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Backstory

Systems at equilibrium are described by statistical mechanics

Statistical mechanics deals with large (N ' 1023) systems
weakly interacting with a thermal bath

Ensemble description is obtained in the thermodynamic limit
N,V →∞, N/V =const.

Interaction is necessary to describe equilibrium but is typically
neglected, see for instance Bose-Einstein and Fermi-Dirac
distributions for occupation numbers

Canonical description at the end emerges, and the thermal bath
shows itself only through β = 1/kBT .
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A Thorny Problem

B.V. Chirikov, Transient Chaos in Quantum and Classical Mechanics, Foundations of Physics, 16, 1, (1986)
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B.V. Chirikov, Transient Chaos in Quantum and Classical Mechanics, Foundations of Physics, 16, 1, (1986)
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The keystone

B.V. Chirikov, Transient Chaos in Quantum and Classical Mechanics, Foundations of Physics, 16, 1, (1986)
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An old story

B.V. Chirikov, Transient Chaos in Quantum and Classical Mechanics, Foundations of Physics, 16, 1, (1986)
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Take home

We do not need chaos to have statistical relaxation in an infinite
system.
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What about finite systems?

In classical finite systems a sufficiently chaotic interaction is
necessary (instead of the thermodynamic limit) to provide
statistical relaxation.

What about quantum systems? What is the relation between
integrability and thermalization?
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Quantization of classically chaotic systems: spectral properties

G.Casati, I.Guarneri and F. Valz-Gris, Lettere a Nuovo Cimento

1, 1980 (279); O. Bohigas, M.J. Giannoni, C. Schmit, Phys.

Rev. Lett. 52 (1984)

Integrable and chaotic
systems are characterized, in
general, by different spectral
properties

while the former display a
Poisson nearest neighbor
level distribution, the latter
are characterized by a
Wigner-Dyson distribution
(level repulsion).
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Is Wigner-Dyson distribution necessary for statistical relaxation?
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An annoying counter-example : Spin models

Figure: Model 1 : Interacting
fully-integrable

Figure: Model 2 : Interacting fully
chaotic

Ref. L.F.Santos, F.Borgonovi, F.M.Izrailev, PRL 108, 094102 (2012)
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Level statistics for both models
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Figure: left column : model 1 (integrable), right column (chaotic). Top panels : nearest neighbor level spacing distribution.
Bottom panels : Brody parameter. Ref. L.F.Santos, F.Borgonovi, F.M.Izrailev, PRL 108, 094102 (2012)
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Definition of Shannon entropy for a state |ψ 〉 in the basis |n〉

S(ψ) = −
∑

n

|〈n|ψ〉|2 ln |〈n|ψ〉|2, (1)

Note that

for |ψ 〉 = |n0 〉 (localized in one site of the |n 〉 basis) then
S(ψ) = 0.

for |ψ 〉 = 1/
√

N (fully delocalized in the |n 〉 basis) then
S(ψ) = ln N.
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Statistical relaxation for observables : Shannon entropy
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Take home

In finite systems, statistical relaxation occurs for
some observable even for integrable models. It is

more important the presence of sufficiently extended
and irregular eigenstates than the

integrability/non-integrability of the model.

F. Borgonovi ibs-2018



Many-Body Models for Quantum Chaos

Quench dynamics for a completely random two-body interacting
system of N bosons in M single particle energy levels with average
distance 〈d〉 = 1:

TBRI

H = H0 + V =
∑

εs a†sas +
∑

Vs1s2s3s4 a†s1
a†s2

as3as4 , (2)

and for a completely deterministic and chaotic (Wigner-Dyson
statistics, chaotic eigenstates) spin system:

SPIN

H = H0 + V =
J
4

∑
s

(
σx

sσ
x
s+1 + σy

sσ
y
s+1 + ∆σz

sσ
z
s+1

)
+ (3)

λ
J
4

∑
s

(
σx

sσ
x
s+2 + σy

sσ
y
s+2 + ∆σz

sσ
z
s+2

)
, (4)
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Quench dynamics

The eigenstates |α 〉 =
∑

k C(α)
k |k 〉 of H can be written in terms of

the basis states |k〉 of H0, where

Unperturbed vs full Hamiltonian

H|α〉 = Eα|α〉; H0|k〉 = E0
k |k〉. (5)

An eigenstate |α 〉 of the total Hamiltonian is called chaotic when its
number Npc of principal components Cαk is sufficiently large and Cαk
can be considered as random and non-correlated ones.

