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Abstract
We study pattern-forming nonlinear dynamics starting from a continuous wave state of quasi-one-
dimensional two-component Bose–Einstein condensates with synthetic spin–orbit coupling induced
by Raman lasers. Modulation instability (MI) can occur even when the miscibility condition due to
the interatomic interactions is satisfied. We find that the initial stage of the nonlinear development is
consistent with the prediction of MI, where the two primary and secondary instability bands lead to
the spontaneous growth of the modulation and the subsequent complicated dynamics of pattern
formation. At later stages of the evolution, the wave functions undergo clear separation in the
momentum space, reflected in the dispersion of the single particle Hamiltonian.
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1. Introduction

Modulation instability (MI) is one of the most fundamental
processes of nonlinear wave dynamics in various systems [1].
The instability undergoes a spontaneous growth from small-
amplitude modulated waves and leads to stable large-amplitude
localized waves, typically solitary waves, as a result of interplay
between the intrinsic nonlinearity and the dispersion. The MI has
been studied in the nonlinear dynamics of matter waves,
corresponding to Bose–Einstein condensates (BECs) in ultracold
atomic gases [2]. The dynamics of the matter waves is described
by the nonlinear Schrödinger equation, also known as the Gross–
Pitaevskii (GP) equation, where the nonlinearity is associated
with the interatomic collisions. The remarkable feature of this
system is that the dispersion as well as nonlinearity can be
controlled experimentally in a well controlled manner [3, 4]. In
addition, there is diverse richness as the nonlinear wave system;
for example, we can consider the system of multicomponent

order parameters with various linear and nonlinear couplings
between them.

The MIs in scalar BECs have been firstly discussed in the
context of the formation of bright soliton trains [5–7]. This
has been experimentally demonstrated by tuning the interac-
tion of condensed atoms from repulsive to attractive [8–10].
For a uniform scalar condensate, the MI is possible only for
the attractive nonlinearity. Recently, the argument of MI has
been discussed for the BEC with long-range interactions [11],
where the MI is related to the formation of quantum droplets
as a result of the beyond mean-field corrections [12, 13].
Also, the MI has been extended to the system of multi-
component BECs. The presence of the intercomponent
interaction induces the MI even for the condensates with
repulsive nonlinearity [14]. When the intercomponent repul-
sion is stronger than the intracomponent one, the MI induces
the formation of multiple domains [15–19]. Recent theoretical
analysis has revealed that the formation and subsequent
coalesce dynamics of condensate domains are governed by
the universal scaling law [20–23].

The recent papers on MI have shown that two-component
BECs with spin–orbit coupling (SOC) are always subject to
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the MI for arbitrary choice of the nonlinearities [24–26].
Thus, the SOC extends the parameter region of the MI from
that of the conventional two-component BECs. The SOC can
be synthesized by the Raman laser coupling scheme between
internal states of cold atoms [27]. The static and dynamical
properties of the BECs with Raman-laser induced SOC have
been studied in many papers [27–35], but the strong nonlinear
evolution caused by MI has not been studied so much.
Recently, Ye et al studied the domain formation through the
parameter quench from the mixed phase to the plane-wave
phase of the BEC with the SOC [36].

The objective of the present work is the analysis of
nonlinear dynamics caused by MI in the effectively one-
dimensional (1D) BEC with synthetic SOC by the numerical
simulations of the GP equation. Following the MI analysis by
Bhat et al [24], we study the nonlinear dynamics starting from
continuous wave (cw) states of miscible two-component
BECs. By suddenly turning on the synthetic SOC, the system
is modulationally unstable and there appears a pulse-like
structure. The initial stage of the evolution is consistent with
the prediction of the MI analysis, where the dynamically
unstable modulations grow spontaneously from primary and
secondary instability bands in small-k and large-k regions.
The subsequent nonlinear evolutions exhibit complicated
dynamics of pattern formation in a real space, while clear
separation of the wave functions of the two component BECs
in a momentum space is observed due to the effect of the
SOC. Our results reveals the richness in the complex
dynamics exhibiting by the SOC BECs, alongside of the
recent experimental and theoretical observation of the spin
dynamics and the dynamical instabilities [37–39].

