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Mechanically driven spin-orbit-active weak links 
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We show that new functionality of spin-orbit-active electronic weak links can be achieved by their time-
dependent mechanical deformation. As an illustration we use a simple model to calculate the electronic spin cur-
rent generated by rotating a bent spin-orbit-active nanowire coupled to bulk metallic leads. 
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An electric weak link in the form of a nanoconductor, 
bridging two bulk reservoirs of electrons, is a mesoscopic 
device where electronic charge and spin may be accumu-
lated and controlled electrically and magnetically. In this 
context, spin-active weak links made of materials with 
strong spin-orbit (SO) interaction [1,2] have recently 
been of special interest. Splitting electrons transferred 
through such a weak link with respect to their spin polari-
zation (Rashba splitting) [3] can, e.g., be employed for 
generating a number of interference- and spin-relaxation 
phenomena, which bring new spintronic functionality to 
such nanodevices [4]. 

Spin-orbit interactions can be induced by external or in-
ternal (crystal) electric fields. Here we focus on the latter 
case and imagine the weak link to be formed by a single-
wall carbon nanotube, in which crystal fields caused by 
elastic strains can be thought of as occurring when a flat 
graphene ribbon is rolled up to form a tube. The strain-
induced SO coupling in a one-dimensional model of such a 
nanotube can be described by the Hamiltonian [4]  

ˆ,so F sok s= σ⋅ v  (1) 

which is a simplified form of the SO Hamiltonian derived 
for a more realistic nanotube model [5]. In Eq. (1) Fv  is 
the Fermi velocity, sok  is a phenomenological parameter 
that gives the strength of the SO interaction in units of in-
verse length, = ( , , )x y yσ σ σ σ  is a vector whose compo-
nents are the Pauli spin matrices, and ŝ  is a unit vector 
pointing along the longitudinal axis of the nanotube. 

In semiclassical terms the effect of the SO interaction 
can be understood as a precession of the electron’s spin 
around an effective magnetic field soB , where if the SO 
interaction is given by Eq. (1), ˆ= ( / )so F so Bk s− µB v . 
Quantum mechanically, its effect can be accounted for by 
adding an extra phase, ACϕ , to its wave function when an 
electron propagates through an SO-active spatial domain. 
This is known as the Aharonov–Casher effect, [6] and the 
Aharonov–Casher phase ACϕ  can significantly modify 
electron transport. 

The effect of the SO interaction we have in mind can be 
illustrated by considering the device sketched in Fig. 1, 
which one can think of as an SO-active electric weak link. 
Here a (1D) wire (a simple model of a carbon nanotube) 
serves as a tunneling weak link between two bulk nonmag-
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netic conductors. A strong spin-orbit interaction is as-
sumed to be present in the wire (but not in the bulk con-
ductors), so that tunneling transfer of electrons through the 
wire is accompanied by spin-precession dynamics and con-
sequently by the accumulation of an extra phase factor, 
containing the Aharonov–Casher phase ACϕ , in the defini-
tion of tunneling probability amplitudes,  

 0 AC= exp ( ).V V iϕkp  (2) 

Here we have introduced the tunneling amplitude 0V  for 
the left-to-right lead transitions in the absence of the SO 
interaction [7]. 

In the proposed device the wire is supposed to be sus-
pended and mechanically bent. The bent wire is modeled 
as two non-collinear straight segments of equal length /2d , 
where the angle θ shown in Fig. 1 describes their degree of 
direction mismatch. For this geometry the Aharonov-
Casher phase factors were calculated in Ref. 3 for the case 
when the angle γ  between the plane containing the bent 
wire and the y -axis (see Fig. 1) is zero. A straightforward 
generalization yields the result  

 Aexp( ) = ,Ci A iϕ + ⋅B σ  (3) 

where  

 2 2= ( ) ( ) cos(2 );cos sinA α − α θ   

 (= sin(2 )cos( ),α θB   

 2sin( )sin ( )sin(2 ),γ α θ   

 )2cos( )sin ( )sin(2 )− γ α θ  (4) 

and the dimensionless parameter /2sok dα ≡  is proportion-
al to the SO interaction strength. 

The Hamiltonian of the system is  

 link leads tun= .+ +     (5) 

Here the Hamiltonian describing the weak link is  

 
2

2
link ˆ= .

