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Abstract
We studymultiple period states of a two-component unpolarized superfluid Fermi gas in an optical
lattice along the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensate (BEC) crossover.
The existence of states whose period is amultiple of the lattice spacing is a direct consequence of the
nonlinear behavior of the gas, which is due to the presence of the order parameter associatedwith
superfluidity. By solving Bogoliubov–deGennes equations for a superfluid flowwithfinite
quasimomentum,wefind that, in the BCS side of the crossover, themultiple period states can be
energetically favorable compared to the normal Bloch states and their survival time against dynamical
instability drastically increases, suggesting that these states can be accessible in current experiments, in
sharp contrast to the situation in BECs.

1. Introduction

Density structures and patterns caused by the interplay of competing effects are ubiquitous in nature. Examples
are the competition between dispersion and nonlinearity, which yields solitons [1], the competition between
crystalline order and Peierls instability of conduction electrons, which results in charge and spin density waves
[2], or the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state [3], with a spatially dependent pairing field
originating from the competition between themismatch of the Fermi surfaces in the imbalanced systems and the
energy gain by the condensation; but similar conditions also occur in the ‘pasta’ phases in neutron stars [4], in
nuclear halo [5], and in superfluid 4He [6]. In the case of superfluids in a periodic lattice, nonlinearity due to the
presence of the order parameter, which favors a quadratic energy dispersion, can lead to the persistence of the
quadratic-like dispersion beyond the Brillouin zone edge and give rise to non-trivial loop structure called
‘swallowtail’ in the energy band [7–14]. Due to their high controllability [15, 16], ultracold gases offer an
excellent test bed for exploring these intriguing phenomena.

For atomic Bose–Einstein condensates (BECs)flowing in periodic potentials withfinite quasimomentum, it
was found that nonlinearity of the interaction can cause the appearance of stationary states whose period is not
equal to the lattice constant as in the usual Bloch states, but is amultiple of it [16–18]; such states are called
multiple (or n-tuple)period states. In BECswithout long-range interaction, however, these states are
energetically unfavorable compared to the normal Bloch states and unstable against small perturbations [17].
Herewe investigatemultiple period states in atomic Fermi superfluids, which are particularly interesting for
their analogs in condensedmatter physics and nuclear physics, such as superconducting electrons in solids and
superfluid neutrons in neutron stars [19, 20]. Furthermore, by using Feshbach resonances one can continuously
go from the Bardeen–Cooper–Schrieffer (BCS) to the BEC regimes [21, 22], thus allowing one to understand
Bose and Fermi superfluids from a unified perspective. Unlike the case of Bose gases, little has been studied about
multiple period states in Fermi gases and their existence itself along the BCS–BEC crossover is an open question.
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In this work, we show that they indeed exist and they can be energetically favorable compared to the normal
Bloch states in the BCS regime. Furthermore, we find that, despite being dynamically unstable, their lifetime
becomes drastically long by going toward the deep BCS limit, possibly allowing for their experimental
observation.

This paper is organized as follows. After we explain the basic formalism employed in the present work in
section 2, we show thatmultiple period states appear in Fermi superfluids along the BCS–BEC crossover and
discuss their stationary properties in sections 3 and 4.We then discuss their dynamical stability in section 5.
Finally, this paper is concluded in section 6.

2. Setup and basic formalism

Weconsider an equally populated (unpolarized) two-component Fermi gas in the superfluid phase at zero
temperature,moving in a one-dimensional (1D) optical lattice,
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where s is the dimensionless parameter of the lattice height, E q m2R
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B
2º is the recoil energy,m is the atom

mass, q dB pº is the Braggwave vector, and d is the lattice constant. Note that qB differs from the fundamental
vector of a 1D reciprocal lattice, d2p , by a factor of 2. The gas is uniform in the transverse directions andwe
look for stationary states of the system in the BCS–BEC crossover by numerically solving the Bogoliubov–de
Gennes (BdG) equations [22, 23]:
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corresponding quasiparticle energy. The chemical potentialμ is determined from the constraint on the average
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where g is the coupling constant for the s-wave contact interactionwhich needs to be renormalized [24–27]. The
total energyE is given by
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In this formalism, a stationarymotion of the superfluid in the z-direction, relative to the infinite periodic
potential at rest, is described by solutions of equation (2)with quasimomentum P per atom (not per pair), or the
correspondingwave vector Q P = , such that the quasiparticle amplitudes can bewritten in the Bloch form
as u u zr e ei i