The paper is organized as follows. In section 2, we
introduce the basic formulation of the problem and briefly
review the MI in BECs with the Raman-induced SOC.
Section 3 presents the results of the series of numerical
simulations of the MI induced nonlinear dynamics. In
section 4, we devote to the conclusion.

2. MI of BECs with synthetic SOC

In this section, we first introduce the basic formulation of
BECs with a synthetic SOC in our problem. Next, we briefly
review the MI analysis done by Bhat et al [24] and specify the
parameter region to see the MI-induced nonlinear dynamics.

2.1. Model

We consider quasi-1D two-component (psudospin-1/2) BECs
with the combined Rashba–Dresselhaus SOC induced by the
Raman lasers [27]. The single-particle hamiltonian with the
synthetic SOC in a quasi-momentum frame has the 2×2
matrix structure [38]

  
s s

d
s s s= - + +

W
+( ) ( )h

m
p k V

1

2 2 2
. 1x z z x0 0 R

2 R
tr 0

Here, m is the atomic mass, = - ¶p ix x the quasi-momentum
operator along the x-direction, σr for r=x, y, z is one of the

Pauli matrices and σ0 is the unit matrix. The quasi-momentum
is related with the real momentum ¢px as s s s¢ = -p p kx x z0 0 R .
The trapping potential is assumed to be a harmonic form

w=V m x 2tr
2 2 . The SOC is characterized by three parameters,

kR, ΩR and δ under experimental control [27], where kR is the
wavenumber of the Raman laser which couples the two atomic
hyperfine states, ΩR is the Rabi frequency determined by the
intensity of the Raman laser, and δ is the detuning. For sim-
plicity, the detuning δ is set to be zero. The kinetic energy term
has a uniform synthetic gauge field  s- k zR proportional to the
spin matrix σz, which represents the 1D SOC whose magnitude
can be controlled by kR.

The GP energy functional including the single-particle
hamiltonian of equation (1) and the atom–atom interactions is
given by

ò å= Y Y + Y + Y Y
=

⎛
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The order parameters are represented by the two-component
spinor Y = Y Y( ), T

1 2 . The parameters uj and u12 are the
coupling constants adjusted to the quasi-1D description by
incorporating the length scale along the tightly confined
direction [16], being proportional to the s-wave scattering
lengths of atoms. We have set the same intracomponent
coupling constant as = =u u u1 2 for simplicity. When we
take the energy scale by the recoil energy =E k mR

2
R
2 and

the length scale by -kR
1, equation (1) is scaled as

s gs s s= -
¶
¶

- + G +⎜ ⎟⎛
⎝

⎞
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˜
˜ ˜ ˜ ( )h i

x
V

1

2
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2

tr 0

where the dimensionless quantities are represented by sym-
bols with tildes. In our unit, although the parameter g̃ is kept
unity, we leave this notation because this parameter is used as
a quench parameter to induce the MI. The Rabi frequency is
written as G = W˜ ( )E2R R and the trap potential as =Ṽtr

l x̃ 22 2 with the coefficient l = -( )a kho R
2, where =aho

 w( )m is the harmonic oscillator length. Following
a usual experimental condition, we use λ=0.02 in the
following calculation. The normalization of the wave function
is given by the total particle number in the 1D system =N

ò òY Y = Y + Y = +(∣ ∣ ∣ ∣ )†dx dx N N1
2

2
2

1 2. By replacing the

wave function as yY = ˜NkR , we have ò y y =˜ ˜ ˜†dx

ò y y+ =˜(∣ ˜ ∣ ∣ ˜ ∣ )dx 11
2

2
2 and define the dimensionless cou-

pling strengths as =˜ ( )g mNu k2
R and =g̃ mNu12 12

( )k2
R . The time-dependent GP equations derived from

equation (2) can be written as
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where tildes are omitted in the notation. The unit of time is
taken as ÿ/ER.
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2.2. Ground states

It is well known that two-component BECs without SOC
have two types of the ground state phases characterized by the
miscible or immiscible density profile [40, 41]. This mis-
cible–immiscible transition is associated with the relation of
the coupling constant; when >g g12 (g<g12) the system is
miscible (immiscible). This condition is deeply related to the
MI in conventional two-component BECs [14–16]. When, the
SOC is present, for a given strength of inter and intra-
component interaction, there exist three different ground state
phases depending on the Rabi frequency Γ [29–31]. The
phases are (i) the stripe (supersolid) phase, (ii) the plane-wave
(polarized) phase, and (iii) the mixed (single-minimum)
phase [42].

