject to an intense near-resonant electromagnetic field. Our theory captures and
elucidates the influence of both the field-induced resonant interband transitions and the nonequilibrium
carrier kinetics on the resulting valley Hall transport in terms of photon-dressed quasiparticles (PDQs).
The non-perturbative renormalization effect of the pump field manifests itself in the dynamics of the
PDQs, with a quasienergy spectrum characterized by dynamical gaps 6,, (r)is the valley index) that
strongly depend on field amplitude and polarization. Nonequilibrium carrier distribution functions are
determined by the pump field frequency w as well as the ratio of intraband relaxation time 7and
interband recombination time 7,... We obtain analytic results in three regimes, when (I) all relaxation
processes are negligible, (II) 7 < Ty, and (II) 7 >> 7., and display corresponding asymptotic
dependences on 6, and w. We then apply our theory to 2D transition-metal dichalcogenides, and find a
strong enhancement of valley-dependent Hall conductivity as the pump field frequency approaches the
transition energies between the pair of spin-resolved conduction and valence bands at the two valleys.

1. Introduction

Low-dimensional quantum systems subject to an externally applied large power high frequency electromagnetic
field (EMF) display a great variety of interesting phenomena, such as multi-photon induced macroscopic
quantum tunneling [1], multi-photon Rabi oscillations and the dynamic Stark effect in superconducting or
hybrid qubits [2, 3], dissipationless electron transport [4], polaritons and condensates [5, 6], and Floquet
nonequilibrium states [7, 8]. In many cases of interest, the quantum dynamics of systems strongly interacting
with an EMF can be described in terms of nonequilibrium quasiparticles called photon-dressed quasiparticles
(PDQs) [2, 9]. They are characterized by a specific quasienergy spectrum and nonequilibrium steady state
distribution functions. Such a quasiparticle description is particularly useful for near-resonant excitation, i.e.
when the frequency of the EMF is close to the difference of the intrinsic energy levels. The quasienergy spectrum
of such PDQs shows a dynamical gap [10, 11] that is proportional to the amplitude of the EMF, and the
nonequilibrium steady state of the PDQs is determined by interplay between different time scales: the inverse
dynamical gap, inverse frequency, and relaxation times [12].

As we turn to spatially extended systems, PDQs naturally appear in two-band semiconductors in the
presence of EMF-induced interband transitions. The quasiclassical dynamics of PDQs in a spatially dependent
potential, for example, leads to a ballistic photocurrent in graphene-based nanostructures [13—16]. The
dependences of the photocurrent on the gate voltage, amplitude, frequency, and polarization of the EMF are
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Figure 1. Schematic of EMF-induced Hall transport in a 2D Dirac semiconductor (monolayer MoS,). Epc is a probe field (bias), and
Ec is an external electromagnetic wave of light that can be right- or left-circular polarized. Depending on the polarization, either K or
K valleys couple to light.

mostly determined by the energy spectrum of the PDQs and, in particular, by the dynamical gap. However, a
nonequilibrium steady state of PDQs cannot be achieved under these conditions, and thus has not been
observed in such experiments. Dynamical gaps have been extensively studied in originally gapless materials

[17, 18] under the high-power EMF, where rather complicated spectra of quasienergies with multiple dynamical
gaps have been found.

In this paper we theoretically study the valley Hall transport of PDQs in homogeneous two-dimensional
(2D) Dirac semiconductors under irradiation of circularly polarized light, or in other words, a photovoltaic
valley-dependent Hall effect. It is well known that, in addition to momentum and spin, 2D materials with a
hexagonal lattice (such as graphene [19, 20]) host valley degrees of freedom, which are quantum numbers
describing corners K and K’ of their hexagonal Brillouin zone. The presence of valleys gives rise to new valley-
resolved physics [21] that has been much heralded as valleytronics [22]. 2D Dirac semiconductors are gapped
materials characterized by low-energy massive Dirac electrons in the vicinity of the two valleys. As an example of
Dirac semiconductors, 2D transition-metal dichalcogenides (TMDs) [23, 24] provide a much sought-after
platform to realize valley-resolved physics [25, 26] due to a particularly large band gap, A, advantageously
occurring within the optical frequency range (e.g., MoS, has aband gap at 1.66 eV [27]).