Qz k ri i( ) ˜ ( ) ·= and v v zr e ei i
Qz k ri i( ) ˜ ( ) ·= - leading to the pairing field as zr e Qzi2( ) ˜ ( )D = D . Here

z˜ ( )D , u zi˜ ( ), and v zĩ ( ) are complex functionswith period ν times d, with 1, 2, 3,{ }n Î  , and thewave vector
kz lies in thefirst Brillouin zone for a supercell (a cell containing several primitive cells)with period ν, i.e.,
k qz B∣ ∣  n . This Bloch decomposition transforms (2) into the following BdG equations for u zi˜ ( ) and v zĩ ( ):

H z z

z H z

u z
v z

u z
v z

, 3
Q

Q

i

i
i

i

i

˜ ( ) ˜ ( )
˜ ( ) ˜ ( )

˜ ( )
˜ ( )

˜ ( )
˜ ( ) ( )

*


D

D -
=

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where

H z
m

k Q k V z
2

i .Q z z

2
2 2

ext˜ ( ) [ ( ) ] ( )
mº + - ¶ + + + -^

Here, k k kx y
2 2 2º +^ and the label i represents thewave vector k aswell as the band index.We solve this BdG

equations (3) for a supercell with period ν ( d z d2 2 n n- ) to obtain the period-ν states. As in
[13, 20, 28, 29] (see also appendix (iv)), the detailed procedure follows these steps: starting froman initial guess
of z˜ ( )D andμ (final results are robust to the choice of the initial guess), we diagonalize thematrix of the left-hand
side of the BdG equations (3) and obtain i , ui˜ , and vĩ. Based on the obtained ui˜ and vĩ, we calculate the average
number density n0 and z˜ ( )D . If the resulting n0 does not agreewith a given target value n0

target, we updateμ
according to the difference between these values. Specifically, in our calculations, we set the updated value m¢
using the following formula: n n0

target
0( )m m¢ = h with 1h < such as 2 3h = , 1/3, 1/5, etc. Untilμ converges

within E10 R
7~ - , we iterate the above procedure using the obtained z˜ ( )D and updatedμ.We check that other

key quantities also convergewith sufficient accuracy.
In the following, wemainly present the results for s=1 and 2with E E 0.25RF = as examples, where

E k m2F
2

F
2 ( )= and k n3F

2
0

1 3( )p= are the Fermi energy andwavenumber of a uniform free Fermi gas of
density n0. These values fall in the range of parameters of feasible experiments [30].We have performed
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systematic calculations for different values of E ERF (0.2, 0.25, and 0.5) aswell and checked that themain results
of stationary properties remain qualitatively the same.We denote by Pedge the quasimomentum P per atom at the
edge of the Brillouin zone for the normal Bloch states with period 1. For superfluids of fermionic atoms,
P q 2edge Bº . Note that this value differs by a factor of 2 from that of superfluids of bosonic atoms, qB , because
the elementary constituents of Fermi superfluids are pairs of fermionic atoms.

3. Stationary solutions

Infigures 1(a) and (b), we show the profiles of the pairing field z∣ ( )∣D and the number density n(z) of the lowest
period-doubled states (period-2 states), respectively. Herewe set P P q2 4edge B= = at the Brillouin zone
edge of the period-2 states, where the feature of the period-2 states appearsmost prominently9. The feature of
the period doubling and the difference between the regions of z d1 0- < and z d0 1< can be clearly
seen in z∣ ( )∣D at any value of k a1 sF . At P P 2edge= , z( )D of the period-2 states has a node (see z d 0.5= in
figure 1(a)) and consequently the supercurrent is zero ( E 0;P¶ = seefigure 3). On the other hand, especially in
the deeper BCS side ( k a1 1sF = - ), the difference in n(z) between the regions of z d1 0- < and

z d0 1< is small (see the red line infigure 1(b)). Around z d 0.5= , where z∣ ( )∣D vanishes, the density
remains large, suggesting the existence of Andreev-like localized states. The density difference between the two
regions becomes larger with increasing k a1 sF toward the BEC regime.

