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ABSTRACT

INTRODUCTION

• A broadened Landau level is considered. 
• An analytic expression is derived for the free energy using a Gaussian density of states (DOS). 

• Two-dimensional electron gas (2DEG) is a system where the motion of 
electrons is confined in two directions. [1]

• The density of states (DOS) for a broadened 2DEG under a perpendicular 
magnetic field which is given as 
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• Here, 𝐸* = 𝑛 + /
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frequency for a given effective mass 𝑚∗, and 𝛤 is the broadening parameter.

CONCLUSIONS

• An analytic expression is derived for the free energy of
broadened Landau levels of a 2DEG.

• This result can be use to obtain the magnetization and heat
capacity closed forms having a Gaussian DOS and compare it
with the numerical simulation [4].

• The form can examine the limiting case by deriving the specific
heat and comparing the form obtained from Ref. [5].
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FREE ENERGY

• The free energy has the form,

𝐹 = 𝜇𝑁 −
1
𝛽
C
D

E
𝐷 𝐸, 𝐵 ln{1 + exp 𝛽 𝜇 − 𝐸 𝑑𝐸

where 𝛽 = /
JKL

.

• Substitute 𝐷(𝐸) of eq. (2) by eq. (1).The compressed form of the free energy,
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• The integral 𝐼* can be evaluated by integration by parts (IBP) which leads to
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𝑓 𝐸 is the Fermi-Dirac distribution function.

,

Fig. 1. . The plot for different values of
𝛤 which is observed that the
broadening parameter is the width of
the peaks centered at 𝐸*.
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• To evaluate the remaining integral, the Fermi-Dirac distribution function can 
be expanded by geometric series [2]

𝑓 𝐸 =

)
JXD

E

−1 J exp 𝛽𝑘 𝐸 − 𝜇 𝐸 < 𝜇

)
JXD

E

−1 J exp 𝛽 𝑘 + 1 𝜇 − 𝐸 𝐸 > 𝜇

where the remaining integral in eq. (5) 
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• The first term of eq. (7) can be evaluated by using integral no. 5.41 of Ref. 
[3]. Eqs. (8) and (9) can be evaluated by IBP simultaneously, and using the 
integral no. 1, 2.33 of Ref. [3]. 

• Upon evaluating all of the integration limits for eq. (8) and eq. (9),
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• Evaluating all integration limits, the final form of the free energy
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