2
F sok s

m∗
− + σ⋅


v∇  (6) 

The Hamiltonian of the leads is leads lead
= ,

=
L R

H α

α
∑  , with  

 = ( ) †
( ) ( )lead ( )

( ),
= ,L R

k p c cα
σσ

σ
ε∑ k pk p

k p
  (7) 

where †c σk  (c σk ) creates (annihilates) an electron with mo-
mentum k  and spin σ  in the left lead (L), with similar def-
initions in the right lead (R) [ =σ ±, corresponding to spin 
projections ,↑ ↓ on the spin quantization axis, which we 
take to be the z -axis]. Tunneling between the leads and the 
weak link is described by  

 † †
tun

, , ,
= ([ ] [ ] ) ,V c c V c c∗

′ ′ ′σσ σ σσ σσ ′σ
′σ σ

+∑ kp p kp kk p
k p

  (8) 

where [ ]V ′σσkp , being the matrix element of the operator 
(3), is the tunneling amplitude from the state with momen-
tum p and spin ′σ  in the right lead to the state with mo-
mentum k  and spin σ  in the left one. 

Following the standard approach we treat the tunneling 
Hamiltonian perturbatively describing the electronic sys-
tems in both leads in the absence of tunneling, each being 
in local equilibrium, having different chemical potentials, 

Lµ  and Rµ , for different leads. Then, the distribution func-
tion of electrons in each ( , )L R  lead is the Fermi function  

 
( ),

, ( ) = 1/[e 1],k L R
L R kf

β ε −µ
ε +  (9) 

where 1/ Bk Tβ ≡  is inversely proportional to the tempera-
ture T . It is essential to note that we consider a nonmagnet-
ic weak link, so the electron energies in the left (right) lead 

( )k pε  do not depend on the electron spin. 
Charge and spin currents injected through the weak link 

into each lead are given by the standard expressions  

 ( , ) †
( )charge ( )

( ) ( , )

= ,L R

L R

dI e c c
dt σσ

σ
∑ ∑ k pk p

k p
 (10) 

 ( , ) †
( )spin ( )

( ) ( , )

= .L R

L R

dI c c
dt σσ

σ
σ∑ ∑ k pk p

k p
 (11) 

Note that the spin current ( )
spin
L RI  is given by the time de-

rivative of the z -component of the magnetization in the 
left (right) lead. This is why Eq. (11) represents the flow of 
the z -component of the electronic spin injected into the 
left (right) lead. For brevity we will simply refer to ( )

spin
L RI  

as the “spin current” in what follows. Here, the quantum 
averages ,... L R〈 〉  are taken over the electronic states in the 
( , )L R  lead, which is assumed to be in local equilibrium. 
As we can see from Eqs. (2), (3) and (8), the tunneling of 
an electron through the weak link is coupled to the possi-

Fig. 1. Illustration of the geometry used to calculate the spin-orbit 
coupling dependence of the tunneling amplitude. Two straight 
segments, modeling the bent nanowire (bending is parameterized 
by the angle θ ), are tunnel-coupled to left (L) and right (R) elec-
tronic electrodes. The spatial orientation of the wire is controlled 
by the angle γ  between the y -axis and the plane containing the 
bent nanowire. The setup corresponds to a configuration in which 
the wire is controlled only mechanically. 

1578 Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12 



Mechanically driven spin-orbit-active weak links 

bility of flipping its spin. Therefore such a tunneling event 
may lead to additional spin production, which is why one 
may expect that the spin-active electric weak link present-
ed in Fig. 1 can act as a source of spin that can be injected 
into the conducting leads to create spin currents there. 
However, a direct calculation of the spin current (11) using 
Eq. (8) shows that no net spin current is generated by the 
weak link. Moreover, one can show that no effect of SO 
coupling on transport is possible for the given setup. The 
fundamental reason lies in the time-reversal symmetry of 
the Hamiltonian (5) [8]. Therefore, time-reversal symmetry 
should be broken in order to activate the effect of Rashba 
dynamics on electronic transport. Since there is no proof 
that breaking time-reversal symmetry would accomplish 
this task irrespective of how the symmetry is broken, one 
needs to prove it in each special case. For example, it was 
shown in Ref. 9 that breaking time-reversal symmetry by 
switching on an external magnetic field, indeed activates 
spin production in the spin-active weak link of Fig. 1. In 
this case the possibility to control the induced spin currents 
electrically and magnetically was also demonstrated. 