Figure 1.Profiles of (a) themagnitude of the pairing field z∣ ( )∣D and (b) the density n(z) of the lowest period-doubled states with
period d2 (period-2 states) at their Brillouin zone edge P P q2 4edge B= = for three different values of k a1 sF : k a1 1sF = - (red
solid line),−0.5 (green dashed line), and 0 (blue dotted line). They are obtained for s=1 and E E 0.25RF = . At P P 2edge= , z( )D of
the period-2 states has a node.

Figure 2.Profiles of (a) the pairingfield z∣ ( )∣D and (b) the density n(z) of the normal Bloch states (magenta dashed line for
k a1 1sF = - and cyan dashed–dotted line for k a1 0sF = ) and period-doubled states (red solid line for k a1 1sF = - and blue dotted

line for k a1 0sF = ) at P P 2edge= . Here we set s=1 and E E 0.25RF = as infigure 1.

9
For the BEC case it has been shown that, with increasing nonlinearity (i.e., the interaction strength gB) from the linear limit (gb=0), the

period-doubled states start to appear at the Brillouin zone edge of the period-2 system and their band extends in the Brillouin zone [17]. In
this sense, the Brillouin zone edge for the period-2 system is a representative point for period-doubled states.
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Infigure 2, we compare the profiles of z∣ ( )∣D and n(z) between the normal Bloch states and the period-
doubled states for k a1 1sF = - and 0. Sincewe set P at the Brillouin zone edge of the period-doubled states
(P P 2edge= ), where their supercurrent is zero, z( )D ʼs of the period-doubled states have a nodewhile those of
the normal Bloch states do not. Note that, in the BCS regime of k a1 1sF = - , n(z)ʼs of the normal Bloch state
and the period-doubled state are almost the same, but z∣ ( )∣D ʼs are significantly different.

It is instructive to consider the deep BCS limit of k a1 sF  -¥. There, z( )D , which is the origin of the
nonlinearity, vanishes and n(z) of the neighboring sites becomes identical so that the nature of the period
doubling disappears in this limit.We observe that by going to the deep BCS regime, where z( )D and the
supercurrent are infinitesimally small, the energy difference E P E 0( ) ( )- for period-2 states decreases (i.e.,
E(P) becomesmoreflat) and period-2 states at P P 2edge= approach the normal Bloch state atP=0. These
observations are consistent with the fact that, if z 0( )D = , our nonlinear BdG equations reduce to the linear
Schrödinger equation, whose solutions have the periodicity of the lattice due to the Bloch theorem.Multiple
period states are hence possible only in the superfluid phase. It is worthmentioning here that thesemultiple-
period states are essentially different from the FFLO [3] or soliton lattice [31] states in the imbalanced (polarized)
systems. In our case, the non-trivial spatial dependence of the pairing field is a purely nonlinear phenomenon
caused by the presence of the superfluid order parameter, while in the other cases it is due to the non-zero
center-of-massmomentumof the pair, which requires themismatch of the Fermi surfaces between two
components. Themultiple period states studied in the present work is also different from the charge density
wave due to the nesting of the Fermi surface (see appendix (i) for details).