Initial state
As initial state an eigenstate of H0 is chosen and the dynamics
observed under the evolution of the full Hamiltonian H.
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Exploring the Many-body Hilbert space from an initial unperturbed state
|k0 〉 of H0 : top TBRI, bottom SPIN
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Partitioning the many-body space: The Cascade Model

V.V. Flambaum and F.M. Izrailev, Statistical Theory of Finite Fermi-Systems Based on the Structure of Chaotic Eigenstates,

Phys. Rev. E 56, (1997) 5144
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The cascade model

Definitions
Wk is the probability to be in the k-th class

The flow dynamics: a phenomenological approach

dW0

dt
= −Γ(W0 −W∞0 ),

dW1

dt
= −Γ(W1 −W∞1 ) + Γ(W0 −W∞0 ),

...

where W∞k = limT→∞(1/T)
∫ T

0 dt Wk(t)

(7)

Only two classes are needed to describe the dynamics up to
saturation, since the number of elements in the class 2, N2, is equal to
the dimension of the Hilbert space D and W2 = 1−W0 −W1, due to
conservation of probability. Backflow is neglected.
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Analytical Estimates for two classes

Class Probabilities

W0(t) = e−Γt(1−W∞0 ) + W∞0 ,

W1(t) = Γte−Γt(1−W∞0 ) + W∞1 (1− e−Γt).
(8)

With these expressions one can derive the time dependence for Npc(t),

Exponential growth of the number of principal components

Npc(t) =
1∑

n |〈n|ψ〉|4
' 1∑

n W2
n/Nn

'
[
W2

0 + W2
1/N1

]−1 ∼ e2Γt,

(9)

F.Borgonovi, F.M. Izrailev, L.F. Santos, Exponentially fast dynamics in the Fock space of chaotic many-body systems,

arXiv:1802.08265
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Exponential growth, TBRI
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Exponential growth, SPIN
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Time scales for relaxation

Our data clearly manifest the existence of two time scales. The first
one, tΓ ' 1/Γ, corresponds to the characteristics decay time of W0, as
shown in Eq. (8). The second, tS, is the time scale for the saturation of
the dynamics and can be estimated from e2Γt ' N∞pc , which gives

tS ' ln(N∞pc )/2Γ. (10)

Assuming a Gaussian shape for both the density of states and the
LDOS, we show that the maximal value Nmax

pc is

Nmax
pc = η

√
1− η2D (11)

where η = Γ/σ
√

2 and σ is the width of the density of states. For
M ∼ 2N and for M,N � 1 one gets the estimate

Time scale for statistical relaxation

tS ∼ N/Γ = NtΓ. (12)
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Dependence on the number of particles, TBRI (Fermi particles)

J.C. Molina, F.Borgonovi, F.M.Izrailev, in preparation
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Statistical Relaxation and Thermalization

In order to describe the process of thermalization we consider the
dynamics of the single particle occupation number distribution,

ns(t) ≡ 〈n̂s〉t = 〈ψ(t) | n̂s |ψ(t) 〉 =
∑

k

nk
s |〈k|ψ(t)〉|2. (13)

and we studied the statistical properties after relaxation,

fluctuations of the classical observable ns(t) about equilibrium

∆2ns =

∫
dns P(ns)n2

s −
[∫

dns P(ns)ns

]2

(14)

and long-time averaged quantum fluctuations

δ2ns = lim
T→∞

1
T

∫ T

0
dt
[
〈n̂2

s 〉t − 〈n̂s〉2t
]

(15)
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Single-particle occupation number distribution

Fausto Borgonovi, Felix M. Izrailev, Emergence of correlations in the process of thermalization of interacting bosons,

arXiv:1806.00435
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Classical fluctuations

Figure: a) Gaussian fluctuations about the long-time average. b) Relative classical fluctuations decay as 1/
√

Npc . Npc in
finite systems plays the role of the number of particles in statistical mechanics. Ref. : Fausto Borgonovi, Felix M. Izrailev,
Emergence of correlations in the process of thermalization of interacting bosons, arXiv:1806.00435
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Quantum fluctuations

Theoretical prediction for bosons in the canonical ensemble

δ2ns/n2
s = 1 + 1/ns (16)
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Relaxation and thermalization

Even if the saturation time tS, depends on the particularly chosen
observable, we can consider as thermalized, in the sense given by
statistical mechanics, any finite system, for sufficiently strong chaos,
and for t > N/Γ.

