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Abstract
We formulate the necessary and sufficient conditions for the existence of 
dispersionless energy eigenvalues (so-called ‘flat bands’) and their associated 
compact localized eigenstates in M-dimensional tight-binding lattices with 
N  sites per unit cell and complex-amplitude nearest-neighbour tunneling 
between the lattice sites. The degrees of freedom M can be traded for 
longer-range complex hopping in lattices with reduced dimensionality. We 
show the conditions explicitly for (M = 1, N � 4), (M = 2, N = 2, 3), and 
(M = 3, N = 2, 3), and outline their systematic construction for arbitrary N , 
M. If and only if the conditions are satisfied, then the system has one or more 
flat bands. By way of an example, we obtain new classes of flat band lattice 
geometries by solving the conditions for the lattice parameters in special 
cases.
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1. Introduction

Many interesting phases of matter exist when interactions are strong compared to the kinetic 
energy. Indeed, the study of strongly-interacting many-body quantum systems, ranging from 
high-temperature superconductors [1], ultra-cold atoms [2] and quantum spin models [3] to 
the physics of the early Universe [4], has received a lot of attention. In the case of the fractional 
quantum Hall effect [5] (FQHE), the electrons form a strongly-correlated quant um many-body 
state with unusual properties such as fractionally charged excitations. The FQHE normally 
occurs in a two-dimensional electron gas subject to a perpendicular magnetic field, where the 
Landau levels have vanishing dispersion. In completely dispersionless bands, known as flat 
bands, the kinetic energy is formally zero, and any interaction can be considered strong. These 
special properties render flat band systems an excellent test bed for novel phases that appear 
once disorder and/or interactions are switched on: it has been shown that in principle FQHE 
states should be obtainable provided one can generate an approximately dispersionless band 
that is energetically isolated and topologically non-trivial, without the need for a magnetic 
field and its Landau levels [6–10]. Other examples of interesting phenomena occurring in 
perturbed flat bands are unusual localisation properties in the presence of disorder [11, 12] or 
quasiperiodic potential [13, 14], and application of an electric field leads to non-conventional 
Bloch oscillations [15].

The above considerations highlight the importance of finding and identifying novel classes 
of flat band Hamiltonians in a systematic way. The absence of dispersion results from destruc-
tive interference. Apart from simple cases it is not clear how to engineer (nearly) dispersion-
less bands in general, topological or not, because this requires significant fine-tuning of the 
lattice overlap integrals—flat bands are generally fragile and destroyed by perturbations unless 
protected by a symmetry that is respected by the perturbations. An obvious idea of flattening 
a band by dividing the Hamiltonian in the momentum representation by one of the eigenstates 
leads to a Hamiltonian in real space that has unphysical long-range hoppings. In contrast, 
much progress has been made in developing methods to discover flat band Hamiltonians with 
finite-range hoppings. Several approaches have been suggested to construct such flat bands: 
using line graphs [16], local cell construction [17], origami rules in decorated lattices [18] or 
repetition of mini-arrays [19]. In some cases symmetries of the lattice or model can help find 
the flat band Hamiltonians [20, 21]. The majority of these approaches, such as the line graph 
and the chiral constructions, however, explore properties of specific lattices.

The eigenstates of flat band Hamiltonians with finite-range hoppings can be chosen to 
have strictly finite support, and correspondingly are commonly referred to as compact local-
ised states (CLSs). Recently, much attention has been devoted to attempts at classifying and 
generating flat bands based on CLSs by identifying the parameter U , the minimum number 
of unit cells that a CLS associated with the flat band occupies. The complete characterisation 
of possible U = 1 flat bands has been performed in [11]. The case of U = 2 for 1D 2-band 
lattices with nearest-neighbour hopping is reported in [22]. This analysis can be extended to 
arbitrary U  in d = 1 [23]. However, general progress seems problematic in higher dimensions 
where, for example, the number of different shapes of a given U  compact localised state grows 
rapidly with system complexity and U  itself.

To address the problem of finding flat bands, we provide here a general set of necessary and 
sufficient conditions for the occurrence of dispersionless bands in M-dimensional tight-binding 
lattices with N  sites per unit cell and complex-amplitude nearest-neighbor tunneling between 
the lattice sites. We report a new general approach for constructing flat band Hamiltonians by 
using the momentum representation, which has received much less attention in the flat band 
literature [24]. Our approach is distinct in that it is not restricted by the real-space property 
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U  at all, while being fully general and exhaustive. We formulate a set of coupled non-linear 
equations for the matrix elements of the Hamiltonian and the flat band energy, and show that 
they form the necessary and sufficient conditions for flat bands in the system. To construct flat 
bands, this set of equations needs to be solved for the desired parameters. For example, the 
new conditions allow us to fine-tune a given Hamiltonian with a few free parameters to the 
nearest flat band system, or exhaustively indicate whether no flat band solutions can be found. 
In other words, knowing the new conditions not only answers the question of existence, but 
also makes it possible, in principle at least numerically, to obtain the exhaustive set of points 
in the space of Hamiltonians that correspond to one or more flat bands.

2. Lattice model

Many problems in quantum physics involve solving the Schrödinger equation  where the 
potential energy is periodic in space. If for the lattice geometry a local basis in terms of on-site 
orbitals is sufficient, one typically models the wavefunction using the well-established tight-
binding approximation. The associated Bloch Hamiltonian can be viewed as a lattice Fourier 
transform of the set of real-space overlap (hopping) matrices H1,m that describe tunneling 
events between the lattice sites. We write the Bloch Hamiltonian in the form

Hq =

M∑
m=1

{
eiq·Rm H†

1,m + e−iq·Rm H1,m

}
+ H0, (1)

where the sum runs over all the unit cells that are connected through hopping, being not 
necessarily nearest neighbours. Here H1,m (for all m = 1, 2, . . . , M) and H0 are N × N  matri-
ces, where N  is the number of bands, which equals to the number of sites in a unit cell. The 
matrix H0 specifies the intra-cell dynamics, and the set H1,m specifies the inter-cell dynamics. 
Without loss of generality, for Hermitian systems, it suffices to consider the ‘canonical’ case 
H0 = diag(b1, b2, . . . , bN), where the bn (for all n = 1, 2, . . . , N ) are real numbers, by simply 
performing a suitable basis transformation. In the case of two bands (N = 2), one can further 
set b1 = 0 and b2 = 1 by suitable shifts and rescaling of the spectrum of the Hamiltonian. 
Quite generally, hopping amplitudes in a lattice can have a phase, e.g. from the Aharonov–
Bohm effect in the presence of a magnetic field or spin–orbit coupling; we therefore take 
H1,m ∈ C.