As a final comment on the spatial structure of stationary solutions, it is worth noting that the presence of a
node inΔ is a sufficient condition for a zero supercurrent, but it is not a necessary condition. For example, at the
Brillouin zone center, the supercurrent is of course zero because the phase ofΔ is constant (P= 0), butΔ does
not have a node. On the other hand, for non-zero P, the phase ofΔ depends on the position. Therefore, when the
supercurrent is zero at the Brillouin zone boundary,Δmust have a node. States withmore nodes inΔhave
higher energy in general. As to the lowest periodic states whichwe discuss in the present work, the number of
nodes is thus one per supercell at the Brillouin zone boundary. Tominimize the energy, the node is located at the
potentialmaximum.

4. Energetics

Infigure 3, we plot the energy per particle of the lowest band as a function of the quasimomentum P for the
normal Bloch states (blue dotted line) and themultiple period states.We show the results at k a1 1sF = - in the
BCS side. In the region of smallP, all lines of themultiple period states collapse onto the line of the normal Bloch
states, as they are all equivalent in this region, the states with period 1 being just a subset of all themultiple period
states10.

Figure 3.Energy E per particle in units ofER as a function of the quasimomentum P. Here we set s=1, E E 0.25RF = , and
k a1 1sF = - . The normal Bloch states with period d are shown by the blue dotted linewith • symbols, and themultiple period states

are shown by the red solid linewith+ (period 2), the green dashed linewith à (period 3), the purple dashed–dotted linewith○ (period
4), and themagenta solid linewith, (period 5). The dotted lines at P P 1 3edge = , 0.25, and 0.2 show thefirst Brillouin zone edge for
the period-3, 4, and 5 states, respectively. The inset shows that the lowest band of the period-5 states continues beyond thefirst
Brillouin zone edge and the swallowtail appears (shown by the red arrow).

10
The critical quasimomentum Pc for the pair-breaking instability of the normal Bloch state is P0.147 edge in this case. Note that Pc seems to

coincidewith the value at which themultiple period states start to separate from the normal Bloch state. This suggests that emergence of the
multiple period states lead to the Landau instability of the normal Bloch state.
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Conversely, themultiple period states for small ν ( 4n in the case offigure 3) become energeticallymore
stable than the normal Bloch states near the first Brillouin zone edge of eachmultiple period state, i.e.,
P Pedge n for period-ν states. In particular, the period-doubled states are the lowest in energy in awide range
ofP. (In the case of figure 3, period-2 states are always energetically lower than period-3 states, which holds in the
region of E E0.245 0.4RF  for the same values of s= 1 and k a1 1sF = - (see appendix (ii) for details).)
This is in striking contrast to the situation in BECs and in the BEC regime of the BCS–BEC crossover (see later),
where the lowest band of normal Bloch states is always lower in energy than themultiple period states [17]; the
latter appear as an upper branch of the swallowtail band structure (with E 0P

2¶ > ) around the Brillouin zone
edge of the respectivemultiple period states [17]. Figure 3 shows instead that, in the BCS regime, the lowest band
of themultiple period states for small ν has E 0P

2¶ < near the Brillouin zone edge P Pedge n .
Atfirst sight, this seems to imply a pathological situation inwhich ν-period states with large νwould be lower

in energy than the normal Bloch states even in the limit of P 0 . However, this pathological situation is saved
by the emergence of the swallowtail: themultiple period states with large ν continue being almost identical to the
normal Bloch states, and keep their nearly quadratic dispersion around P 0~ even beyond their first Brillouin
zone edge at Pedge n , which results in the swallowtail band structure for the period-ν system. In the case of
figure 3, the swallowtail starts to appear at 5n = (see the inset offigure 3).

Infigure 4, we show the total energy difference E E E2 1D º - between the normal Bloch states (E1) and the
period-2 states (E2) at P P q2 4edge B= = along the BCS–BEC crossover. Aswe have seen infigure 3, the
period-doubled states are energeticallymore stable (i.e., E 0D < ) in the BCS regime.With k a1 sF increasing
from the deep BCS limit, ED increases from anegative value and finally period-doubled states become higher in
energy than normal Bloch states (i.e., E 0D > ) in the BEC side.Herewe point out that, in the region of E 0D < ,
the period-doubled states form a bandwhich is convex upward and smoothly connects to that of the normal
Bloch states (see figure 3), and the swallowtail does not exist. On the other hand, in the region of E 0D > , they
form a concave upper edge of the swallowtail, which is located above the crossing point (‘×’-like shape) of the
swallowtail. Therefore, hysteresis caused by the swallowtail, which could be observed in the latter region
( E 0D > ) of the BCS–BEC crossover and in BECs [14], would disappear in the former region ( E 0D < ).