An important property underlying many valleytronic phenomena is the valley selection rule: the low-energy
electrons at each valley couple predominantly to one particular state of optical polarization (left or right circular
polarization), enabling valley-selective interband transitions. Under a DC probe field, there will be an excess
population of majority-valley electrons driven in the transverse direction, leading to an anomalous Hall effect. While
the linear response optical conductivity of TMDs has been extensively studied in a number of works (e.g., [28-30]),
nonlinear optical phenomena [31] remain largely unexplored despite attracting increasing attention [32, 33].

2. Results

2.1.Model, Hamiltonian and energy spectrum of PDQs

Let us consider the electron dynamics in a 2D Dirac semiconductor subjected to an externally applied strong
pump EMEF (figure 1), characterized by the vector potential A(t) = Ae ' 4 A¥fel’, where wis the frequency of
the applied field. The total Hamiltonian H of this system consists of two parts: the equilibrium Hamiltonian,

~ A .
H0:70'2+V'p_5)\50577(0'z_1): (D

and the time-dependent Hamiltonian Hy, = (e/0)V - AD), describing the interaction of electrons with the
EMF. Here, pand v = (4, 9,) = (13, 5,) are the momentum and the single-particle velocity operator,
respectively. The equilibrium Hamiltonian describes a pair of gapped Dirac cones (with the energy gap A) at the
two corners K and K’ of the hexagonal Brillouin zone (labeled by the valley index 7 = 1), and &, , are Pauli
matrices describing the pseudospin degrees of freedom. To apply our results to TMD materials, e.g. MoS,, we
take into account the spin—orbit interaction ), in the last term of the Hamiltonian in equation (1), withs = £1
being the electron spin. Equation (1) is the minimal model for TMD that captures valley Hall transport. Since the
pump field is illuminated at near-resonant frequencies, effects from the conduction band edge spin splitting

(~1 meV) and trigonal warping further from the band edge [34, 35] are expected to be quantitatively small and
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can be neglected. In the absence of an external EMF, the electron energy spectrum of a TMD near K and K’
consists of conduction (+) and valence (—) bands that are spin and valley-dependent,

A — sl )2
— -

Eq(p) = i\/(vop)2 + ( ©))

In the presence of a pump EMF, it is convenient to introduce the quasienergy spectrum obtained by
transforming the total Hamiltonian H to a rotating frame and neglecting all terms oscillating at the frequencies
2w within the rotating wave approximation (RWA). The RWA is valid for a near-resonant pump EMF, i.e. when
w =2 2|E, (p)|/ 7% ,and when the pump EMF amplitude is not too large, evg|A|/ (/awe) < 1. This procedure has
been previously used to obtain the quasienergy spectrum of weakly nonlinear oscillators [36], electrons in two-
band semiconductors [13, 14, 37, 38], and 2D electron gas with spin—orbit Rashba interaction [39]. Thus, the
quasienergy spectrum is given by (see appendix A)

2
51,2(13) = i\/(lEsn(pH - %) + |617(p) |2 . (3)

Evidently, a strong pump EMF causes interband transitions with a momentum- and valley-dependent Rabi
frequency, 6, (p) /72 . The quasienergy spectrum in equation (3) for the PDQs is characterized by an opening of
dynamical gaps, 0,(p), as the resonant condition |E, (p)| = /i /2 is satisfied. Dynamical gaps are generally
anisotropic in the momentum space for elliptical EMF polarization, given by

8,(p) = Z2[sin(0, /2)e M (nA, + iA,)
C
+ cos2(6, /2)e(—nA, + iA,)], (4)

where ¢ = tan™!( P, / p.)and sin 6, = nvyp/|Eg, (p)|- We note that 6,(p) is proportional to the amplitude |A|, and
it strongly depends on pump EMF polarization. In the vicinity of the valley centers, where vop < A, one finds
[0,(P)| =~ (evy/c)|—nAx + iA,|. For valley Hall transport, we are interested in the circularly polarized pump field
A = Ay(1, im), where m = +1 is the helicity of the EMF. It follows from equation (4) that the magnitude of the
dynamical gaps then becomes isotropic in the momentum space with |6, (p)| = (evoAq /c)(1 + nm cos 6,),
capturing the seminal valley-dependent selection rule [27]. Therefore, while a dynamical gap opens in each of the
four copies of the gapped Dirac dispersions in the TMD band structure, the valley selection rule causes a dynamical
gap in one of the valleys to dominate. In what follows, we will write 6,(p) instead of |6, (p) | thus dropping the
irrelevant phase factor.