In this work, we require the flat band to be dispersionless with respect to the M separate 
momenta qm = q · Rm. Importantly, we do not specify the momenta, which means that they 
can be taken to be linearly independent or linearly dependent. The former case describes 
an M-dimensional lattice with strictly nearest-neighbour hopping, while in the latter case a 
subset of the momenta qm has been utilized to describe lattices that include further nearest-
neighbour hopping. In particular, this flexibility makes our approach powerful for describing 
a plethora of different flat band lattice geometry classes once we have solved for H1,m and H0 
the conditions that guarantee the existence of one or more flat bands.

3. N  bands in one dimension with complex hopping

To determine the set of necessary and sufficient conditions for one or more flat bands, we start 
by writing the characteristic equation with eigenvalue λ,

det (Hq − λIN) = 0, ∀q, (2)
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which, as indicated, is intended to hold for all q guaranteeing the non-dependence of λ on 
momentum in the entire Brillouin zone. Focusing in this section on nearest-neighbour hop-
pings, H1 ≡ H1,m, the Bloch Hamiltonian reads

Hq = eiqH†
1 + H0 + e−iqH1, (3)

where H1 and H0 are N × N  matrices, and N  is the number of bands.
To find the necessary and sufficient flat band conditions, we first express the characteristic 

polynomial p(λ) ≡ det (Hq − λIN) =
∑N

k=0 ckλ
k of the N × N  matrix Hq as a polynomial 

in η ≡ eiq: p(η) =
∑N

k=−N x̃kη
k , where x̃k ≡ x̃∗−k . We then solve the coupled non-linear set 

{x̃k} = 0 for the matrix elements of H1 and H0. It can be proven by induction that this set of 
equations forms the necessary and sufficient existence conditions for flat bands in one dimen-
sion. We generalise this principle to higher dimensions in section 4.

3.1. Example: two bands in one dimension

The procedure described above assumes its simplest non-trivial form in the case of two 
bands in one dimension with real-valued nearest neighbour hoppings, for which the Bloch 
Hamiltonian reads

Hq = eiqHT
1 + H0 + e−iqH1. (4)

In this section, H1 =

(
a b
c d

)
 with (a, b, c, d) ∈ R4, and we assume that H0 is scaled so that 

it is given by 

(
0 0
0 Θ(ζ)

)
, where Θ is the Heaviside step function and ζ = ±1 is a parameter. 

Then

det (Hq − λI2) ≡
(
η2 +

1
η2

)
x2 +

(
η +

1
η

)
x1 + x0, (5)

where η = eiq, and

x0 = 2ad − b2 − c2 − λΘ(ζ) + λ2, (6a)

x1 = aΘ(ζ)− λ(a + d), (6b)

x2 = ad − bc. (6c)

Setting (x0, x1, x2) = (0, 0, 0), we find from the system (6) the necessary and sufficient flat 
band conditions

−λΘ(ζ) + λ2 = (b − c)2, (7a)

bc = ad, (7b)

−λ(a + d) = aΘ(ζ), (7c)

which can be straightforwardly solved for (a, b, c, d) once ζ and λ are given. For example, a 
flat band at zero energy (λ = 0) exists such that

 •  If ζ = 1 (on-site terms), then (a, b, c, d) = (0, 0, 0, d) is the only solution with d  arbitrary.
 •  If ζ = −1 (no on-site terms), then there are infinitely many solutions such that b = c, 

ad = bc.
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In the context of the classifications of flat bands based on the compact localised states, both 
of the above cases have the property U = 1, since λ coincides with an eigenvalue of H0 [22]. 
The algebraic equation (7) can be solved for the Hamiltonian with general λ and ζ, in which 
case our approach independently reproduces the results and exactly reduces to the flat band 
generator of [22]. It is instructive to note that given a flat band eigenvector in the Bloch repre-
sentation, it is straightfoward to extract the CLS, although it is not guaranteed to be the small-
est possible CLS for that flat band.

3.2. Determinant expansion for the necessary and sufficient flat band conditions

Since the determinant of a Hermitian matrix is always real, in the expansion of the determi-
nant the complex-valued terms ηkx̃k are always be paired with their complex conjugates. The 
polynomial p(η) reads

det (Hq − λIN)

=
x̃−1

2
+

1
η

x̃−2 +
1
η2 x̃−3 + . . .+

1
ηN x̃−(N+1) + c.c.,

 (8)

where x̃i = x̃∗−i for all i = 1, 2, . . . , N + 1. Here, the coefficients x̃i are in general non-linear 
functions of the hopping and on-site parameters determining H0 and H1. As indicated earlier, 
to formulate the flat band conditions we must have all the coefficients vanish individually: 
x̃−1 = x̃−2 = . . . = x̃−(N+1) = 0.

After a direct calculation, we find

x̃−(N+1) = 0 = det H1, (9a)

x̃−N = 0 =

N∑
k=1

[
(H0)kk − λ

]
Ckk, (9b)

x̃−(N−1) = 0 = tr (H∗
1 C) + tr(H1C0)

+ f̃ (N)
−(N−1)(λ, H0, H1),

. . .

 (9c)

x̃−1 = 0 = f̃ (N)
−1 (λ, H0, H1) (9d)

+c.c. (9e)

Here C (C0) is the cofactor matrix of H1 (H0), and H0 is taken to be diagonal and real. 
Specifically, we define Cij = (−1)i+jMij to be the (i, j)th cofactor of H1, where Mij  is the (i, j)
th minor of H1. The functions f̃  are shown explicitly for N � 4 with H1 ∈ C in system (A.1a) 
in appendix A.

The system (9) amounts to the full set of sufficient and necessary existence conditions for 
a flat band at energy λ and its associated compact localized eigenstates in one dimension with 
N  bands and complex nearest-neighbour hopping. That they are sufficient is trivial, and that 
they are also necessary can be proven by induction. We identify the condition (9a) as the self-
interference property of CLSs that requires the hopping matrix H1 to be degenerate. It reflects 
the physical property that the flat band eigenstates are compact, that is, there exists a non-zero 
eigenvector ψ such that H1ψ = 0 which means at least one of the eigenvalues of H1 must 
be zero leading to equation (9a). However, as we have shown here explicitly in terms of the 

J. Phys. A: Math. Theor. 52 (2019) 02LT04



6

exhaustive existence conditions (9), one evidently needs much more to suppress dispersion. 

We have verified equations (9a)–(9c) with the supplementary property f̃ (N)
−(N−1)(0, 0, H1) = 0 

for N � 8.
Mathematically, equation  (8) constitutes a determinant expansion for the N × N  matrix 

ηH†
1 + H0 + η∗H1 − λIN  as a power series in η. While we have computed it directly 

for N � 5, the algorithmic procedure for constructing the functions f̃ (N)
−(N−i) for general 

(N, i = 1, 2, . . .N − 1) is limited only by the capacity of generic symbolic computation pack-
ages. The principle of the above proof by construction for the necessary and sufficient CLS-FB 
conditions is the same for any N .