In the following, we consider the case g>g12>0,
which yields the miscible phase and the modulationally stable
condition in the absence of SOC. We fix the value g=50 and

=g g0.9512 . The typical ground state solutions with and
without the SOC are shown in figure 1. With these coupling
constants, the phase (i) appears for 0<Γ  0.2, (ii) for
0.2Γ1.0, and (iii) for 1.0Γ. The transition between
phase (ii) and (iii) is consistent with the property of the dis-
persion relation of the single particle Hamiltonian
equation (3) for Vtr=0, which is given by

 g
g= +  + G ( )k

k
2 2

; 6
2 2

2 2 2

the branch - has a change between single- and double-
minimum structure at Γ=γ (γ=1 in our unit). We choose

the values of the Rabi coupling Γ=0.1, 0.5, and 1.5,
corresponding to three different phases, to study the nonlinear
dynamics caused by MI for the initial state in figure 1(a).

2.3. MI in BECs with the Raman-induced SOC

Here, we address the MI condition for the two-component
BECs with the Raman-induced SOC. Bhat et al considered
the MI of the miscible cw (uniform) state of two-component
BECs with respect to the general parameter sets of the
Raman-induced SOC and the interaction strengths [24].
Irrespective of the combinations of the interaction strengths,
the cw states are always affected by the MI in the presence of
the SOC. In this work, we confine ourselves to the case
g>g12, γ=1 and Γ>0.

The condition of MI is given by the appearance of the
imaginary component in the excitation frequency Ω for the
small-amplitude modulation around the initial cw state. The
details of this condition are given in [24] and the results are
summarized in the appendix A. Figure 2 represents the MI
gain defined by x = W∣ ( )∣Im with respect to the wave
number k and the Rabi frequency Γ. Here, the dispersion
relation has two branches, corresponding to the (in-phase)
density wave excitation Ω+ and the (out-of-phase) spin-wave
excitation Ω−. From figure 2, we see that the cw state is
always dynamically unstable when there is the SOC. There
are four unstable domains in the k-Γ space; the two domains
in the smaller-∣ ∣k region, referred to as a ‘primary MI band’,
come from the two branches Ω± with a equivalent contrib-
ution, while the other two domains, referred to as a ‘sec-
ondary MI band’, in the larger-∣ ∣k region come from only the
branch Ω−. Thus, the SOC brings about a new regime of the
MI for the two-component BECs which is dynamically stable
without the SOC.

Figure 1.Density profiles of the ground state of equations (4) and (5)
for the coupling constants g=50 and =g g0.9512 , and the trap
frequency λ=0.02. Figure (a) represents the profile without the
SOC, Γ=γ=0, which corresponds to the initial states of the time
evolution shown below. Figures (b) represents the ground state for
Γ=0.1, and (c) for Γ=0.5, and (d) for Γ=1.5, corresponding to
the stripe phase (0<Γ  0.2), plane-wave phase (0.2 Γ  1) and
mixed phase (1  Γ), respectively with γ=1.

Figure 2. MI gain defined as x = W( )Im with the excitation
frequency Ω in the k-Γ plane for g=50, =g g0.9512 and
n0=0.0066, which is taken from the Thomas–Fermi density at
x=0 (see figure 1(a)). There are four instability bands, where the
two inner bands are given by the two branches W+( )Im and W-( )Im
with an equivalent contribution, while the outer two bands are given
by W-( )Im .
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3. Nonlinear dynamics

In this section, we discuss the MI-induced nonlinear
dynamics of the BECs with the synthetic SOC. We solve
equations (4) and (5) numerically by the split-step fast-Fourier
method; details of the numerical method are described in the

appendix B. To generate MI, we turn on the SOC in the
initially miscible condensates in figure 1(a) by introducing Γ

and γ (=1) suddenly at t=0.
The developed MI dynamics for different strengths of Γ,

which gives the three different ground states in figures 1(b)–
(d), are as follows.