In this paper we explore the possibility to activate spin 
production in the weak link by breaking time-reversal 
symmetry in a different way, viz. via a time-dependent 
spin-orbit coupling. A number of ways to achieve a time-
dependent SO interaction can be suggested. Microwave 
actuation, which exploits the time-dependent electric field 
responsible for the spin-orbit coupling, is one possible 
way. Mechanical actuation, which can be achieved either 
by flexural vibrations of the nanowire or by rotating the 
bent nanowire around the x-axis (see Fig. 1), is another. 
Below we consider the effect of a rotational activation of 
the device. We will prove that such mechanical dynamics 
indeed leads to the generation of a spin current and demon-
strate the possibility to manipulate this current electrically 
and mechanically. 

In order to study rotational activation of the nanowire 
weak link we let the angle γ  between the plane that con-
tains the bent nanowire and the y -axis (see Fig. 1) be a 
linear function of time,  

 = ,tγ Ω  (12) 

so that Ω  is the rotation frequency of the wire. A generali-
zation of the approach outlined above for the static nano-
wire weak-link geometry to the case of a rotating wire re-
quires an analysis of electron tunneling through a 
mechanically driven device. The result should depend on 
the ratio between the rotation period 1/Ω  of the wire and 
the time /d Fdτ  v  it takes for an electron to pass through 
the device. We will consider the limiting case when 

1dΩτ   for which we approximate the Hamiltonian for 
the rotating-wire problem at hand with the Hamiltonian for 
the static-wire problem as described by Eqs. (2)–(8) but 
modified by replacing γ  by ( )tγ  in Eq. (4) with ( )tγ  as 

given by Eq. (12) and t  treated as a parameter. We shall 
emphasize this change by using the notation  

 ( ) ( ( )).t t≡ γB B  (13) 

Following the standard procedure, one gets to second 
order in the electronic tunneling rates  

 
,

= 2 ( )[1 ( )]L
p k

k pt

I i dt f f
∞

σ ′− ε − ε ×∑∫   

 ( )sin ( )( ) [ ( , )] ,k p t t X t t σσ′ ′× ε − ε −  (14) 

where  

 (2
0( , ) = | | ( ( ) )( ( ) ))X t t V A i t A i t′ ′− ⋅ + ⋅ −B Bσ σ   

 )( ( ) )( ( ) ) .A i t A i t′− − ⋅ + ⋅B Bσ σ  (15) 

Further simplifications follow from the properties of the 
Pauli matrices, which allow us to write the diagonal ele-
ments of the operator ( , )X t t′  as  

 [ ]{[ ( , )] = ( , ) cos( ) cos( )X t t i P t tσσ′ ′σ α θ Ω − Ω +  

 [ ]}( , ) sin( ) sin( )Q t t′+ α θ Ω − Ω  (16) 

where  

2 2 2

2

( , ) = 2[sin ( ) cos(2 ) cos ( )]sin ( )sin(2 ),

( , ) = 2sin(2 )cos sin ( )sin(2 ).

P

Q

α θ α θ − α α θ

α θ α θ α θ
 (17) 

The integration over time in Eq. (14), using expressions 
(16) and (17), can be performed analytically, yielding the 
following expression for the flux of electrons with spin σ ,  

 { }2 2
0= | | ( , ) sin( ) ( , ) cos( )LI V P t Q tσ πσν Ω − α θ Ω + α θ Ω = 

 {2 2 2
0= 2 | | sin ( )sin(2 ) cos( ) cos( )V tπσν α θ Ω θ Ω −  

 }2 2[sin ( ) cos(2 ) cos ( )]sin( ) .t− α θ − α Ω  (18) 

Here ν is the electron density of states, which is assumed 
to be the same in both leads. From the result (18) we can 
get the charge current in an electrically unbiased device 
( = )L Rµ µ  as  

 charge
=

= = 0L
LI e I σ

σ ±
∑  (19) 

and the spin current (11) as  

 spin
=

=L
LI I σ

σ ±
σ =∑   

 {2 2 2
0= 4 | | sin ( )sin(2 ) cos( ) cos( )V tπν α θ Ω θ Ω −  

 }2 2[sin ( ) cos(2 ) cos ( )]sin( ) .t− α θ − α Ω  (20) 
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As expected, the charge current is zero for an electrical-
ly unbiased device. Also, the spin current is zero under the 
following conditions: (i) if there is no spin-orbit interaction 
( = 0α ); (ii) if the wire is not bent ( = 0θ ), or (iii) if it is 
“bent back on itself ” ( = /2θ π ); (iv) if the wire is not rotat-
ing ( = 0Ω ). Apart from that, the spin current (more pre-
cisely the flow of the z -component of the electronic spin) 
is purely oscillatory (no dc component) with an amplitude 
that is proportional to the rotation frequency Ω , being nei-
ther an even nor an odd function of Ω . 