4. Higher dimensions, complex hopping

Having an M-dimensional Bloch Hamiltonian (1) means that the conditions (9) for the one-
dimensional (1D) case are repeated for every m = 1, . . . , M. However, there are also addi-
tional conditions from the cross-term coefficients. The multinomial p({ηm}) reads

det (Hq − λIN) =

{
M∑

m=1

−1∑
n=−N

ηn
m

(
x̃(m)

n + x̂(m,N)
n

)
+ c.c.

}

+ F(N,M)
0 +

∑
{km}

(
M∏

m=2

ηkm
m

)
y(N,M)
{km} ,

 

(10)

where m  is the dimensionality index, n is the band number index, ηm ≡ eiq·Rm, and the set 

{km} ≡ k1, k2, . . . , kM . We have x(m)
n = x̄(m)

−n , and y(N,M)
{km} = ȳ(N,M)

−{km} because the determinant 
is real. Note: y(N,M)

{km} = 0 if {km} has only one non-zero element. Here x(m)
n = x̃(m)

n + x̂(m,N)
n , 

where x̂(m,N)
n  is the additional contribution to the direct 1D coefficient. The algebraic form (10) 

exhausts every possibility; we specify the only non-zero cross-terms y together with the x̂ and 

F(N,M)
0  terms for most common cases of interest in appendix B.

The necessary and sufficient CLS-FB existency equations for N  bands in M dimensions 

form the set of equations F(N,M)
0 = 0 ∩ {x(m)

n = 0} ∩ {y(N,M)
{km} = 0} for all m = 1, 2, . . . , M and 

n = −N,−N + 1, . . . ,−1. For all m:

0 = det (H1,m) + x̂(m,N)
−N , (11a)

0 =

N∑
k=1

[
(H0)kk − λ

]
C(m)

kk + x̂(m,N)
−N−1, (11b)

0 = tr
(

H̄1,mC(m)
)
+ tr(H1,mC0)

f̃ (N)
−(N−1)(λ, H0, H1,m) + x̂(m,N)

−N−2,

. . .

 (11c)

0 = F(N,M)
0 , (11d)

0 = y(N,M)
{km} ∀{km}, (11e)
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where the bar denotes complex conjugation. The functions f̃  are given in system (A.1a) up 
to N � 4.

If the necessary and sufficient conditions (11) are satisfied, then the lattice has an energy 
eigenvalue λ (there can also be several simultaneous solutions for λ) that is independent of 
q1, q2, . . . , qM. However, the individual momenta qm (i.e. the lattice vectors Rm) are free; in 
particular, they can be linearly independent or linearly dependent. This means that a solution 
for the parameters (N, M) can be used to describe flat bands in N -band systems with any 
M kinds of hopping; e.g. nearest and next-nearest-neighbour hopping together with nearest 
neighbours in directions that are linear combinations of the primitive vectors of the Bravais 
lattice. Provided M > 1, we can trade dimensionality of the system for longer-range hopping.

Moreover, our approach makes it possible to construct a pseudo-flat band that is flat only 
along the directions {mi} in momentum space, by solving only the conditions involving 
m ∈ {mi}, and leaving the directions m /∈ {mi} unconstrained.

5. New classes of flat band lattice geometry

We now demonstrate the usefulness of our approach and solve the necessary and sufficient 
conditions (11) for example Bloch Hamiltonians where we fix enough parameters to make 
the conditions easily solvable for the remaining ones. This can be used to straightforwardly 
generate numerous flat band solutions for the parameters of the Bloch Hamiltonian. We will 
report the results of a systematic and exhaustive search for new flat band lattices later; here, 
we illustrate our approach with a selection of Hamiltonians and different classes U  of CLS, 
i.e. their sizes.

5.1. U = 1 CLS

If the flat band energy λ coincides with any of the diagonal elements bn of H0, then the result-
ing compact localized states associated with the flat band are all contained within just one unit 
cell [22]; these are so-called U = 1 flat bands [11] where U  is the number of lattice unit cells 
the eigenstate occupies. In this section, we take the flat band energy λ = 0 to coincide with 
the diagonal elements of H0 making these flat bands all belong to the class U = 1. We present 
more cases in appendix C.

5.1.1. N = 2, M = 2. Setting H0 = 0 and λ = 0, we can solve the coupled non-linear condi-
tions (11) for the remaining parameters of the matrix H1 algebraically to find, among other 
solutions, e.g.

Hq =
[
e−iq1 + de−iq2

]( |c1|2
c̄2

c1
c2 c̄1
c̄2

c2

)
+ h.c., (12)

such that d ∈ R, and c1, c2 ∈ C (figure 1). If d = 0, then we have a quasi-flat band that does 
not depend on q2. The eigenvalues of the 2 × 2 Hamiltonian (12) can be solved analytically; 
we find

E(q1, q2) =




0,

2
(

1 + |c1|2

|c2|2

){
Re(c2) [cos(q1) + d cos(q2)]

+Im(c2) [sin(q1) + d sin(q2)]

}
.

 (13)
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5.1.2. N = 3, M = 3. Similarly, setting a subset of the parameters of the Hamiltonian to 
zero, we find that the following are examples of flat-band solutions to the conditions 11:

Hq = e−iq1




0 c1 0
0 0 c1

0 0 0


+ e−iq2



−c2 0 0

0 0 0
0 0 c2




+ e−iq3




0 c3 0
c4 0 c3

0 c4 0


+ h.c.,

 (14a)

(a) (b)

(c) (d)

Figure 1. (2, 2)-Flat band lattices. Eigenvalues of the Hamiltonian (12) with (a) 
c1 = e−i π2 , c2 = ei π4 ; (b) c1 = e−i π2 , c2 = ei π2 ; (c) c1 = 1, c2 = 1; and (d) c1 = 1 + i, 
c2 = 1. The parameter d = −1 in ((a)–(c)) and d = 0.5 in (d). The band crossings reflect 
the general property of the U = 1 class that the flat band system can be detangled [11], 
i.e. unitary transformed into disjoint systems.