2.2. Hall transport of PDQs

Hall transport in the presence of a strong pump EMF can be obtained as the linear response to a weak probe field
of frequency 2 (see figure 1), characterized by the vector potential A(t) = Ae . The resulting current
density is given by the expectation value j, = —ie Tr[#, G<(t, t)], where & = x, yand G~ is the lesser Green’s
function. In the linear regime over the probe field we obtain

j(t) = fc d'Qus(t, ) As(t)),
2
Qus(t, t') = —i= Tr[9,G(t, ) DG (', e, )
c

where the times #, ¢ are taken on the Keldysh contour C. The contour-ordered Green’s functions G(¢, ¢') in (5),
whichare2 x 2 matrices due to the pseudospin structure of the Hamiltonian (1), are calculated by treating the
pump field non-perturbatively within the RWA.

The time-averaged Hall current is expressed via the Hall conductivity o, as j, = 0y, &, and

&) = — %&Ay(r) is the probe electric field taken along the y axis. Following calculation given in appendix A,

we find in the limit of a static probe field (2 — 0, thus £, = Epc) a generic expression for the photovoltaic
valley-dependent Hall conductivity:

2ev} d’p
oy == Szn: 77f oy cos Op[my(p) — m(p)]
4

4
7 p
X ) - P (6)
(aP) — a@) + w3 (alp) — alpp) — /w)
where the coefficients u, and v, satisfy the following conditions (we will use p instead of p in the indices in what
follows): ulf + vlf =1, ué — vg = JE(p) + 531(1)) /& §(p) = |Eq(p)| — /aw/2,and ny ;(p), which are the
nonequilibrium distribution functions of the PDQs. The nonequilibrium electronic distribution functions of

3
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Figure 2. Nonequilibrium electron distributions f. as functions of the scaled momentum p/p, for hw = 1.2A, 6, = 0.2A and
different values of relaxation and recombination times: regime I, 7= = 7.} = 0 (red); regime I, T < 7, (green); and regime III,

T 3> Trec (blue). The momentum p, is the value at resonance and it is found from the relation: {(p,) = 0.

Table 1. Summary of the three regimes.

Regime I RegimeII Regime III

Ty Trec — OQ T Trec T > Trec

Dynamical gap opens Dynamical gap opens (for Dynamical gap opens (for one valley): thresholdlike 7,..-dependent behavior
(for one valley): one valley): giant increase athw = A
thresholdlike behavior of o,y after hw = A
athw = A

Dynamical gaps open Dynamical gaps open (for Dynamical gaps open (for both valleys): thresholdlike behavior at fuw = A
(for both valleys): both valleys): strong
thresholdlike behavior compensation of o, ’s
athw = A from both valleys

the conduction and valence bands, f.(p) and f,(p) (see figure 2), are related to those of the PDQs as

f.(p)=uym(p) + vym(p),
£,(p) = ulm(p) + vim(p). )

Since f.(p) + f,(p) = 1by particle number conservation, the above equation implies the conservation of PDQs
with n(p) + m(p) = 1. Thevalley-dependent Hall conductivity in equation (6) depends on the population

difference of the PDQs, which is given by my (p) — m(p) = 1 — 2m(p) = [1 — 2f.(p)1/E*(p) + 637(1)) /E(p).

Equation (6) contains two contributions that are due to the resonant and nonresonant interaction of
electrons with the EMF. The resonant contribution to the Hall conductivity is determined by a narrow region of
€ >~ 6,(p), where the RWA is well justified. Here, p, is the solution of equation { () = 0.

The nonresonant contribution to the valley Hall conductivity stems from a broad region of ¢ ~ fiwin
equation (6), and for small values of §,, < /w the nonresonant interaction leads just to small corrections to the
dark value of of} = e? / (477 ) calculated in the absence of EMF [40]. These small corrections cannot be
elaborated precisely in the framework of RWA but their typical value o(§,,)*/(7aw)? is smaller than the resonant
contribution to the Hall conductivity (see section 2.4). Thus one can safely omit the influence of the nonresonant
interactions on the valley Hall conductivity in 2D wide gap Dirac semiconductors.