Figure 3. Time development of the condensate densities in the real coordinate space, (a) y= ∣ ( )∣n x1 1
2 and (b) y= ∣ ( )∣n x2 2

2, and in the quasi-
momentum space, (c) f= ∣ ( )∣n k1 1

2 and (d) f= ∣ ( )∣n k2 2
2 for Γ=0.1. The solid red and the dashed green curves represent the MI gain ξ

(equation (A8) and the cross section of figure 2 at Γ=0.1) for Ω− and Ω+, respectively. The lower panels show the snapshots of the density
profiles at different times: (e)–(i) in the coordinate space and (j)–(n) in the quasi-momentum space. Simulation is done for the range
[−200:200] with 4096 grid points in the coordinate space.
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3.1. Γ=0.1

Figure 3 shows the time development of the MI-induced
spatial pattern formation from the cw state for Γ=0.1. The
upper left panels (a), (b) and the lower panels (e)–(i) represent
the dynamics of the condensate densities y=( ) ∣ ( )∣n x xi i

2 in
the coordinate space. The motions of both components
behave similarly and keep inversion symmetry with respect to
x=0. First, the condensates make out-of-phase dipole
motions to shift the centers of mass from each other. As time
evolves, the densities of both components are well separated

and break into smaller domains. After t=50, the both
components fragment into the non-periodic short-wavelength
domains and continue to make a chaotic oscillation.

Further insight can be seen in the dynamics of the wave
function in the quasi-momentum space. The upper left panels
(c), (d) and the lower panels (j)–(n) represent the dynamics of
the densities f=( ) ∣ ( )∣n k ki x i x

2 of the Fourier component

òf y= -( ) ( )k dx x ei x i
ik xx , where in a lab frame figure 3(j)

corresponds to the initially overlapped wave packets sitting at
trap center with left-going spin-up momentum −ÿkR and a

Figure 4. The results similar to figure 3 for Γ=0.5.
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right-going spin-down momentum ÿkR. The panels (c), (d)
also show the MI gain (cross section of figure 2 at Γ=0.1)
for clarity. In the quasi-momentum space, the SOC g ¶i x in
equations (4) and (5) contributes as a linear potential g+ kx

and g- kx for f1 and f2, respectively. Thus, f1 and f2 are
basically driven to the negative and positive direction in the k-
space, respectively. First, since the primary MI bands exist
around k=0, the low-energy dipole motions grow sponta-
neously due to the MI. This dipole motion induces the spin-
wave excitations and leads to the generation of unstable
modes in the secondary bands. The panels (c) and (d) clearly

show this transfer process of the wave component from small-
to large-k region, where the ( )( )n kx1 2 propagates to the nega-
tive (positive) wave number of the secondary MI band
associated with Ω−. During the time evolution, from the
panels (j)–(n), we can see that the waves collapse into the
complicated short-wavelength domains but show clear phase
separation in the positive and negative range of the quasi-
momentum space because of the constant bias of the SOC.
Since the double minima of equation (6) exist at

g g=  - G » k 12 2 , f∣ ( )∣kx1
2 and f∣ ( )∣kx2

2 eventually
distribute around kx∼1 on average.

Figure 5. The results similar to figure 3 for Γ=1.5.
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3.2. Γ=0.5

For the increased value of Rabi frequency, Γ=0.5, the
evolution of the density in the coordinate space is shown in
figures 4(a), (b) and snap shots of density at different times
are depicted in figures 4(e)–(i). Initially a few density stripes
appear in both components at the center of the condensate and
grow in-phase. As time evolves, the number of stripes
increases and outer density exhibits large oscillatory beha-
viors. Also, one can see that the initial shift of the center-of-
mass shift observed for Γ=0.1 is suppressed here. Finally,
the both components are fragmenting into the non-periodic
short-wavelength domains as in the case of Γ=0.1.

In the Fourier space, figures 4(c), (d) and (j)–(n) show
that the initially excited wave number exactly matches with
the analytically predicted kmax of the primary MI band, as
seen in figures 4(c), (d). Although a small amount of exci-
tations appears at the secondary bands at later times, the
increased distance (when compared to the that of Γ=0.1
case) between the primary the secondary bands keeps the
excitations well in the primary bands. Also, the dynamics of
the components (f1 and f2) are not completely separated into
the positive and negative values of the wave number as in the
case of Γ=0.1. This is expected because of the reduction in
the effective potential given by the combination of Rabi
coupling and the SOC. These properties are again consistent
with the single-particle dispersion of ò−, where the separation
of the double minima are reduced compared to the case
of Γ=0.1.