J. Phys. A: Math. Theor. 52 (2019) 02LT04
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Hq = e−iq1




0 c1 0
0 0 c1

0 0 0


+ e−iq2




0 0 0
0 c2 0
0 0 0




+ e−iq3




0 c3 0
− c5 c̄3

c̄4
0 c4

0 c5 0


+ h.c.,

 (14b)

such that c1−5 ∈ C (figure 2).
Here, q3 (q2) can be any linear combination of q1, q2 (q1, q3). For example,

Hq = e−iq1



−c2 c1 + c3 0
c4 0 c1 + c3

0 c4 c2


+ h.c., (15a)

Hq = e−iq1




0 c1 + c3 0
− c5 c̄3

c̄4
c2 c1 + c4

0 c5 0


+ h.c. (15b)

are flat-band Hamiltonians in 1D. Here, we took q1 = q2 = q3. Taking q2 = 2q1 and q3 = 3q1 
would correspond to a 1D lattice with three bands, nearest and next-nearest neighbour hop-
ping (figure 3).

5.2. U > 1

As another example, we use the necessary and sufficient conditions (9) to find new flat band 
classes with U > 1, for which a complete generator is currently missing. If λ �= bn for all 
n = 1, . . . , N  (the elements of H0), then the corresponding flat band cannot have CLSs in 
the class U = 1. This follows from the condition (9a): if U = 1 then λ is an eigenvalue of H0 
because the eigenproblem (Hq − λI)ψ reduces to H0ψ = λψ.

Instead of starting from a fully undetermined Hamiltonian by attempting to solve the con-
ditions (9) for all the parameters of the Hamiltonian, we start from the well-known lattice 
model of the diamond chain,

Hq = e−iq1




0 1 0
0 1 0
0 1 0


+ eiq1




0 0 0
1 1 1
0 0 0


+




0 1 0
1 0 1
0 1 0


 , (16)

which has the gapped spectrum {0,−2, 2 [1 + cos (q1)]}. The flat band at 0 belongs to the 
U = 1 class, while the flat band at −2 belongs to the U = 2 class. In the canonical basis where 
H0 is diagonal, the Hamiltonian reads Hq = e−iq1 H†

1 + eiq1 H1 + H0, where

H1 =




1
2 − 1√

2
1√
2
− 1

2 0

− 1
2 − 1√

2
1
2 + 1√

2
0

0 0 0


 , (17a)
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(a)

(b)

(c)

(d)

Figure 2. (3, 3)-Flat band lattices with Weyl points. Eigenvalues of the Hamiltonian 
(14a) with q3 = q1 − q2 and (a) c1 = −1, c2 = ei π2 , c3 = ei π3 , c4 = ei π5 ; (b) c1 = 1 
and c3 = ei 4π

3  otherwise same as (a); (c) c1 = 1 otherwise same as (a); (d) c1 = e−i π7  
otherwise same as (a). There are two band-touching points either inside (a, b) or at the 
boundary (c) of the Brillouin zone. In (d) there are no such points, and the flat band is 
separated from the two dispersive bands.
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H0 =



−
√

2 0 0
0

√
2 0

0 0 0


 . (17b)

Indeed, the flat band λ = 0 coincides with the diagonal elements of H0 and H1 takes the form 
of the U = 1 solution [11], while the λ = −2 solution does not. The Hamiltonian (17) satis-
fies the conditions (9) if and only if λ = 0 or λ = −2. To see this, the conditions (9) with λ as 
the only unknown reduce to the set λ(λ+ 2) = 0 and λ(λ2 − 4) = 0 that needs to be satisfied 
simultaneously. Our strategy in what follows is to use the conditions (9) to see whether the 
Hamiltonian (17) can be generalised. We will allow selected matrix elements of H1 to become 
variables, and then use the necessary and sufficient conditions to check whether there exists 
flat bands.

This analysis readily reveals the easy observation that the λ = −2 flat band is immune to the 
zero on the third diagonal element of H1 in the canonical basis while the λ = 0 flat band is not: 
if we replace the zero by J ∈ C then the eigenvalues read 

{
−2, 2[cos(q1) + 1], 2 Re(e−iq1 J)

}
. 

On the other hand, we can also have one (but not both) of the off-diagonal corners of H1 non-
zero, which is much more difficult to infer directly by diagonalisation. Consequently, in the 
basis of equation (16), we have Hq = e−iq1 H̃†

1 + eiq1 H̃1 + H̃0, where

H̃(a)
1 =



− J

4 1 + J
2
√

2
− J

4

0 1 0
J
4 1 − J

2
√

2
J
4


 , (18a)

H̃(b)
1 =



− J

4 1 J
4

J
2
√

2
1 − J

2
√

2

− J
4 1 J

4


 , (18b)

H̃0 =




0 1 0
1 0 1
0 1 0


 . (18c)

(a) (b)

Figure 3. Reduction of a (3, 3)-flat band lattice. Eigenvalues of the Hamiltonian (14a) 
with c1 = e−i π7 , c2 = ei π2 , c3 = ei π3 , c4 = ei π5 . In (a) q3 = 3q1, q2 = 2q1; (b) q3 = q1, 
q2 = 2q1, and q1 → 3q1. Both cases correspond to nearest and next-nearest neighbour 
hopping.
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Here there are two equivalent choices for H̃1, labelled by ‘a’ and ‘b’. The necessary and suf-
ficient conditions (9) show that there is a flat band at λ = 2(1 +

√
2), distinct from all the 

diagonal elements of H0 (equation (17b)), if and only if J = 2
√

2
(√

2 + 2
)
exp(iθ), where 

θ is real and arbitrary. It can be shown by e.g. direct numerical diagonalisation that θ does not 
have to be a constant across the system and, remarkably, the existence of the U > 1 flat band 
is immune to any texture or disorder in θ. If J = 0 we recover the lattice (17). These cases 
exhaust the possibilites for flat bands in the system (18).

6. Discussion and conclusions

Recent attempts at classifying and generating flat bands have concentrated on identifying the 
parameter U , the minimum number of unit cells that a compact localized state associated with 
the flat band occupies, or lattice-specific methods that lack generality. Here, by focussing 
on the momentum-space representation, we have used an entirely different approach which 
allowed us to derive the full set of sufficient and necessary existence conditions for flat bands 
in generic tight-binding lattices. Our approach, using the necessary and sufficient conditions 
(11), is fully distinct, and it does not specify the real-space property U  explicitly. Indeed, solv-
ing the conditions for parametrised Hamiltonians is a powerful method for generating new flat 
band lattices with arbitrary U , representing a novel and highly general flat band generator. 
Moreover, our new flat band existence conditions can serve as an important guide when gen-
eralising approaches that focus on labelling flat band states in terms of U , and finding lattices 
with 1 � n � N  flat bands. Importantly, any flat band generator using any methods must be 
simultaneously consistent with our general existence conditions.