Fausto Borgonovi and Felix M. Izrailev Localized Thermal States, AIP Conference Proceedings 1912, 020003 (2017)
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Creation of correlations between levels : emergence of BE distribution

Local two-levels correlation function

Cs,s+1(t) = 〈k0|[n̂s(t)− n̂s][n̂s+1(t)− n̂s+1]|k0〉. (17)
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Global two-point correlation function

Global two-levels correlation function

C(2)(t) = |
M−1∑
s=1

Cs,s+1(t)| (18)
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Results for two-point correlation function

1 the perturbative behavior (t2) lasts up to the saturation time tS
2 absence of exponential growth
3 non-zero asymptotical global correlation

take home
Our results show how the information initially encoded in a local
unperturbed state, spreads over the whole system and transforms onto
global correlations specified by the BE distribution of occupation
numbers.

Fausto Borgonovi, Felix M. Izrailev, Emergence of correlations in the process of thermalization of interacting bosons,

arXiv:1806.00435
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OTOC on arxiv last three months
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OTOC : a brief history 1

In 2014, Kitaev proposed to quantify chaos in interacting quantum
many-body systems in terms of the following out-of-time-ordered
(four- point) correlation function (OTOC):

C(x, t) = −〈[wx(t), v0(0)]2〉β = −Tr{e−βH[wx(t), v0(0)]2}

where wx , v0 are local observables in the Heisenberg picture. The
concept is based on a work by Larkin and Ovchinnikov where OTOC
was connected to the instability of semi-classical trajectories of
electrons scattered by impurities in a superconductor. According to
that, extended quantum systems were defined as chaotic if there exists
a pair of local observables, w and v, such that the OTOC grows
exponentially at early times:

C(x, t) ∝ eλL(t−|x|/vB).

where λL is called Lyapunov exponent and vB butterfly velocity.
A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, (2014), talk given at Fundamental Physics Prize

Symposium; A. I. Larkin and Y. N. Ovchinnikov, Soviet Journal of Experimental and Theoretical Physics 28, 1200 (1969), J.

Maldacena, S. H. Shenker, and D. Stanford, JHEP 08, 106 (2016).
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OTOC : a brief history 2

Physically, it describes how much the perturbation introduced by
v0(0) changes the value of the wx(t). At large times C(x, t) goes to a
zero (if 〈wx〉 = 〈v0〉 = 0), because the state created by the consecutive
action of the operators wx(t)v(0) is incoherent with the state obtained
when these operators act in a different order. The anomalous time
order in the correlator implies the evolution backward in time, so it is
not measureable by direct physical experiments on one copy of the
system in the absence of a time machine such as implemented in
NMR experiments. One can view the decrease of the OTOC with time
as the consequence of the dephasing between two initially almost
identical Worlds evolving with the same Hamiltonian. In this respect
it is different from the problems of fidelity and Loschmidt echo that
study evolution forward and backwards with slightly different
Hamiltonians.
Igor L. Aleiner, Lara Faoro and Lev B. Ioffe, Microscopic model of quantum butterfly effect: out-of-time-order correlators and

traveling combustion, Annals of Physics 375, (2016) 378-406.
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Measure of OTOC via spin-echo techniques

M. Garttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Nat. Phys. 13, 781 (2017),

J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J.
Du, Phys. Rev. X 7, 031011 (2017).

K. X. Wei, C. Ramanathan, and P. Cappellaro, Phys. Rev. Lett.
120, 070501 (2018).

M. Niknam, L. F. Santos, and D. G. Cory, ArXiv:1808.04375.
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Other proposed experimental setting for OTOC measuring

Martin Garttner, Philipp Hauke, Ana Maria Rey, Phys. Rev. Lett.
120, 040402 (2018)

K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B.
Yoshida, N. Y. Yao, and C. Monroe, Verified Quantum
Information Scrambling, arXiv:1806.02807.

S. V. Syzranov, A. V. Gorshkov, and V. Galitski,
Out-of-time-order correlators in finite open systems,
arXiv:1704.08442.

Y.-L. Zhang, Y. Huang, and X. Chen, Information scrambling in
chaotic systems with dissipation, arXiv:1802.04492.