We also show the results in the BEC side obtained by solving theGross–Pitaevskii (GP) equation for
corresponding parameters (the green dashed line). Namely, GP equation for bosons ofmass m m2b =
interactingwith scattering length a a a2b s saº = for themean-field theory in an optical lattice V z2 ext ( ).We can
relate k a1 sF and g n Eb b R b, , where g a m4b b b

2pº , n n 2b = , and E d m2R b b,
2 2( ) pº are the interaction

parameter, the average density, and the recoil energy of bosons, as k a g n E E E1 4 3s b b R b RF ,
1

F( )( ) ( )a p= - .We
note that ED of theGP results approaches zero frompositive valueswith increasing k a1 sF . This suggests that,
before the BdG results (the red and blue solid lines) converge to theGP ones in the deep BEC regime, ED takes a
maximumvalue.

For different strength s of the lattice, we see that the curve of ED is somewhat shifted towards the BCS side
with increasing s, so the period-doubled states become less stable (see the red solid linewith+ for s= 1 and the
blue solid line with×for s= 2 infigure 4). Thismight be due to the formation of bosonicmolecules of fermionic
atoms induced by the external lattice potential [28, 32, 33].

The energetic stability ofmultiple period states in the BCS regime can be physically understood as follows.
Let us consider the different behavior of z( )D and n(z) for a period-2 state and a normal Bloch state at
P P 2edge= . In the case of a normal Bloch state, since z∣ ( )∣D is exponentially small in the BCS regime, we can

Figure 4.Difference E E E2 1D º - of the total energy per particle in units ofER between the normal Bloch states (E1) and period-
doubled states (E2) at P P 2edge= . The parameters we have used are s=1, 2 and E E 0.25RF = . The red solid linewith+ (s = 1) and
blue solid linewith ×(s = 2) show the results obtained by solving the BdG equations and the green dashed line shows the results by the
Gross–Pitaevskii equations for parameters corresponding to s=1 and E E 0.25RF = .
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distort the order parameter z( )D to produce a node, like the one in the period-2 state, with a small energy cost
(per particle) up to the condensation energy E N Econd F∣ ∣  , where E g r rdcond

1 3 2∣ ( )∣òº D- . However,

making a node in z( )D kills the supercurrent j V EP
1= ¶- , which yields a large gain of kinetic energy (per

particle) of the superfluid flowof order P m ERedge
2~ ~ . Even if z( )D is distorted substantially to have a node,

the original density distribution of the normal Bloch state is almost intact so that the increase of the kinetic
energy and the potential energy due to the density variation is small. Therefore, the period-2 state is energetically
more stable than the normal Bloch state in the BCS regime. In the above discussion, the key point is that z( )D
and n(z) can behave in a different way in the BCS regime.On the other hand, in the BEC limit, the density is
directly connected to the order parameter as n z z 2( ) ∣ ( )∣µ D , and distorting the order parameter accompanies
an increase of the kinetic and potential energies due to a large density variation.

More generally, for period-ν states in comparisonwith a normal Bloch state at P Pedge n= , the energy cost

to distort z( )D to have a node is up to E N Econd F∣ ∣~  , but the energy gain is of order P m ERedge
2 2 2n n~ ~ ,

which is reduced by a factor of 2n .We thus see that period-ν states with sufficiently large ν cannot be
energeticallymore stable than the normal Bloch state as has been observed before.

5.Dynamical stability and survival time

So far, we have seen thatmultiple-period states exist as energetically stable stationary solutions of the BdG
equations. The next important issue is their dynamical stability, that is, whether and how long they can survive
under small perturbations, which are unavoidable in experiments.We face this problemby performing
numerical simulations based on the time-dependent BdG (TD-BdG) equations.