An immediate benefit of the explicit system (11) is that it allows us to directly and sys-
tematically generate non-trivial flat band Hamiltonians, especially for the U > 1 classes for 
which a fully general generator is currently unknown. Direct analytical diagonalisation of a 
‘guessed’ Hamiltonian with free parameters is not feasible for N > 2 and by the Abel–Ruffini 
theorem even impossible in general for N > 4. Our necessary and sufficient conditions, on 
the other hand, exhaust the possibilities for flat bands and can be straightforwardly computed 
for any N > 4. Of course, solving the necessary and sufficient existence conditions becomes 
challenging as a function of the complexity of the system, which may ultimately require a 
detailed numerical approach. We present results for N = 4, 5 in appendix C, for U > 1 in 

(a) (b)

Figure 4. Weyl semi-metal with a flat band. Eigenvalues of the Hamiltonian (14a) 
with q3 = q1 − q2, c1 = 1, c2 = ei π2 , c3 = ei 4π

3 , and (a) c4 = e−i π
2

5 ; (b) c4 = ei π
2

5 . The 
parameter c4 controls the position of the Weyl cones along the q1-direction.
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section 5.2 using the 1D conditions (9), and for U = 1 in section 5.1 using the more general 
conditions (11). Moreover, we can consider flat-band systems with beyond-nearest-neighbour 
interactions between unit cells.

Indeed, the range of examples of new flat band systems that can be generated using our 
approach is substantial. One of the examples we found in section 5.1 resembles an interest-
ing class of materials called a Weyl semi-metal. The band structure of this exotic phase of 
matter is characterised by a pair of points in momentum space where two non-degenerate 
bands touch [25]. The Weyl points are doubly degenerate, carry a quantized charge of Berry 
curvature resulting in a definite chirality, and are distinct from the four-fold degenerate chi-
rality-neutral Dirac points associated with the band structure of e.g. graphene. The flat band 
Hamiltonian (14a) with q3 = q1 − q2 shows such a structure with suitable lattice parameters 
(figure 4). The location of the two Weyl cones can be adjusted by varying the free parameters 
of the Hamiltonian (14a). While not dissimilar from a Weyl semi-metal, our band structure 
is distinct in that it is supplemented by an additional flat band in the plane of the Weyl nodes.

In summary, we have derived the necessary and sufficient conditions for the existence of 
flat bands in M-dimensional tight-binding lattices with N  sites per unit cell and complex-
amplitude nearest-neighbour tunneling between the lattice sites. That they are sufficient is 
trivial, and that they are also necessary can be proven by induction. If and only if the condi-
tions are satisfied, then the system has one or more flat bands.
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Appendix A. The functions ̃f  explicitly for N � 4 with H1 ∈C

f̃ (2)
−1 (λ, H0, H1) = det (H0 − λI2)− tr(H1C0) =

∑
ij∈P2

(
λ2

2
− (λ+ hjj) (H0)ii +

(H0)ii(H0)jj

2

)
,

 (A.1a)

f̃ (3)
−1 (λ, H0, H1) = det (H0 − λI3) +

∑
ijk∈P3

(H0 − λI3)ii

2
g( j, k), (A.1b)

f̃ (4)
−1 (λ, H0, H1) = det (H0 − λI4) +

∑
ijkl∈P4

[
λ2

4
+

(H0)ll

4
(H0 − λI4)ii

]
g( j, k) + f̃ (4)

1a (H1) + f̃ (4)
1b (H1),

f̃ (4)
1a (H1) =

∑
ijkl∈P4

{
1
8

g(i, l)g( j, k) + Re
[
−h∗ijh

∗
jkhilhlk + 2h∗

ijh
∗
jkhikhll −

1
2

h∗ijh
∗
ikhljhlk

+
1
4

h∗ijh
∗
jihklhlk −

1
2

h∗ijh
∗
jihkkhll −

1
4

h∗
iih

∗
jjhkkhll

]}
,

f̃ (4)
1b (H1) = i

∑
ijkl∈P4

Im
(
hkjh∗ij

)
hklh∗

il,

 (A.1c)

f̃ (3)
−2 (λ, H0, H1) = −λ

2

∑
ijk∈P3

(2H0 − λI3)jj hii, (A.1d)
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f̃ (4)
−2 (λ, H0, H1) =

∑
ijkl∈P4

{
−λ3

6
h∗ii +

λ2

2
(H0)iih∗

jj +
1
6
(H0)ii(H0)jj(H0)kkh∗

ll

+ λ

[
−1

2
(H0)ii(H0)jjh∗kk −

1
2

hiih∗
jjh

∗
kk + hijh∗

ijh
∗
kk − hijh∗ikh∗kj +

1
2

hiih∗jkh∗kj

]

+(H0)ii

[
1
2

hllh∗
jjh

∗
kk − hlkh∗kkh∗

lj −
1
2

hllh∗
jkh∗kj + hklh∗

jlh
∗
kj

]}
,

 (A.1e)

f̃ (4)
−3 (λ, H0, H1) =

∑
ijkl∈P4

{(
λ2

4
− λ

2
(H0)ii +

(H0)ii(H0)ll

4

)
(−hjkhkj + hjjhkk)−

1
6
(H0)ii(H0)jj(H0)kkhll

}
,

g( j, k) = − |hjk|2 − |hkj|2 + hkkh∗jj + h∗
kkhjj,

hij = (H1)ij ,
 (A.1f)

where ijk ∈ P3 means all the six permutations of (1, 2, 3).

Appendix B. The only non-zero cross and q-independent terms for specific 
(N , M)

We introduce the notation H(m)
1 ≡ H1,m .

 •  N = 2 and M = 2

ȳ(2,2)
1,1 = y(2,2)

−1,−1 = h(1)
11 h(2)

22 − h(1)
12 h(2)

21 + h(1)
22 h(2)

11 − h(1)
21 h(2)

12 , (B.1a)

ȳ(2,2)
−1,1 = y(2,2)

1,−1 = h(2)
11 h̄(1)

22 + h(2)
22 h̄(1)

11 − h(2)
12 h̄(1)

12 − h(2)
21 h̄(1)

21 , (B.1b)

F(2,2)
0 = det (H0 − λI2) + h(1)

22 h̄(1)
11 + h(1)

11 h̄(1)
22 − h(1)

12 h̄(1)
12

− h(1)
21 h̄(1)

21 + h(2)
22 h̄(2)

11 + h(2)
11 h̄(2)

22 − h(2)
12 h̄(2)

12 − h(2)
21 h̄(2)

21 .
 (B.1c)

 •  N = 2 and M = 3

ȳ(2,3)
0,1,1 = y(2,3)

0,−1,−1 = h(2)
11 h(3)

22 − h(2)
12 h(3)

21 − h(2)
21 h(3)

12 + h(2)
22 h(3)

11 , (B.2a)

ȳ(2,3)
1,0,1 = y(2,3)

−1,0,−1 = h(1)
11 h(3)

22 − h(1)
12 h(3)