2.3. Kinetics of PDQs

We consider an insulating Dirac semiconductor in equilibrium, where the Fermi level is located in the middle of
the band gap. The temperature is taken to be much smaller than the band gap so that thermally excited carriers
can be ignored. In the presence of a strong pump EMF, the nonequilibrium distribution function of electrons
depends on the ratio of the intraband relaxation time 7and the interband recombination time 7,c. [41, 42]%. In
the absence of any intraband relaxation and interband recombination, i.e. the ballistic regime (later referred to as
regime I), the difference in the distribution functions of the PDQs is given by 1 — 2n1(1) (p) = sign(§),
corresponding to the distribution function of nonequilibrium electrons in the conduction band,

8 The results found in [41, 42] are also applicable to 2D systems because the expressions of the electron distribution functions obtained in
those works do not depend on the dimension of the system.
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f(D (p) = A/2)[1 — |£(p) |/ (p) + 6 ,(P) 1. Here, our results coincide with a kinetic equation analysis
based on the density matrix approach [43, 44]

Under a strong pump field with large Rabi frequency 6, /% > max{1/7, 1/}, various nonequilibrium
distributions of PDQs can be achieved. If the intraband scattering time is small such that 7 < 7. (regime Il or
inverted population regime), we have n"’(p) = 0and 1 — 2n'"(p) = 1, corresponding to f; W (p) =

vp =(1 / 2)[1 — &(p) / &(p) + 6,27 (p) ] In the opposite case, when the interband recombination time is
small, 7 >> T, (regime ITT), we have ™ (p) = 1/2 and1 — 2n(HD(p) = u2 - v2 = {(p)/ E(p) + & (D),

corresponding to £ (p) = 2u;v} = 63(p) /2 [§2 (p) + &, (p)]. Note here that the nonequilibrium state of the
PDQs in regime I1l is analogous to a nonequlhbrlum steady state of a two-level system subject to a strong
resonant EMF [45]. See also table 1 for the summary of three regimes.

2.4. Nonequilibrium valley-resolved Hall conductivity
In order to focus on the essential valley-resolved physics, we will first disregard the spin—orbit interaction. Then
the Hall conductivity in valley n reads

B T]EZA 00 _
o =30 [, QRO — mPIEG, O, ®)

where

2 2
+ ¢ ¢

1 1
6, &) = |&+6; |&+6;
Wi N = = | —M
§2+ 6?] + %"J ,é‘z_i_ 62 /2

In the limit of vanishing pump EMEF, i.e. 6,, — 0 (and for arbitrary frequency), the distribution functions reduce
to those in equilibrium, f.(p) = 0and 1 — 2m(p) = 1, so thatequation (8) recovers the correct value of the dark
Hall conductivity of a single valley [40], 05} = me? /(47/). Substituting the expressions for 1, 5(p) in

equation (8), we obtain

©

(I) sign§

I/x)/ 2 00 1

a | ne*A f d

o, = Fo (b, 6). 10
Xy 300/ Y 5 5 w( ) f) (10)

o Jere

Further analytic progress can be made if we disregard the dependence 6, on p. Indeed, 6,(p) is a smooth
function. In the mean time, the main contribution to the nonequilibrium part of the valley Hall conductivity in
equation (10) comes from the vicinity of the resonant points. Thus we substitute the dependence 6,(p) by the
value 6,, = 4,(p.). (It should be noted that we keep the dependence of 6, on frequency w.)

Furthermore let us focus on the frequency range | 7w — A| >> §,. If the pump EMF frequency is below the
gap, A — fww >> §,, only virtual transitions between the conduction and valence bands occur, resulting in a
renormalization of band energies, i.e. the dynamic Stark effect, as described by the quasienergies € ,(p) of the
PDQs. This scenario corresponds to regime L. Calculating the integral over £ in equation (10), we obtain

Oy = Oyky + 035> and the -valley nonequilibrium contribution to the Hall conductivity o)}, as
2
onea(d — _77_6267" (11)
%y :
27 A(A — fiw)

In the opposite limit (w > A/h), interband transitions occur and all three regimes can be established.
Calculating the integral over € in equation (10), we arrive at the following results:

e2 Aé
neq (I) — n , 12
o2 A 52
7 = o ﬁ[ T m} “
e, (11D) _ ne? TAS, 14
o = -2 (14)

We see opposite signs of the nonequilibrium a“jq and dark o3} contributions to the Hall conductivity—this
is intimately connected with band topology and the sign of the Berry curvatures. Indeed, without the pump field,
the Berry curvatures of the conduction and valence bands are FnAv / {4[(vp)? + (A/2)*P/?}. Inthe
presence of the pump field, the signs of the Berry curvatures of the renormalized bands should remain the same.