A crucial difference between the stationary calculations (TD-BdG) in the previous sections and the
dynamical (TD-BdG) calculations in this section is the following. The ideal configuration to study the stationary
solutionswith a given periodicity ν is a supercell with ν sites under the Bloch-wave boundary conditions, as we
have done in the previous sections. Conversely, dynamical calculations has to account for excited states with any
wavelength, possibly including longwavelength perturbations whichmay trigger a dynamical instability, so that
the Bloch-wave boundary conditions cannot be used.We instead solve the TD-BdG equations in a large
computational box of length Lz in the z-direction, including a sufficiently large number of supercells of ν sites,
with the periodic boundary conditions, in order tomimic an infinite systemwith good enough accuracy.We use
L d32z = to d64 ; Lz is chosen to be amultiple of d8 for convenience, so that the allowed values of thewave
vector kzdiscretized as k L2z zpD = are commensurate with the value of the quasimomentum at the first
Brillouin zone edge for the period-2 states, P q2 4edge B( )p = . Finally, stationary BdG calculations for such large
boxeswith the periodic boundary conditions are not feasible with our current computational resources, since
they require long iterative procedures formany values of P; a direct comparison between stationary andTD-BdG
results would be possible only for smaller values of Lz, corresponding to less than about ten lattice sites, for which
the extrapolation to an infinite systemwould be unreliable.

As initial configuration of the TD-BdG simulations, we use a configuration based on the stationary solution
of the BdG equations, which is constructed as follows. Among the quasiparticle amplitudes ui and vi obtained by
solving equation (3), we select thosewith (quasi)wave vectors kz equal tomultiples of k L2z zpD = . In this way,
we construct the approximate stationary solution of the BdG equations (2)with the periodic boundary
condition. Thenwe integrate the TD-BdG equations using a 4th order predictor-correctormethod. The basic
structure of the code is the same as the one in [34].

The right andmiddle panels offigure 5 show the time evolution of z∣ ( )∣D of the period-doubled state at
P P 2edge= in the BEC side ( k a1 0.5sF = ) and at unitarity, respectively.We see that z∣ ( )∣D (and n z( )) does not
keep its initial profile and large-amplitude oscillations triggered by the dynamical instability set on at
t E55 R in the right panel and t E130 R in themiddle panel.We also notice that the TD-BdG
simulations allowus to identify the spontaneously growing excitations which trigger the instability. The
wavelength of the growingmode is d4 , d4 , and d2 in the case of k a1 1sF = - (left panel offigure 5), 0 (middle
panel), and 0.5 (right panel), respectively.

It is remarkable that the survival time survt of the period-doubled states until they are destroyed by the large-
amplitude oscillations drastically increases as going toward the BCS side. In the left panel offigure 5, we show the
time evolution of z∣ ( )∣D of the period-doubled state at P P 2edge= for k a1 1sF = - . In this realization, the
period-doubled state almost keeps its initial profile of z∣ ( )∣D until t E900 R , and even longer for n(z)
because only a small fraction of particles participate in the pairing in the BCS regime.

To further analyze the time scale of the deviation z t z, 0∣ ( )∣ ∣ ( )∣D - D from the true stationary state z0( )D ,
we take its spatial Fourier transform and look formodes with exponentially growing amplitudes

t 0 e t∣ ( )∣ ∣ ( )∣h h= g . From a fit we extract the growth rate γ of the fastest growingmode. The growth rate γ
corresponds to the imaginary part of the complex eigenvalue for the fastest growingmode obtained by the linear
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stability analysis [16, 35]. This is intrinsic property of the initial stationary state independent of themagnitude of
the perturbation.