B. Swingle and N. Yunger Halpern, Resilience of scrambling
measurements, Physical Review A 97, 062113 (2018)
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OTOC : a brief history 3

For local Hamiltonian (so that distant parts of a system are not
interacting directly with each other) and observables acting far from
each other in real space, the correlator should decreases after the
significant delay needed for the perturbation to spread over the
distance separating the observables. When correlators of this type
decayed for any separation between the operators in the real space the
coherence is completely lost. The decay of OTOC at long times for all
subsystems (i.e. for all separations) for all operators implies complete
quantum information scrambling.
P. Hosur, X.-L. Qi, D. A. Roberts, B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004
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OTOC and LR bound

For local interactions C(x, t) is bounded by the Lieb-Robinson
theorem (LRT):

C(x, t) ≤ 4||v|| ||w|| e−µ max{0, |x|−vLRt}

and for t > t∗ = |x|/vLR the OTOC is even more suppressed.
t∗ is the time in which C(x, t) enters the causal cone. Before t∗ ,
C(x, t) is almost zero, while after t∗ , it is bounded and saturates at a
plateau. The dynamics can only be non-trivial near the edge of the
causal-cone (or for t ∼ t∗), where C(x, t) can vary greatly.
I.Kukuljan, S.Grozdanov, and T.Prosen, Weak Quantum Chaos arxiv:1701.09147
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Out-of-time-order four-point correlation function (OTOC)

Global two-levels correlation function

Os,s+1(t) = 〈k0|[n̂s(t), n̂s+1(0)]|2|k0〉. (19)
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Asymptotic regimes for OTOC

Perturbative regime

Os,s+1(t) ' t2
∑
k 6=k0

H2
k,k0

(
nk

s − nk0
s
)2
(

nk
s+1 − nk0

s+1

)2
. (20)

Long-time average

Os,s+1 =
∑

k

(
nk

s+1 − nk0
s+1

)2
{[∑

α Cαk Cαk0
Nα,α

s

]2
+∑

α 6=β |Cαk |2|C
β
k0
|2
(
Nα,β

s

)2
} (21)

with Nα,β
s =

∑
k Cαk Cβk nk

s ,
C(α)

k = 〈k|α〉,
H0 |k 〉 = E0

k |k 〉, H |α 〉 = Eα |α 〉.
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Results for four-point correlation function

1 a non-perturbative power-law behavior (t2.5) emerges in the
time-region characterized by the exponential growth of the
number of principal components in the many-body Hilbert space.

2 absence of exponential growth

take home
OTOC have been found to increase exponentially for chaotic quantum
many-body systems. Our preliminary results are at odd with these
findings. Further investigations are needed.
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Relaxation and scrambling time

Creation or loss of information?
Although the dynamics is completely reversible due to the unitarity of
the evolution operator, it is practically impossible to extract the
information about the initial state, by measuring the correlations
between the components of the wave function. Indeed the full
information about the initial state can be extracted only if there is an
additional complete knowledge of the random operator V . Thus one
can indeed speak of the loss of information due to scrambling. The
process of this loss is accompanied by the emergence of global
(thermodynamical) correlations.
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Discussion of the results

1 Wave packets spread exponentially fast in the unperturbed basis
before reaching saturation, when all states of the energy shell get
populated.

2 the time scale for saturation tS ∼ N/Γ is much larger than the
characteristic decay time of the survival probability tΓ ∼ 1/Γ

3 the dynamical process is well described up to tS by a
phenomenological cascade model that allowed us to estimate the
rate and the time scale of the relaxation, as well as the saturation
value of the number of principal components in the wave packet

4 a single key parameter Γ – the width of LDOS – reproduces well
the system dynamics at very different time scales.
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Discussions/ansatz

1 In the context of quantum chaos, the LDOS has a well defined
classical limit. In fact, the classical LDOS is nothing but the
projection of the unperturbed Hamiltonian onto the total one and
can be obtained by solving classical equations of motion.

2 The maximal value of the width of the LDOS is given by the
width of the energy shell. In the classical description, the energy
shell corresponds to the phase space volume obtained by the
projection of the phase-space surface H0 = E0 onto the surface
defined by the total Hamiltonian H.

3 our results for the exponential growth of Npc can be treated in
terms of the phase space occupied by the wave packet,
VE(t) ∼ Npc(t)/ρ(E), where ρ(E) is the total density of states:

VE(t) = VE(0)e2Γt ∼ VE(0)ehKSt. (22)

4 2Γ can be associated with the Kolmogorov-Sinai entropy, hKS,
which gives the exponential growth of phase-space volumes for
classically chaotic Many-Body Systems.
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Conclusions

Statistical relaxation in finite systems, driven by interaction,
depends on the initial state and not only on integrability/non
integrability criteria. More precisely the initial state should be
composed of many chaotic eigenstates.

In quantum MBS thermalization occurs in a time
tS ∼ N/Γ� 1/Γ .

A unique parameter Γ, the width of LDOS is necessary to
describe the short and long time dynamics.

In the semiclassical limit this growth corresponds to the growth
of phase space volumes with the rate hKS = 2Γ
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