5
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Figure 3. Photovoltaic Hall conductivity as a function of pump frequency in regimes I (red), II (green), and I1I (blue). Calculations
were performed using equation (8) (solid lines) and equation (6) (dashed lines), with the latter case taking into account the full
momentum dependence of §,(p). The dynamical gap é; (p = 0) = 0.5 meV was chosen. Red dashed and solid curves coincide. Inset
shows 0?2}, calculated using equation (8) accounting for nonequilibrium particle distribution only in single valley. Black dashed curve

in the inset is analytic result via equation (13) (applicable if iw > A).

Therefore, the Hall conductivity contribution from the conduction (valence) electrons will be negative (positive)
atvalley K and positive (negative) at valley K. The negative sign of o, then follows from the larger population of
excited carriers at valley K in comparison with valley K’ due to the valley selection rule.

Using equation (8) and taking the sum over 7-valley-dependent contributions, we can numerically calculate
the total Hall conductivity as a function of pump frequency w (see solid curves in figure 3). We notice a similar
behavior in regimes I and I1I, namely, an abrupt increase in the absolute value of conductivity as the frequency
approaches A /A and a further smooth decrease of o,

The most significant feature is that regime II shows a completely different behavior (inset of figure 3) by
revealing a dramatically enhanced Hall conductivity. Indeed, the ratio 0™ /5" for similar parameters is on the
order of 10°. Further, it saturates at large frequencies to a value independent of applied EMF power. This is a
direct consequence of the inversion of electron population in regime II.

Next, we take into account the full momentum dependence of the light-matter coupling at both valleys K
and K’ by using the exact relations, equations (4) and (6), for aleft circularly polarized pump field (6 = 1). Now,
the light couples strongly to the K valley and weakly to the K’ valley, inducing an enhanced dynamical gap at the
Kvalleywith §; > ¢_; (see dashed lines in figure 3). A crucial assumption of these calculations is that both the
valleys are described by the same type of steady state distribution functions, regardless of different values of their
dynamical gaps.

Accounting for the small dynamical gap in the K’ valley leads to minute changes of 0, (w) in regimes I and III
(compare the dashed and solid red (blue) curves in figure 3). However, the results obtained for regime Il are
drastically different. They show a small, sharp peak when Aiw = A (compare the dashed green curve in main plot
and solid green curve in Inset of figure 3). We explain this behavior as a consequence of the crucial assumption
that nonequilibrium distributions are realized in both valleys. Observation of the frequency dependence of o,
enables us to distinguish between the different nonequilibrium steady states under an optical pump field.

2.5. Spin—orbit coupling effects in TMDs

Finally, using the full k - p Hamiltonian (1) of TMDs, we include spin—orbit coupling effects in our analysis.
Typical parameters of MoS, monolayer [27] are employed: A = 1.66 eV and Ay, = 75 meV. Calculation results
for the three regimes are presented in figures 4(a)—(c). As expected, SOI results in the appearance of a second
threshold in the conductivity of regimes I and I1I (figures 4(a) and (c)) and two sharp peaks in regime II

(figure 4(b)), once the EF frequency reaches the band gap values A + A, (at hiw = 1.585 eV and

fw = 1.735 V) for the two spin-split bands’. The plots also demonstrate the dependence of 0y on the value of
the gap, 6,(0). It is important to note, that with account of the SOI, there opens a possibility to established spin-
polarized Hall conductivity if wis in the narrow frequency interval (A — A, A + o). Indeed, at the first
threshold (see figure 4) due to the energy conservation, there will be Hall current of electrons and holes with a
predefined projection of spin [46].

Excitonic effects are disregarded in our model. Inclusion of excitonic effects is expected to bring additional resonant features in the
photovoltaic Hall conductivity at the exciton energies associated with the two spin-split bands.
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Figure 4. Photovoltaic Hall conductivity o,,(w) for (a) regime I, (b) regime I, and (c) regime III. Red solid, green dashed, and blue
dotted curves correspond to 6,(0) = 0.5, 1,and 2 meV, respectively.