21 − h(1)
21 h(3)

12 + h(1)
22 h(3)

11 , (B.2b)

ȳ(2,3)
1,1,0 = y(2,3)

−1,−1,0 = h(1)
11 h(2)

22 − h(1)
12 h(2)

21 − h(1)
21 h(2)

12 + h(1)
22 h(2)

11 , (B.2c)

ȳ(2,3)
−1,0,1 = y(2,3)

1,0,−1 = h(3)
22 h̄(1)

11 − h(3)
12 h̄(1)

12 − h(3)
21 h̄(1)

21 + h(3)
11 h̄(1)

22 , (B.2d)

ȳ(2,3)
−1,1,0 = y(2,3)

1,−1,0 = h(2)
22 h̄(1)

11 − h(2)
12 h̄(1)

12 − h(2)
21 h̄(1)

21 + h(2)
11 h̄(1)

22 , (B.2e)

ȳ(2,3)
0,−1,1 = y(2,3)

0,1,−1 = h(3)
22 h̄(2)

11 − h(3)
12 h̄(2)

12 − h(3)
21 h̄(2)

21 + h(3)
11 h̄(2)

22 , (B.2f)

F(2,3)
0 = F(2,2)

0 + h(3)
22 h̄(3)

11 + h(3)
11 h̄(3)

22 − h(3)
12 h̄(3)

12 − h(3)
21 h̄(3)

21 . (B.2g)
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 •  N = 3 and M = 2

ȳ(3,2)
2,1 = y(3,2)

−2,−1 = h(1)
11 h(1)

22 h(2)
33 − h(1)

11 h(1)
23 h(2)

32 − h(1)
11 h(1)

32 h(2)
23 + h(1)

11 h(1)
33 h(2)

22 − h(1)
12 h(1)

21 h(2)
33 + h(1)

12 h(1)
23 h(2)

31

+ h(1)
12 h(1)

31 h(2)
23 − h(1)

12 h(1)
33 h(2)

21 + h(1)
13 h(1)

21 h(2)
32 − h(1)

13 h(1)
22 h(2)

31 − h(1)
13 h(1)

31 h(2)
22 + h(1)

13 h(1)
32 h(2)

21

+ h(1)
21 h(1)

32 h(2)
13 − h(1)

21 h(1)
33 h(2)

12 − h(1)
22 h(1)

31 h(2)
13 + h(1)

22 h(1)
33 h(2)

11 + h(1)
23 h(1)

31 h(2)
12 − h(1)

23 h(1)
32 h(2)

11 ,
 (B.3a)

ȳ(3,2)
2,−1 = y(3,2)

−2,1 = h(1)
11 h(1)

22 h̄(2)
33 − h(1)

11 h(1)
23 h̄(2)

23 − h(1)
11 h(1)

32 h̄(2)
32 + h(1)

11 h(1)
33 h̄(2)

22 − h(1)
12 h(1)

21 h̄(2)
33 + h(1)

12 h(1)
23 h̄(2)

13

+ h(1)
12 h(1)

31 h̄(2)
32 − h(1)

12 h(1)
33 h̄(2)

12 + h(1)
13 h(1)

21 h̄(2)
23 − h(1)

13 h(1)
22 h̄(2)

13 − h(1)
13 h(1)

31 h̄(2)
22 + h(1)

13 h(1)
32 h̄(2)

12

+ h(1)
21 h(1)

32 h̄(2)
31 − h(1)

21 h(1)
33 h̄(2)

21 − h(1)
22 h(1)

31 h̄(2)
31 + h(1)

22 h(1)
33 h̄(2)

11 + h(1)
23 h(1)

31 h̄(2)
21 − h(1)

23 h(1)
32 h̄(2)

11 ,
 (B.3b)

ȳ(3,2)
1,2 = y(3,2)

−1,−2 = h(1)
11 h(2)

22 h(2)
33 − h(1)

11 h(2)
23 h(2)

32 − h(1)
12 h(2)

21 h(2)
33 + h(1)

12 h(2)
23 h(2)

31 + h(1)
13 h(2)

21 h(2)
32 − h(1)

13 h(2)
22 h(2)

31

− h(1)
21 h(2)

12 h(2)
33 + h(1)

21 h(2)
13 h(2)

32 + h(1)
22 h(2)

11 h(2)
33 − h(1)

22 h(2)
13 h(2)

31 − h(1)
23 h(2)

11 h(2)
32 + h(1)

23 h(2)
12 h(2)

31

+ h(1)
31 h(2)

12 h(2)
23 − h(1)

31 h(2)
13 h(2)

22 − h(1)
32 h(2)

11 h(2)
23 + h(1)

32 h(2)
13 h(2)

21 + h(1)
33 h(2)

11 h(2)
22 − h(1)

33 h(2)
12 h(2)

21 ,
 (B.3c)

ȳ(3,2)
1,1 = y(3,2)

−1,−1 = h(1)
11 h(2)

22 (H0)33 − h(1)
11 h(2)

22 λ+ h(1)
11 h(2)

33 (H0)22 − h(1)
11 h(2)

33 λ− h(1)
12 h(2)

21 (H0)33 + h(1)
12 h(2)

21 λ

− h(1)
13 h(2)

31 (H0)22 + h(1)
13 h(2)

31 λ− h(1)
21 h(2)

12 (H0)33 + h(1)
21 h(2)

12 λ+ h(1)
22 h(2)

11 (H0)33 − h(1)
22 h(2)

11 λ

+ h(1)
22 h(2)

33 (H0)11 − h(1)
22 h(2)

33 λ− h(1)
23 h(2)

32 (H0)11 + h(1)
23 h(2)

32 λ− h(1)
31 h(2)

13 (H0)22 + h(1)
31 h(2)

13 λ

− h(1)
32 h(2)

23 (H0)11 + h(1)
32 h(2)

23 λ+ h(1)
33 h(2)

11 (H0)22 − h(1)
33 h(2)

11 λ+ h(1)
33 h(2)

22 (H0)11 − h(1)
33 h(2)

22 λ,
 

(B.3d)

ȳ(3,2)
1,−1 = y(3,2)

−1,1 = h(1)
11 (H0)33h̄(2)

22 − h(1)
11 λh̄(2)

22 + h(1)
11 (H0)22h̄(2)

33 − h(1)
11 λh̄(2)

33 − h(1)
12 (H0)33h̄(2)

12 + h(1)
12 λh̄(2)

12

− h(1)
13 (H0)22h̄(2)

13 + h(1)
13 λh̄(2)

13 − h(1)
21 (H0)33h̄(2)

21 + h(1)
21 λh̄(2)

21 + h(1)
22 (H0)33h̄(2)

11 − h(1)
22 λh̄(2)

