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ABSTRACT

A broadened Landau level is considered.

* An analytic expression is derived for the free energy using a Gaussian density of states (DOS).

INTRODUCTION

* Two-dimensional electron gas (2DEG) is a system where the motion of
electrons is confined in two directions. [1]

* The density of states (DOS) for a broadened 2DEG under a perpendicular
magnetic field which is given as
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* Here, E,, = (n + %) hw, is the nth Landau level, w, = ;li is the cyclotron

frequency for a given effective mass m”, and I' is the broadening parameter.
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Fig. 1. . The plot for different values of
I’ which is observed that the
broadening parameter is the width of
the peaks centered at E),.
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FREE ENERGY

* The free energy has the form,
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* Substitute D(E) of eq. (2) by eq. (1).The compressed form of the free energy,
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* The integral I, can be evaluated by integration by parts (IBP) which leads to
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where u = In{1 + exp|B(u — E)], v,, = E erf (\J (ﬁ) (E — En)) and
f (E) is the Fermi-Dirac distribution function.
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To evaluate the remaining integral, the Fermi-Dirac distribution function can
be expanded by geometric series |2 ]
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where the remaining integral in eq. (5)
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The first term of eq. (7) can be evaluated by using integral no. 5.41 of Ref.
[3]. Egs. (8) and (9) can be evaluated by IBP simultaneously, and using the
integral no. 1, 2.33 of Ref. [3].
Upon evaluating all of the integration limits for eq. (8) and eq. (9),
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Evaluating all integration limits, the final form of the free energy
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* An analytic expression is derived for the free energy of
broadened Landau levels of a 2DEG.

* This result can be use to obtain the magnetization and heat
capacity closed forms having a Gaussian DOS and compare it
with the numerical simulation [4].

* The form can examine the limiting case by deriving the specific
heat and comparing the form obtained from Ref. [5].
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