3. Conclusions

We have developed a theory for the photovoltaic valley-dependent Hall effect in a 2D Dirac semiconductor
driven by a strong EMF. We have found that the valley-dependent Hall conductivity is strongly enhanced when
the pump field frequency is close to the transition energies of the two spin-split bands at K and K’ valleys. We
have also shown that the conductivity is highly sensitive to nonequilibrium carrier distribution functions due to
the joint influence of the pump field and the intraband relaxation and interband recombination processes.
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Appendix A. RWA, the dispersion of PDQs and the Hall conductivity via the Keldysh
approach

Here we present a detailed discussion of the RWA used; properties of the gapped dispersion of PDQs; calculation
of the general expression for the conductivity using a nonequilibrium Keldysh approach.
Assuming that the probe field is weak, the current can be calculated as a linear response to this field:

2
Jo(®) = fc dt'Qqp(t, t") As(t'), where Qup(t, #i) = _i% Tr[v G, 5)V3G (8, Dle, (AD)

where Cis the Keldysh contour. The Green’s functions in equation (A1) should be calculated in the presence of
the pump field accounting for it in unperturbed manner. Thus, in contrast to standard linear response
technique, Green’s functions in (A1) are principally nonequilibrium and in general case, they depend on both
the times tand #’ separately. Thus, the Green’s function satisfies the following equation:

[i0; — Hy — Hine(DIG(t, t') = 6. (A2)

Itis written in a pseudospin representation of the operators &, . This representation is not very convenient.
Therefore using a unitary transformation, we switch to another representation using the conduction and valence

bands:
N " 0
Hy = UJH,U, = (e ép) ) (p)), where
)\50 A _ )\so :
een(p) = ”77 + |Eq(p)], Eop(p) = i\/(%p)z + (%) ,

oo | cos@2  sin@/2) ) feos@/2) sin(0/2)e
P Lsin(0/2)e" —cos(8/2)e™ | P | sin(8/2) —cos(8/2)e 1 [

P
UyU, = U,U; =1, (A3)
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where 0 is the polar angle with

_ (A — 577)\50)/2
|ESI](P)|
_ _Mop
|Ea(p)|

cos 6

(A4)

and ¢ = tan~!( p, / p.). Applying this transformation to equation (A2), we find
li0, — Hy — V()IG(t, t') = 6,0, where G(t, t') = UJG(t, t) U,

V.. (t) Vw(t))

A
Vie @) Vi (1) (49

V(t) = U Hn(H) U, = [

The pump field reads A(t) = Ae™“* + Afel. After the transformation into cv-basis, we find

V(t) _ ch(t) ch(t) _ EA ) (ch %V)e—iwt + EA* . (YCC Yw)ei“’t. (A6)
Vie(®) Vi (1) c Vie Vi c Ve Vi

Here the diagonal (intraband cc and vv) terms result in a nonresonant change of the spectrum of quasienergies,
leading to small corrections to the Green’s functions proportional to i—zﬁl%Az / (min{A, /w})?,wherei = corv
and we assume |§17,»iA |<min{A, /w}.Consequently they can be disregarded. The off-diagonal (interband cv,
vc) terms have both the resonant and nonresonant contributions (within the RWA approach) and for similar
reasons, we will keep only the resonant ones underlined in equation (A6).

The resulting equation for the Green’s function reads

i0; — e.(p) —EVCV . Aeiwt

e - G(t, ) = b,un,
*_‘ﬁ"vc . A*em lat — & (P)
c
% - A = wo[sin?(0/2)e P (nA, + 1A,) + cos®(0/2)eP(—nA, + iA))],
Ve - A = wo[sin?(0/2) e (nAf — iA)) + cos* (0 /2)e P(—nAF — iA)]. (A7)

Important to note, that ¥, and ¥,. depend on the momentum, p. In order to transform into a rotating reference
frame, we utilize the operator

_ efm/z 0
S(t) = ( . /2), (A8)
and using g(t — t) = ST(1)G(t, t')S(t'), we find
10, — e.(p) + /w2 %%, A
‘ gt —t") = b (A9)

—va - A¥ i0; — &,(p) — /w/2
c

Note, this equation is translational invariant in time.
The resulting quasienergy spectrum is given by

2
EI,Z(P) = i\/(lEsn(pN - ﬁTL‘)) + |517(P) |2 . (AIO)

As indicated in figure A1, dynamical gaps open in each of the four copies of gapped Dirac dispersions in the
TMD band structure; the valley selection rule causes the dynamical gap at one valley to dominate. The magnitude
of the dynamical gap then captures the seminal valley-dependent selection rule [27] and becomes isotropic in the
momentum space, |6, (p)| = (evy/c)(1 + nm cos 0,), for circularly polarized pump field A(z).