11

+ h(1)
22 (H0)11h̄(2)

33 − h(1)
22 λh̄(2)

33 − h(1)
23 (H0)11h̄(2)

23 + h(1)
23 λh̄(2)

23 − h(1)
31 (H0)22h̄(2)

31 + h(1)
31 λh̄(2)

31

− h(1)
32 (H0)11h̄(2)

32 + h(1)
32 λh̄(2)

32 + h(1)
33 (H0)22h̄(2)

11 − h(1)
33 λh̄(2)

11 + h(1)
33 (H0)11h̄(2)

22 − h(1)
33 λh̄(2)

22 ,
 (B.3e)

ȳ(3,2)
−1,2 = y(3,2)

1,−2 = h(2)
22 h(2)

33 h̄(1)
11 − h(2)

23 h(2)
32 h̄(1)

11 − h(2)
12 h(2)

33 h̄(1)
12 + h(2)

13 h(2)
32 h̄(1)

12 + h(2)
12 h(2)

23 h̄(1)
13 − h(2)

13 h(2)
22 h̄(1)

13

− h(2)
21 h(2)

33 h̄(1)
21 + h(2)

23 h(2)
31 h̄(1)

21 + h(2)
11 h(2)

33 h̄(1)
22 − h(2)

13 h(2)
31 h̄(1)

22 − h(2)
11 h(2)

23 h̄(1)
23 + h(2)

13 h(2)
21 h̄(1)

23

+ h(2)
21 h(2)

32 h̄(1)
31 − h(2)

22 h(2)
31 h̄(1)

31 − h(2)
11 h(2)

32 h̄(1)
32 + h(2)

12 h(2)
31 h̄(1)

32 + h(2)
11 h(2)

22 h̄(1)
33 − h(2)

12 h(2)
21 h̄(1)

33 ,
 

(B.3f)
¯̂x(1,3)

1 = x̂(1,3)
−1 = h(1)

11 h(2)
33 h̄(2)

22 + h(1)
11 h(2)

22 h̄(2)
33 − h(1)

11 h(2)
23 h̄(2)

23 − h(1)
11 h(2)

32 h̄(2)
32 − h(1)

12 h(2)
33 h̄(2)

12 + h(1)
12 h(2)

23 h̄(2)
13

− h(1)
12 h(2)

21 h̄(2)
33 + h(1)

12 h(2)
31 h̄(2)

32 + h(1)
13 h(2)

32 h̄(2)
12 − h(1)

13 h(2)
22 h̄(2)

13 + h(1)
13 h(2)

21 h̄(2)
23 − h(1)

13 h(2)
31 h̄(2)

22

− h(1)
21 h(2)

12 h̄(2)
33 + h(1)

21 h(2)
13 h̄(2)

23 − h(1)
21 h(2)

33 h̄(2)
21 + h(1)

21 h(2)
32 h̄(2)

31 + h(1)
22 h(2)

33 h̄(2)
11 + h(1)

22 h(2)
11 h̄(2)

33

− h(1)
22 h(2)

13 h̄(2)
13 − h(1)

22 h(2)
31 h̄(2)

31 − h(1)
23 h(2)

11 h̄(2)
23 − h(1)

23 h(2)
32 h̄(2)

11 + h(1)
23 h(2)

12 h̄(2)
13 + h(1)

23 h(2)
31 h̄(2)

21

+ h(1)
31 h(2)

12 h̄(2)
32 − h(1)

31 h(2)
13 h̄(2)

22 + h(1)
31 h(2)

23 h̄(2)
21 − h(1)

31 h(2)
22 h̄(2)

31 − h(1)
32 h(2)

23 h̄(2)
11 − h(1)

32 h(2)
11 h̄(2)

32

+ h(1)
32 h(2)

13 h̄(2)
12 + h(1)

32 h(2)
21 h̄(2)

31 + h(1)
33 h(2)

22 h̄(2)
11 + h(1)

33 h(2)
11 h̄(2)

22 − h(1)
33 h(2)

12 h̄(2)
12 − h(1)

33 h(2)
21 h̄(2)

21 ,
 (B.3g)
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¯̂x(2,3)
1 = x̂(2,3)

−1 = h(1)
22 h(2)

33 h̄(1)
11 + h(1)

11 h(2)
33 h̄(1)

22 − h(1)
11 h(2)

23 h̄(1)
23 − h(1)

23 h(2)
32 h̄(1)

11 − h(1)
32 h(2)

23 h̄(1)
11 − h(1)

11 h(2)
32 h̄(1)

32

+ h(1)
33 h(2)

22 h̄(1)
11 + h(1)

11 h(2)
22 h̄(1)

33 + h(1)
12 h(2)

23 h̄(1)
13 + h(1)

13 h(2)
32 h̄(1)

12 + h(1)
32 h(2)

13 h̄(1)
12 + h(1)

12 h(2)
31 h̄(1)

32

− h(1)
33 h(2)

12 h̄(1)
12 − h(1)

12 h(2)
21 h̄(1)

33 − h(1)
12 h(2)

33 h̄(1)
12 − h(1)

22 h(2)
13 h̄(1)

13 − h(1)
13 h(2)

31 h̄(1)
22 + h(1)

23 h(2)
12 h̄(1)

13

+ h(1)
13 h(2)

21 h̄(1)
23 − h(1)

13 h(2)
22 h̄(1)

13 + h(1)
21 h(2)

13 h̄(1)
23 + h(1)

23 h(2)
31 h̄(1)

21 + h(1)
31 h(2)

23 h̄(1)
21 + h(1)

21 h(2)
32 h̄(1)

31

− h(1)
21 h(2)

12 h̄(1)
33 − h(1)

33 h(2)
21 h̄(1)

21 − h(1)
21 h(2)

33 h̄(1)
21 − h(1)

31 h(2)
13 h̄(1)

22 − h(1)
22 h(2)

31 h̄(1)
31 + h(1)

33 h(2)
11 h̄(1)

22

+ h(1)
22 h(2)

11 h̄(1)
33 − h(1)

23 h(2)
11 h̄(1)

23 + h(1)
31 h(2)

12 h̄(1)
32 + h(1)

32 h(2)
21 h̄(1)

31 − h(1)
31 h(2)

22 h̄(1)
31 − h(1)

32 h(2)
11 h̄(1)

32 ,
 

(B.3h)

Figure C1. (4, 1)- and (5, 1)-flat band lattices. (a) Eigenvalues of the Hamiltonian (C.1a) 
with r1 = 1.0, r2 =