The resulting γ is shownby the black solid line infigure 6, which clearly shows the suppression of γwith
decreasing k a1 sF . In practice, the survival time survt of the period-doubled states depends on the accuracy of
their initial preparation.We estimate survt with 0 e 1t˜( )h ~g , where 0˜( )h is the relative amplitude of the initial
perturbationwith respect to 0∣ ∣D for the fastest growingmode. Infigure 6, we show survt for four values of 0˜( )h .
This result suggests that if the initial stationary state is preparedwithin an accuracy of 10%or smaller, this state
safely sustains for time scales of the order of E100 R ormore in the BCS side, corresponding to survt ofmore
than the order of a fewmilliseconds for typical experimental parameters [30]: for E 2 7.3 kHzR b, p= ´ ´
used in the experiment of [30], E1 0.0109R = msec. In the deep BCS regime ( k a1 1sF - ), survt increases
further andmay become larger than the time scale of the experiments, so that the period-doubled states can be
regarded as long-lived states and, in addition, since they have lower energy than the usual Bloch states in afinite
range of quasimomenta, they could be realized by, e.g., quasi-adiabatically increasing P from the ground state at
P=0, which is the normal Bloch state.

Finally, it is worth noting that the BCS transition temperatureTc is roughly estimated asT T e k a
c F

2 sF~ p with
T E kF F Bº and kB is the Boltzmann constant. For the above value ofER used in the experiment of [30],
T 200c ~ nK at k a1 1sF = - , 50 nK at k a1 2sF = - , and 10 nK at k a1 3sF = - . Therefore, superfluidity can
be realized in thewhole region shown infigure 6 in the current experiments.

Figure 5.Time evolution of themagnitude of the pairingfield z t z t, 0, 0∣ ( )∣ ∣ ( )∣D D = = of the period-doubled state at
P P 2edge= for k a1 1sF = - (left panel), 0 (middle panel), and 0.5 (right panel). Here, s=1 and E E 0.25RF = . Actual calculation
has been done for L d32z = in the cases of k a1 0.5sF = and 0 and for L d48z = in the case of k a1 1;sF = - a part of the system is
shown in thefigure.

Figure 6.Growth rate γ of the fastest growingmode (black solid line) and survival time survt of the period-doubled state at P P 2edge=
(s = 1 and E E 0.25RF = ). Blue dashed–dotted, green dotted,magenta dashed double-dotted, and red dashed lines show survt for
relative amplitude 0˜ ( )h of the initial perturbation of 10%, 1%, 0.1%, and 0.01%, respectively. (The regions of k a1 2sF < - and 0>
are extrapolated.)
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6. Conclusion

Wehave studiedmultiple period states, especially period-doubled states, of superfluid Fermi gases in an optical
lattice and have found that they can be energeticallymore stable than the normal Bloch states and their survival
time can be drastically enhanced in the BCS side. Themultiple period nature distinctly appears in the pairing
field, which could be observed by the fastmagnetic field sweep technique [36, 37]. It is also interesting to point
out that the emergence of the period-doubled states in the BCS side is closely connected to the disappearance of
the swallowtails, which exist in the BEC side (section 4). As a consequence, hysteresis of the superfluid circuits
[14], which could be observed experimentally in the BEC side, would disappear by sweeping to the BCS regime.
We hope ourworkwill stimulate future experimental studies.
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Appendix

In this appendixwe provide additional information about themomentumdistribution, comparison of the
energy between period-2 and -3 states, comments on rational and irrational number periods, and detailed
information of the numerical calculations.

(i)Momentumdistribution
The period n-tupling studied in the present work is different from the charge density wave due to the nesting

of the Fermi surface. Infigure A1 , we show themomentumdistribution n k( ) of the normal Bloch states at
P=0. At k a1 1sF = - (panel (a)), there is a plateau around k k 0z= =^ with a smeared Fermi surfacewhose
width is characterized by 1 2∣ ∣~ D , while, at k a1 0sF = (panel (b)), n k( ) shows a peak at k k 0z= =^ rather
than a plateau.Note that even though the system is in a periodic potential with non-zero s, the Fermi surface is
almost spherical.