Let us transform equation (A1) into the band representation, leaving only interband matrix elements of the
operators 1, ¥3. Calculating the trace Tr[...], we find the sum of terms containing diagonal matrix elements like
G.(t, t")G,, (¢, t) and non-diagonal elements like G, (¢, t') G, (¢, t). Indeed, the calculation of trace results in
the expression:

2
Qy(t, 1) = —i=Tr[:G(t, )7,G(, D] = QP (1, ') + Q2 (t, 1), (A11)
Cc
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Figure Al. (a) Dynamical gaps in the rotating frame conduction and valence bands under a left circularly polarized light. For clarity,
here we only show the pair of energy dispersions for spin up electrons at valley K and spin down electrons at valley K’, which have a
band gap A — .. The other pair of energy dispersions with aband gap A + A, will have dynamical gaps at a different value of
momentum. (b) The corresponding quasienergy spectra equation (3).

where
2
QY(t, 1) = —i=[73Gon (8, 1) 7, Cc(t', 1) + 7 Gec(t, )L Gt D],
c

2
QY 1"y = i[5 G (8, Y TLGoc (s 1) + 75Go (8, )7, G (', 1)], where
c

7 = von(—cos?(0/2)e + sin?(0/2)e %),

7 = von(—cos?(8/2)e "% + sin?(0/2)el"%),

72 = ivg(cos*(0/2)e"% + sin?(0/2)e~ %),

7). = ivg(—cos?(8/2)e "% — sin?(6/2)e™), (A12)

and Green’s function in band representation accounting for the strong pump field reads

gt = e g (¢ — e 0O

G(t, t) = SHgt — tST(t) = Y N
g gt — t)els (1) g, (t — t)els (=1

(A13)

Substituting equations (A13) in (A12) and performing the Fourier transform in time, we find that non-diagonal
terms of Qg) (t, t') are proportional to e*2“!, whereas the diagonal ones of Q)E}l,) (¢, t") do not contain frequency-
dependent exponents. Thus Qg) (t, t') term (describing the second harmonic generation effects) should be
further disregarded in the framework of the RWA we use.

The probe field depends on time as A(t) = A cos(Q2t), producing the in-plane current

i () = Qu(w, DA, (e,
Qy(w, D =0 (F g, (P & + w + Dg(pr O = F@IE (P € — w + Dg,, (@, I,
p,c
F(p) = cosf — igsinze Sin(20). "

All the Green’s functions here depend on the absolute value of particle momentum p thus, the term sin(2¢) in F
(p) does not play the role due to the angle integration. The structure of [gg]< = gR¢< + g<¢g* contains the lesser
¢~ and retarded/advanced gR’ A functions which can be easily found from expression (A9).

The time-averaged Hall current is expressed via the Hall conductivity o, as j, = 0y, &,,and
&) = — %&Ay(t) is the probe electric field taken to be along the y axis. The Hall conductivity o,, contains
nonlinear effects due to the presence of a strong pump EMF. Taking the integration over € in (A14), we find (in
the limit of a static probe field €2 — 0) a generic expression for the photovoltaic valley-dependent Hall
conductivity (6).
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Appendix B. Valley-resolved Hall conductivity

Here we present a detailed discussion of conductivity in the regime where analytical treatment is possible and a
single-valley contribution results. In order to focus on the essential valley-resolved physics (and obtain analytic
results for the photovoltaic valley-dependent Hall conductivity), we will disregard spins and spin—orbit
interaction and the dependence of §,, on momentum p in present section. With these approximations the Hall
conductivity at valley 1) can be expressed as in equation (8).

In the limit of vanishing pump EMF, i.e. 6,, — 0, the distribution functions of conduction and valence band
electrons reduce to those in equilibrium, we have f(p) = 0and 1 — 2n;(p) = 1so thatequation (8) recovers the
correct value of the DC Hall conductivity of a single valley oy, = ne? /(47/2 ) for 2D Dirac semiconductor [40].

