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* rare gas discharge lamp (<40.2 eV)
* x-ray tube (1.256 and 1.486 keV)
* synchrotron radiation (10 eV ... 10 keV)

photon source

hv

sample

P

PES Experiment

* hemispherical anylzer
* time of flight (TOF) analyzer)

energy analyser

UHV - Ultra High Vacuum
( p <1077 mbar ) |

typically 101mbar
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The experiment determines the momentum of photoelectron in vacuum
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PES Experiment
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2D-PES Experiment
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Accumulate spectra as the
momentum Kk, is scanned
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PES — determining momentum

A Translation symmetry in x-y
ExinT Spectrum
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PES — determining momentum

Kinematic relations
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PES — kinematics

(a) En (b)  E (c)
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“...in a nearly-free-electron gas, optical absorption may be viewed a two-step
process. The absorption of the photon provides the electron with additional energy
it needs to get to the excited state. The crystal potential imparts to the electron to
the electron the additional momentum it needs to reach the excited state. This mo-
mentum comes in the multiples of the reciprocal-lattice vector G. So in a reduced
zone picture, the transitions are vertical in wave-vector space. But in photoemission,
it is more useful to think in an extended-zone scheme.

G. D. Mahan, Phys. Rev. B, 1970



PES — kinematics
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it is more useful to think in an extended-zone scheme.

G. D. Mahan, Phys. Rev. B, 1970



Three- and one-step models

three-step model one-step model
E A excitation travel transmission E 4 excitation wave matching
into a bulk to the through the into a damped at the surface
final state surface surface final state
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Three-Step Model

e 1. Optical excitation
(UN | Hind OY)]" % 8(BY = BY — hw) x (ki — G~ K)
e

2mece

e 2. Travel to the surface. Only elastic scattering is considered. Mean free
path is about a few angstroms.

* 3. Escape by a transmission through the surface.

kT /2m > Eo + ¢
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Three-Step Model

e 1. Optical excitation
(UN | Hind OY)]" % 8(BY = BY — hw) x (ki — G~ K)
e

2mece

e 2. Travel to the surface. Only elastic scattering is considered. Mean free
path is about a few angstroms.

* 3. Escape by a transmission through the surface.

kT /2m > Eo + ¢
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e 2. Travel to the surface. Only elastic scattering is considered. Mean free
path is about a few angstroms.

* 3. Escape by a transmission through the surface.

kT /2m > Eo + ¢



Three-Step Model

e 1. Optical excitation
(UN | Hind OY)]" % 8(BY = BY — hw) x (ki — G~ K)
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One-Step Model

Electron excitation, removal and detection a single
coherent process

Initial states . Final states
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One-Step Model

- _ € . . € . linear optical regime,
Hine = 2mece (A P+p A) - 2mc (A p) dipole approximation

Under assumption V-A=0

Commutation relation |Ho,p| = ihVV ~ where Hy=p?/2m+V

Transition probability <\IJ§:V‘A : VV‘\I/,£V>

however, inside the material VV =0

onthe surface OV /0z # 0 - Surface photoelectric effect



The Experiment - ARPES
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The Experiment - ARPES




The Experiment - ARPES

/ fui ,//\-‘.,\
J

! ner _sphc-"aa\"\__
ir 5“1)"' '

Ry T N




Hemisphere Entrance Slit
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The Experiment - ARPES




PES-Imaging

2nd generation

3rd generation
Imaging-Type analyzer

OE=10 meV
dA=.1 degrees

< "
Spatial mapping State of the art:

Angular mapping




The Experiment - ARPES

Energy Analyzer

Vi(Ry) = Vi [% _ 1}
Va(Rs) = Vi [% _ 1}

GVO - pass energy



The Experiment - ARPES
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The Experiment - ARPES

Fermi Surface
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ARPES — Cu (100)

Surface normal hzkju
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look at the electrons at the

4 constant value,e.g. hv=83 eV and
- Fermi level (zero binding energy)

A The electrons detected have
constant |k, | and therefore lie on
a sphere in k-space



ARPES — Cu (100)

Expt. probes this
hemisphercal surface hv=83 eV

Eli Rotenberg, ALS/LBNL



Surface states

Momentum Space

Real Space

1 atomic
layer

L
:

Surface electrons

Bulk
Electrons

A Surface states are highly localized in real space, therefore completely
delocalized in k-space along k,.

= NO DISPERSION OF SURFACE STATES in k, direction

A Energy and momenta of surface and bulk states cannot overlap
(otherwise, why would the states be localized to the surface?)



Surface states

Side view =

—
-,
=7
en
c
©)
Y e sl e
: VN
| X Surface State
Fo

k, along [110]



The Experiment - ARPES
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Binding energy (eV)
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Sb(111)

Hsieh et al, Science, 2009



Scanning Tunneling Microscopy
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Tunneling Current

Barden, PRL, 1961

Current (1st order perturbation theory)
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Occupied states

Bardeen showed that under certain assumptions, 1,. = h/2m js'dS(q)k'v o, —0.V,)



Sample D.O.S. Tip

height ~ 5-7 A&

—> D.0.S. near the Fermi level controls the current
=> STM images are not topographic.



GaAs (110): Understanding the bias dependece
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To determine LDOS, measure



Retrieve k-space from STM

Cu(111)

Petersen et al, PRB, 1998
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Phys. Rev. Lett. 86 (2001) 3384



Retrieve k-space from STM

Cuft11) A cos(2kp + )

Petersen et al, PRB, 1998 /0 X



no scattering center
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elastic scattering



STM/STS ARPES

23
g s
XY I

»3n
e OX
e

PR q
3%, 4 € /_\.’ |~'-ne(t-s~|'

Roushan et al, Nature, 2009
low | M high



..... > T02Roei(kp"'ks)LeiksX'
..... ,T°2R°332i(kp+ks)Leiksx'

Seo et al, Nature, 2010

b c

S Of

()]

E

>

jo2]

@

=

i

-100

Q

Q P Q
Distance (A)

/ \oeeseserre

Low lf M High

)
‘Lb
Distance (A)

0
d

|
A 37A

-h

(Su) Ap/IP