√
π , r3 =

√
2, r4 = −1/2, r5 = 2.5, r6 = 1/4; (b) eigenvalues of 

the Hamiltonian (C.1b) with r1 = 1.0, r2 =
√
π , r3 = −0.5, r4 = 1/

√
2, r5 = 2.5, 

r6 = 1/4; (c) eigenvalues of the Hamiltonian (C.1d) with r1 =
√

2, r2 = 1/2, r3 = −3/4, 
r4 =

√
π , r5 = 1.0, r6 = −1.0, r7 = 1.0, r8 = −1.0; (d) eigenvalues of the Hamiltonian 

(C.1e) with r1 = 1/2, r2 = −3/4, r3 =
√
π , r4 = −1.0, r5 = 1.5, r6 = −1.5, r7 = 1.0, 

r8 = e; (e) eigenvalues of the Hamiltonian (C.1h) with r1 = 1/2, r2 = −3/4, r3 =
√
π , 

r4 = −1.0, r5 = 1.0, r6 = −1.5, r7 = e, r8 = 1.0.
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F(3,2)
0 =

2∑
m=1

f̃ (3)
−1 (λ, H0, H(m)

1 )− det (H0 − λI3). (B.3i)

 •  N = 3 and M = 3. Instead of giving the terms in explicit detail as above, we simply list 
the non-zero ones:

Non-zero y :
(

ȳ(3,3)
2,1,0 = y(3,3)

−2,−1,0

)
,
(

ȳ(3,3)
2,0,1 = y(3,3)

−2,0,−1

)
,
(

ȳ(3,3)
1,2,0 = y(3,3)

−1,−2,0

)
,
(

ȳ(3,3)
1,1,1 = y(3,3)

−1,−1,−1

)
,
(

ȳ(3,3)
1,1,0 = y(3,3)

−1,−1,0

)
,

(
ȳ(3,3)

1,1,−1 = y(3,3)
−1,−1,1

)
,
(

ȳ(3,3)
1,0,2 = y(3,3)

−1,0,−2

)
,
(

ȳ(3,3)
1,0,1 = y(3,3)

−1,0,−1

)
,
(

ȳ(3,3)
1,0,−1 = y(3,3)

−1,0,1

)
,
(

ȳ(3,3)
1,0,−2 = y(3,3)

−1,0,2

)
,

(
ȳ(3,3)

1,−1,1 = y(3,3)
−1,1,−1

)
,
(

ȳ(3,3)
1,−1,0 = y(3,3)

−1,1,0

)
,
(

ȳ(3,3)
1,−1,−1 = y(3,3)

−1,1,1

)
,
(

ȳ(3,3)
1,−2,0 = y(3,3)

−1,2,0

)
,
(

ȳ(3,3)
0,2,1 = y(3,3)

0,−2,−1

)
,

(
ȳ(3,3)

0,2,−1 = y(3,3)
0,−2,1

)
,
(

ȳ(3,3)
0,1,2 = y(3,3)

0,−1,−2

)
,
(

ȳ(3,3)
0,1,1 = y(3,3)

0,−1,−1

)
,
(

ȳ(3,3)
0,1,−1 = y(3,3)

0,−1,1

)
,
(

ȳ(3,3)
0,1,−2 = y(3,3)

0,−1,2

)
,

(
ȳ(3,3)
−2,1,0 = y(3,3)

2,−1,0

)
,
(

ȳ(3,3)
−2,0,1 = y(3,3)

2,0,−1

)
,

 
(B.4a)

Non-zero x̂ :
(
¯̂x(1,3)

1 = x̂(1,3)
−1

)
,
(
¯̂x(2,3)

1 = x̂(2,3)
−1

)
,
(
¯̂x(3,3)

1 = x̂(3,3)
−1

)
, (B.4b)

F(3,3)
0 =

3∑
m=1

f̃ (3)
−1 (λ, H0, H(m)

1 )− 2 det (H0 − λI3). (B.4c)

Appendix C. More U = 1 flat band cases from solving the necessary  
and sufficient conditions

We present here a collection of 1D Bloch Hamiltonians with four and five bands; that is, we 
take N = 4, 5, M = 1 (figure C1). For example, we find the following flat band Hamiltonians:

Hq = e−iq1




r1 0 0 0

0 − r1r2
2

r2
4

r2 r3

r4 0 0 0
r3r4
r2

0 0 r5


+




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 r6


+ h.c., (C.1a)

Hq = e−iq1




r1 0 0 0

0 − r1(r2−r4)
2

r2
3

r2 0

r3 r4 − r2r2
3r4

r1(r2−r4)2 0

0 0 0 r5




+




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 r6


+ h.c.,

 

(C.1b)

Hq = e−iq1




r1 0 0 r2

0 − r1r2
4

r2
3

0 r2r4
r3

r3 r4 0 0
0 0 0 r5


+




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 r6


+ h.c., (C.1c)
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Hq = e−iq1




0 0 0 r1 0
0 0 0 r2 0
0 0 r3 0 0
r4 0 0 r5 0
0 0 0 r6 0




+




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 r7 0
0 0 0 0 r8




+ h.c., (C.1d)

Hq = e−iq1




− r8r2
4r2

5−r3r2
4r5r7

r2
4r2

7
r1 0 0 0

0 0 0 0 r2

r3 0 r8 0 0
0 r4 0 0 0
r5 r6 r7 0 0




+ h.c., (C.1e)

Hq =

e−iq1




− r1r7(2r3(r2+r6)+r1r7)
4r4(r2+r6)2 r1 0 0 0

0 0 0 0 r2

r3 0 r4 0 0

0 r5 0 0 − r5r2
7

4r2r4+4r4r6
r7(2r3(r2+r6)−r1r7)

4r4(r2+r6)
r6 r7 0 0




+ h.c.,

 (C.1f)

Hq = e−iq1




r1 r2 0 0 0
0 0 0 0 r3

r4 0 0 0 0
0 0 0 0 r5

r6 0 r7 0 0




+ h.c., (C.1g)

Hq = e−iq1




r1
r2+r6

(
g1 − r3r7

r8

)
r1 0 0 0

0 0 0 0 r2

r3 0 r8 0 0
0 r4 0 0 r5

g1 r6 r7 0 0




+ h.c., (C.1h)

g1 =
−2r2r8r5(r2 + r6)− r1r4r2

7 + r4(r2 + r6)r3r7 + g11

2r8r4(r2 + r6)
,

g11 = −r4r8(r2 + r6)

×

√
(r3(r2 + r6) + r1r7)2(4r8r5(r2 + r6) + r4r2

7)

r2
8r4(r2 + r6)2

,

 (C.1i)
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Hq = e−iq1




− r2
1r5

r4(r2+r6)
r1 0 0 0

0 0 0 0 r2

0 0 r3 0 0
0 r4 0 0 r5

− r1r5
r4

r6 0 0 0




+ h.c., (C.1j)

such that r1−8 ∈ R.
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