Substituting the expressions for 1, »(p) corresponding to the three regimes, equation (8) can be written as

O'(I) Signf
ol
T | =5 fwam de & Fullyp ©- (B)

11T
oo Jé+ 6

Further analytic progress can be made if we focus on the frequency range | i — A| > §,,. If the frequency of the
pump EMF is below the gap, A — /7w >> §,, only virtual transitions between the conduction and valence bands
occur, resulting in a renormalization of the band energies (i.e., the dynamic Stark effect) as described by the
quasienergies €1 ,(p) of the PDQs. This scenario is described by regime I. Calculating the integral over £ in
equation (B1), we obtain the n-valley contribution to the Hall conductivity as

2 282
0571,)” = 1—-—" | (B2)
A7t/ A(A — /w)

In the opposite limit when the frequency w exceeds the gap A, interband transitions occur and all the three
regimes can be established.
Calculating the integral over £ in equation (B1), we arrive at the following results:

@ _ 77_e2 - 4A677 B3
Ty (W) 47r/’i[ o) (B3)

2
o e 2 28 B4
Ufi,xy(w) 47Tﬁ[ + o A(ﬁw — A) > (B4)
a oy met () ZmAd B5
ol (W) s ( e ) (B5)

Figure A2 compares the above analytic expressions for the valley K with numerical ones obtained from
evaluating equation (B1) using a momentum-independent value of §,. We see that there is an excellent
agreement for frequency values w > A between the analytic and numerical results for all the three regimes, with
the two sets of results completely overlapping with each other. As shown, regimes I and Il behave very similarly.
The corresponding conductivities in the valley K’ are also similar to each other, having 0, _ ,, &~ —e?/2h since
the valley K’ is approximately uncoupled to the pump field with §,— _; & 0. Summing up the contributions from
both valleys yields the total Hall conductivity for regimes I and III with a similar profile as in figure A2, except
shifted by —0.5¢2/h (see main text, figure 3).

Regime II shows a completely different behavior since both valleys are in the saturated state with a large
inverted population of conduction band electrons. The corresponding numerical result for the valley K’ is
approximately equal in magnitude and opposite in sign to that for the valley Kin figure A2, except for a near-
resonance regionw ~ A.In the vicinity of resonance (see figure B1) we find that the Hall conductivity at the
valley K exceeds in magnitude that at the valley K’, resulting in a very sharp peak at fuww = A.

Under aleft circularly polarized pump field (o = 1), the total Hall conductivity is negative in all the three
regimes. This can be understood from the renormalized band structures in the rotating frame (figure A1).
Without the pump field, the Berry curvatures of the conduction and valence bands are
FnAVS/{4[(vop)* 4+ (A/2)*F/?}.In the presence of the pump field, the signs of the Berry curvatures of the
renormalized bands should remain the same, and the Hall conductivity contribution due to the conduction
(valence) band will be negative (positive) at the valley K and positive (negative) at the valley K. The negative sign
of o, follows due to larger population of excited carriers at valley K than at valley K’ coming from the valley
selection rule.

10



I0OP Publishing New J. Phys. 20 (2018) 083007 V M Kovalev et al

0.5

0.499 -

0.498 : : : : : : :
0.6
0.4
0.2

0
0.5

Ozy (€%/R)

0.499

04981 —~

| | |
0'4971 5 2 25 3 35

w (eV)

Figure A2. Single-valley contribution to the Hall conductivity o, ,,(w) from the valley K in regimes I, II, III (upper, middle, and
lower panels, respectively). Numerical results using equation (10) with a constant §,_; = 1 meVandand A = 1.66 eV are indicated
by black solid lines and the corresponding analytic results using equations (12)—(14) are shown by red dashed lines. The analytic result
equation (13) for regime II also contains a sharp peak at iw = A, which is not shown as it is beyond the resolution of the plot.
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Figure B1. Hall conductivity in regime II calculated from equation (10) including the full momentum dependence of 6,(p). Upper
panel: single-valley Hall conductivity contribution rendered from the respective values without pump field at valleys Kand K,
803,y (W) = 034y (w) — 1e?/(2h). Lower panel: the sum of the two graphs yield the total Hall conductivity

Oxy = 00y—1,xy + 00y—_1,x,- Parameters used are the same as in figure A2.
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