A convenient way to express the spin current is in terms 
of an amplitude and phase shift of an oscillatory function,  

 spin 0( ) = ( , )sin( ),I t I tΩ α θ Ω + γ  (21) 

where amplitude and phase shift are given by  

 2

0
( , ) = ( )sin(2 )sin

GI
GΩ α θ Ω α θ ×  

 ( )222 2( ) ( ) sin ( ) cos(2 ) ,cos cos× θ + α − α θ  (22) 

 0 2 2
cos( )= arctan .

cos ( ) sin ( ) cos(2 )
θ

γ
α − α θ

 (23) 

Here, we expressed the amplitude ( , )IΩ α θ  in terms of the 
conductance G , using the identity 2 2

0 04 | | = /V G Gπν , 
where 2

0 = /G e h is the conductance quantum. The de-
pendence of IΩ and 0γ  on α and θ is illustrated in Fig. 2. 

With respect to the physics behind the phenomenon of 
spin generation, there is an illuminating analogy between 
our problem and the process of spin-flip-assisted electronic 
microwave absorption [10]. The interaction between the 
spin of an electron and the time-dependent magnetic com-
ponent of a microwave electro-magnetic field has the same 
form as the spin-orbit coupling, which couples the spin to 
the effective time-dependent “effective” magnetic field soB  
introduced in the introduction to this paper. A circular po-

larization of the microwave field, providing a time-varying 
orientation of its magnetic component, induces spin-flip-
assisted electronic transitions involving absorption or 
emission of microwave photons. In our case, the rotation of 
the bent nanowire weak link changes the spatial orientation 
of soB  in time, thus bringing a certain “circularity” to the 
effective “spin-orbit microwave field” and consequently 
inducing an asymmetry between the flipping up or down of 
a spin during an emission or absorption event. In our de-
vice, at zero temperature, only absorption transitions are 
possible due to the Pauli constraint. In a further analogy 
with the microwave case, one can think of momentum be-
ing conserved in such an absorption event by the transfer 
of a finite amount of the rotational momentum of the weak 
link to the precessing spin, a transfer facilitated in our case 
by the time-dependent spin-orbit interaction. 

From expression (21) one can easily see that the maxi-
mal spin, accumulated during one half-period of time-
oscillation  

 spin
0

1= ( ) ,S I d
π

τ τ
Ω ∫  (24) 

where 0tτ ≡ Ω + γ , equals = 2 ( , )S IΩ α θ . The value of S  
can be estimated using Eq. (22). For a wire of length 1d 
µm and an SO interaction strength corresponding to 

10.2 ( m)sok −µ , a value, which can be extracted from 
measured energy splittings caused by strain-induced SO 
interactions in single-walled carbon nanotubes [11], one 
finds that 1α . This allows us to estimate S  to be of the 
order of the spin of a single electron. 
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Механічно керовані слабкі зв’язки зі спін-орбі-
тальною взаємодією 

M. Jonson, R.I. Shekhter, O. Entin-Wohlman, 
A. Aharony, H.C. Park, D. Radić 

Обговорюються нові функціональні можливості, що 
реалізовуються у тунельних структурах завдяки залежній від 
часу сильній спін-орбітальній взаємодії електронів. Як приклад 

запропоновано просту модель, в якій передбачено генерацію 
спінового струму, що виникає при обертанні зігнутого дроту, 
який з’єднує два масивні метали, із локалізованою на ній силь-
ною спін-орбітальною взаємодією електронів. 

Ключові слова: спін-активні слабкі зв’язки, електронний спі-
новий струм. 

Механически управляемые слабые связи со спин-
орбитальным взаимодействием 

M. Jonson, R.I. Shekhter, O. Entin-Wohlman, 
A. Aharony, H.C. Park, D. Radić 

Обсуждаются новые функциональные возможности, реа-
лизующиеся в туннельных структурах благодаря зависящему 
от времени сильному спин-орбитальному взаимодействию 
электронов. В качестве примера предложена простая модель, 
в которой предсказана генерация спинового тока, возникаю-
щая при вращении изогнутой проволоки, соединяющей два 
массивных металла, с локализованным на ней сильным спин-
орбитальным взаимодействием электронов. 

Ключевые слова: спин-активные слабые связи, электронный 
спиновый ток.
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