3.3. Γ=1.5

Figures 5(a), (b) and (e)–(i) show that the spatial pattern
formation for Γ=1.5 which resemble that of Γ=0.5. The
density modulations of the both components generate spon-
taneously at the center, growing to large amplitude density
waves. Then, each component makes a spatial separation
(figure 5(h)) and continues a complicated chaotic oscillation.
In the Fourier space, figures 5(c), (d) and (j)–(n) display that
initial modulation appears at the primary and secondary

bands, consistent with the MI analysis. Here, the excitations
happens symmetric to k=0 in the primary bands, mean-
while, in the secondary band excitations are asymmetric due
to the increased value of ∣ ∣k . Since the dispersion ò− of
equation (6) has a single minimum at k=0 for Γ=1.5, the
separation of fi in the quasi-momentum space does not occur;
the fragmented domains of fi oscillate around k=0 as seen
in figures 5(c), (d).

Figure 6 shows the plot of the critical time tMI at which
MI induced chaotic dynamics starts. It is found that with Rabi
frequency Γ, tMI also increases and exhibits a linear relation
for Γ0.5. This is because the primary MI band are well
separated from the k ; 0 region, thus, there require some time
to reach the finite wave length modes through the nonlinear
mode couplings. If we input the initial noise corresponding to
the wave number at the primary or secondary MI bands, the
MI grows quickly after the SOC is turned on.

4. Conclusions

In conclusion, we investigate the nonlinear dynamics induced
by MI in two-component BECs with Raman-induced synth-
etic SOC. In the previous studies, the MI was predicted to
occur for arbitrary choices of the intra- and intercomponent
coupling constants. We demonstrated that even for miscible
two-component BECs, which is dynamically stable without
SOC, the MI can take place and cause complicated nonlinear
dynamics of pattern formation. The onset of the nonlinear
evolution is consistent with the theoretical prediction of the
MI for homogeneous two-component BECs. The presence of
the primary and secondary MI bands induces the character-
istic two-step nonlinear evolution of the pattern formation. At
the later stages of the evolutions, the wave functions in the
quasi-momentum space undergo the separation due to the
asymmetric feature of the SOC, depending on the values of
the Rabi coupling corresponding to the three ground state
phases.

Although the MI yields the very complicated dynamics
as shown in figures 3, 4 and 5, the ground states are well-
defined shape as in figures 1(b)–(d). It is interesting to see the
relaxation process from the strongly nonequilibrium frag-
mented states to the ordered ground states by introducing
some dissipation or fluctuation effects. Also, revealing non-
linear dynamics in higher-dimensions is an interesting direc-
tion for future studies. We hope that this work further
stimulates the studies of the nonlinear dynamics in multi-
component BECs.
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Appendix A. Analytical formulation

In [24], the condition of MI under the equations (4) and (5)
has been derived analytically. In a uniform system Vtr=0,
the wave functions are expanded from the uniform density as
y dy= +( )nj j j0 and the linear stability analysis for the
fluctuation δ ψj yields the eigenfrequecy

W = L  L + [ ] ( )R
1

2
4 , A12 2

where

gL = + - G + + G( )( ) ( )k k k G G2
1

2
2 2 , A2x x x

2 2 2 2
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2

2
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The MI gain is defined as

x = W∣ ( )∣ ( )Im . A8

Appendix B. Numerical simulation

In our simulations, we employed the split-step fast-Fourier
method to solve the GP equations. The total Hamiltonian of
the BEC with SOC is

   = + + ( ), B11 2 3
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with the densities y= ∣ ∣n1 1
2, y= ∣ ∣n2 2

2, and y= +∣ ∣n 1
2
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2. Here, Hamiltonian is written in the dimensionless form.

In the time development described by equations (4) and (5),
the Hamiltonian is split into three integrable parts as 1, 2
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The evolution of corresponding resolvent operators with
the time step τ is written as
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Now the evolution of the total Hamiltonian,  is
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In the simulation we fix g=50, =g g0.9512 , γ=1, and
τ=0.005.
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