Resolution of the exponent puzzle for the Anderson transition in doped semiconductors

Edoardo Carnio, Nicholas Hine, Rudolf Römer Department of Physics, University of Warwick Physikalisches Institut, Albert-Ludwigs-Universität Freiburg

IWDS2018, Daejeon (South Korea), 7.9.2018

- 1. The exponent puzzle
- 2. Model and analysis
- 3. Results
- 4. Conclusions

The exponent puzzle

The exponent puzzle

$$\chi \propto (n_{\rm c} - n)^{-2\nu} \quad \sigma \propto (n - n_{\rm c})^{\nu}$$

Anderson model

$$\mathcal{H} = \sum_{i} arepsilon_{i} \ket{i} ig\langle i
vert + \sum_{\langle i,j
angle} t_{ij} \ket{i} ig\langle j
vert$$

with
$$\varepsilon_i \in \left[-\frac{W}{2}; \frac{W}{2}\right]$$
 randomly.

$$\xi \propto |W - W_{\rm c}|^{-\nu}$$

Critical exponent ν

- Non-interacting²: $\nu = 1.590(011)$
- Interacting³: $\nu \approx 1.3$ (?)
- Experiments: $\nu \approx 0.5$ to 1
- ¹T. F. Rosenbaum et al. *Phys. Rev. B* **1983**, 27, 7509.
- ²A. Rodriguez et al. *Phys. Rev. B* 2011, 84, 134209.
- ³Y. Harashima and K. Slevin, *Phys. Rev. B* 2014, 89, 205108.

The exponent puzzle

⁴Thomas, G. A. *Philosophical Magazine Part B* 1985, 52, 479–498.
 ⁵Itoh, K. M. et al. *Journal of the Physical Society of Japan* 2004, 73, 173–183.

Model and analysis

DFT prototyping

Ab initio description of S-doped Si with DFT (ONETEP⁶):

- host lattice (diamond cubic)
- 9 atomic orbitals (s, p, d)
- interactions via XC functional

 \Rightarrow Observe the MIT via the Kohn-Sham wave function.

ONETEP on ARCHER

4096 atoms = 10h \times 1152 cores.

⁶C.-K. Skylaris et al. J. Chem. Phys. 2005, 122, 084119.

From DFT to effective tight-binding models

Assumptions and features:

- same potential (matrix elements) around each impurity;
- hopping up to ten neighbours ($\sim 1.6a$), determined by DFT;
- we consider single and paired impurities $(\leq a)$.

Model keeps salient features of DFT: single electron at T = 0, interacting with other electrons and nuclei via the "Coulomb interaction" (approximated in the XC functional).

An example: 4067Si29S

Diagonalise ETBM to find eigenvalues ε_i . DOS: sum Gaussians centred on $\varepsilon_i - \varepsilon_F$ of width $\sigma = 10 \text{ meV}$.

Good agreement for the position of *conduction* and *valence band* and for the extension of the *impurity band*.

- 1. Generate a disorder realisation. Place randomly N_X impurities in a lattice of $N = L^3$ atoms. We work with 4096, 5832, 8000 and 10648 atoms.
- 2. Construct Hamiltonian H and overlap S matrices. They contain the tight-binding model and orbital description. Matrix sizes up to 10648 \times 9 = 95832, sparsity of ~600 elements per row.
- 3. Generalised eigenvalue problem $H\psi_i = \lambda_i S\psi_i$, for $i = 1, ..., N_X$. For a given concentration $n \propto N_X/N$ the number of eigenstates increases as $N_X \propto N$. Runtime: up to ~12+ h for 10648 atoms.
- From the eigenvalues compute the DOS and from the eigenstates compute the multifractal analysis.
 Our statistics is based on ~18 × 10⁶ eigenstates!

Multifractal analysis²

Coarse-grain wave function from ψ (sites i in cube L³) to μ (boxes k in cube (L/I)³):

$$\lambda = I/L \qquad |\psi_i|^2 \to \mu_k = \sum_{i \in \mathcal{B}_k} |\psi_i|^2 \tag{1}$$

2. Compute multifractal exponents:

$$\alpha_q = \frac{1}{\ln \lambda} \frac{\sum_i \mu_i^q \ln \mu_i}{\sum_i \mu_i^q} \qquad \tau_q = \frac{\ln \left(\sum_i \mu_i^q\right)}{\ln \lambda} \qquad f_q = q\alpha_q - \tau_q \quad (2)$$

- 3. Average over the ensemble of realisations.
- 4. Study the scaling with L and n.

²A. Rodriguez et al. *Phys. Rev. B* 2011, 84, 134209.

Finite-size scaling²

$$\lambda = I/L = 1/2$$
 $\varepsilon - \varepsilon_F = -0.25 \, \text{eV}$ ~700-1000 realisations

$$\frac{\mathcal{A}(\rho L^{1/\nu}) = \sum_{i} a_{i}(\rho L^{1/\nu})^{i}}{\sum_{i} \rho = w + \sum_{i=2} b_{i}w^{i}} w = \frac{w - w}{n_{c}}$$
(3)

²A. Rodriguez et al. *Phys. Rev. B* **2011**, 84, 134209.

Results

- Asymmetric tail extends towards the valence band.
- MIT: extended states and vanishing band gap.

- Concave shape of n_c : delocalisation from band centre outwards.
- At the top of the band ν rises from 0.5 to 1 (experiments) and fluctuates between values 1 and 1.5 deeper in the band.

2D DOS and hybridisation

- Features: regimes distinguishable by localisation properties.
- Hybridised states (ii) connect the IB peak (iii) and the CB (i).

Multifractal spectrum (10410 Si + 230 S)

- Symmetry: $f(2d \alpha) = f(\alpha) + d \alpha$, with d = 3.
- "Quasi-metallic" behaviour (Anderson $2 + \epsilon$, PRBM).
- Behaviour is more pronounced at the Fermi energy.

We have found that

- 1. near the Fermi energy states are more extended (hybridisation between IB and CB).
- 2. in the same energy range the ν varies from 0.5 to 1.

Are these observations connected? If yes, how?

Hypothesis: conductance scales as $\sigma \propto (n - n_c)^{\nu}$, where $n - n_c \ll 1$.

Hybridisation
$$\Rightarrow$$
 higher $\sigma \stackrel{?}{\Rightarrow}$ reduced ν

Conclusions

Take-home message

We use *ab initio* methods to simulate a doped semiconductor (Si:S). We observe

- a MIT with increasing donor concentration;
- the hybridisation of impurity and conduction states near ε_F;
- the reduction of ν from 1-1.5 to 0.5 near $\varepsilon_{\rm F}$.

Next questions:

- Connection between hybridisation and $\boldsymbol{\nu}$
- Improve estimates by going to larger L
- Study other semiconductors (compensated? 2D?)

More details:

E. G. Carnio, N. D. M. Hine, R. A. Römer, arXiv:1710.01742