Figure A2 is the same asfigure A1(a), but for a stronger periodic potential with s=2. The plateau region of
themomentumdistribution n k( ) is significantly smaller compared to that for s=1 shown infigure A1(a). This
is due to the formation of bound bosonic dimers induced by the stronger periodic potential [28, 32, 33].
However, also in this case, n k( ) is almost isotropic although it ismore compressed in the k̂ -directions
compared to the case of s=1 (figure A1(a)).

(ii)Comparison of the energy between period-2 and -3 states
Infigure A3 , we show the energy difference E E2 3- between the period-2 and -3 states at the Brillouin zone

edge of the period-3 states, P P 3edge= . For the parameter of figure 3, E E 0.25RF = , we see that E E 02 3- <
and thus the period-2 states are energetically lower than the period-3 states in thewhole Brillouin zone of the
latter (see figure 3). Thisfigure shows that the period-2 states are always energetically lower than the period-3
states in the region of E E0.245 0.4RF  for s=1 and k a1 1sF = - .

(iii)Comments about rational and irrational number periods
In principle,multiple period states with rational number periods are covered by our calculations with a

supercell. Specifically, using a supercell with period ν, we can describe period-( )n h states, where ν and η are
natural numbers. On the other hand, states with irrational number periods are excluded, which are beyond the
scope of the present study. In our numerical calculations, which covermultiple period states with rational
number periods, neither states with n h< nor states whose period is incommensurate with the lattice constant
appear as the lowest energy state. Therefore, it is probable that themultiple period states with irrational number
periods could not be the energeticallyminimum states.

(iv)Detailed information of the numerical calculations
We set the parameters for the numerical calculations such as the number of grid points depending on the

systemparameter values to ensure the convergence. Herewe provide detailed parameter values for the
numerical calculations for s=1 and E E 0.25RF = as a typical example.

In the transverse directions, we impose periodic boundary conditions with a large box size with L d 24=^ .
Regarding the calculations of the stationary BdG equations, the cutoff energyEc we use is, for example,
E E 40c F = for k a1 1sF = - , 40–200 (mainly 100) for k a1 0sF = , and 100–200 for k a1 0.5sF = . The number
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Figure A1.Momentumdistribution n kk F
3( ) atP=0 in the BCS side of k a1 1sF = - (panel (a)) and at unitarity k a1 0sF = (panel

(b)) for s=1 and E E 0.25RF = . The vertical axis shows thewave vector kz in z-direction and the horizontal axis shows thewave
vector k̂ in the transverse directions. Contours at n kk 0.2F

3( ) = (green dashed–dotted), 0.4 (blue dashed), 0.6 (red solid), and 0.8
(cyan dashed) are shown.

Figure A2. Same asfigure A1 for a stronger periodic potential with s=2. As infigure A1(a), we setP=0, k a1 1sF = - , and
E E 0.25RF = .

Figure A3.Energy difference E E2 3- between the period-2 and -3 states at P P 3edge= , where Eν ( 2, 3n = ) represents the energy of
the period-ν state.Herewe set s=1 and k a1 1sF = - , which are the same as infigure 3.
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of the grid points for kz within the first Brillouin zone q k qzB B n n- for period ν is 100, 100, 75, 50, and
40 for ν=1, 2, 3, 4, and 5, respectively. The number of the grid points in a supercell in the z direction,

z d2 2 n n- , is 200 for ν=1 and 100ν for the other values of ν. Regarding the TDBdG simulations
shown infigure 5, the time discretizationΔt is 0.00008 E E0.00032 RF = for k a1 1sF = - (left panel),
0.00005 E E0.0002 RF = for k a1 0sF = (middle panel), and 0.00004 E E0.00016 RF = for

k a1 0.5sF = (right panel). Discretization of kz and z areΔk q 0.025z B = and z d 0.025D = , respectively.
Throughout the time evolution offigure 5, the total number of particles is conserved perfectly within the
significant digits and the energy is conservedwithin 0.045% for k a1 1sF = - (left panel), 0.74% for k a1 0sF =
(middle panel), and 2.2% for k a1 0.5sF = (right panel).
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