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Chaotic dynamics of systems of interacting particles

7o N

H=I:IO+\7

A

H, - “non-perturbed” part (describes the non-
Interacting particles/quasi-particles)

o N

V - Interaction between particles, or, with an
external field

Many-body chaos — how to characterize?




Basic relations

H=H,+V
)=, Cilk)  |ay=2. Cl[k)
H,|k)=E? |k) Hl|a)=E°|a)

Strength function (LDOS): F-function:

F*(E)=) SE-E) FE=)|C "S(E-E°)

Cy
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the F'— function,

F(E) =) _|CR|*6(E — E}), (6)
k

which is the energy representation of an eigenstate. From
the components C}' one can also construct the strength

function (SF) of a basis state |k ),
Fi(E) =) |CE[*8(E — E®) (7)

widely used in nuclear physics [20] and known in solid
state physics as local density of states. The SF shows how
the basis state |k ) decomposes into the exact eigenstates
|a ) due to the interaction V. It can be measured exper-
imentally and it is of great importance since its Fourier
transform gives the time evolution of an excitation ini-

tially concentrated in the basis state |k). Specifically, it
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Structure of eigenfunctions
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Chaotic eigenstates in a gold atom
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(top), and a fit of Fﬂ FE) by the Breit-Wigner formula (6) (bottom).

G.F.Gribakin, A.A.Gribakina, V.V.Flambaum,
arXiv:physics/9811010; Aust. J. Phys. 52 (1999) 443.
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Occupation number distribution

In order to define the temperature for each selected

eigenstate |a) let us consider its occupation number dis-
tribution (OND),

ng = (alfisla) = Y _ |CF[* (klns|k). (9)
k

As one can see, the OND (9) consists of two ingredi-
ents: the probabilities |C2|? and the oceupation numbers
(k|fig|k) related to the basis states of Hy. The latter are
just integer numbers 0, 1, 2, ...V depending on how many
bosons occupy the single-particle level s with respect to
the many-body state |k). If the eigenstate |a) of H con-
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Thermalization in an isolated gold atom
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G.F.Gribakin, A.A.Gribakina, V.V.Flambaum,
Daejon, Sept. 3, 2018 arXiv:physics/9811010; Aust. J. Phys. 52 (1999) 443.




Two-Body Interaction Model

C 1
+ + A+
H = Z £,.4, 4, +§ Z Vigor&c8q 8,8,
K

kgpr

k).|a),| p),|r) single-particle states

Vier two-body matrix elements (random or dynamical)
m  number of single-particle states
N number of particles (*quaisi-particles”)
&, energy of single-particle states
. . . . M
H |sk<):;)Sni2|gfered In the many-particle H, =Zk:gkakak

H, determines the basis in which the dynamics occurs
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Model 1 : Interacting fully—
integrable

Hy = Hy + uVi,

L—1
Hy = Z J(S; Six+1 + SI?S:?H)*
i=1
L—1
=Y Isisi,
i=1

Model 2 : Interacting fully chaotic

H; = Hy + AV;,
L—2

V2= Z T[(S7 850 + S Siin) + 1Si 871

i=1



Main result:

To take into account the inter-particle interaction we
use the approach suggested in Refs [3, 4|. Specifically, we
substitute the energy £ = E* in (10) with the "dressed”

energy,
Emes — (a|Hgla) = E* + A,. (12)
Zns =N ngns :Ea+Aa
2 AT AFE)?
A, = 85 (E.— E%) ar_ | 2] .
(AE)? + o2 r 04
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aWo

dt = _I-‘(WU - WO }1
dW S . ®
— = ~T(Wi = W) + T(Wo - W5°),

where the infinite time averages are Wg° = 3 |Cg |*
and W® = 30, 0, 3 |C2 2ICR 2.

Wo(t) =e (1 - W5*) + W5,
R (9)
Wi(t) =Tte TH1 — W§®) + W (1 — e TY).
With the expressions (9) one can derive the time depen-
dence for Np(t),

-1
Npe(t) =~ [Z Wf,f,'\fn] ~ [Wg + WE/NI]_l ~ et

mn
(10)
where N,, is the number of states contained in the n-
th class. This result shows that the number of basis

nbaban affantivenlsr mantininatine in tha neealadinn AF dha
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states (see details in SM [35|). For M ~ 2N and for
M, N > 1 one gets the estimate

ts ~ N/T = Ntr. (13)

This is the time scale for the complete thermalization in
quantum MBS. As one can see from Eq. (13), when the
number of particles is very large, the two time scales are
very different. Notice that ts increases linearly with N
due to the exponential growth with N of the Fock space
and not because of the Gaussian shape of the density
levels [35].



Inspired by the above studies, our results for the ex-
ponential growth of N,. can be treated in terms of the
phase-space volume Vg occupied by the wave packet,
VE(t) ~ Np(t)/p(E), where p(E) is the total density

of states. We can write
Ve(t) = Ve(0)e? ~ Vg (0)e~st. (14)

Here, we associate 2I' with the Kolmogorov-Sinai en-
tropy [41], hks, which gives the exponential growth rate
of phase-space volumes for classically chaotic MBS [41].
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Occupation number distribution in time

ns(t) = (Y(t) | 7s [ anl (k|9 ()[*

Expanding e~*#t at second order one gets the time
dependence for n,(t) at small times,

[(kle ™ |ko)|* = Sk,ko+t* [Hi g, — 5ko,ko(H2)k,ko]+0((t4))
6

which results in the following estimate,

ng(t) ~nko +12 ) " (nko —nk)HZ, +o(t*)  (7)
k#ko
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First, we start with the two-point correlation function
Cs s+1(t) between neighboring occupation numbers,

Cs,s41(t) = (kol[fs(t) — fis][Rsy1(t) — Rsya]lko).  (9)

els. Performing an expansion on a small time scale it is
possible to show that

CO(t) ~ 1| Z Z ZHk ko Wieko| +0(t%) (1)
s=1 r=s+1

with W = [nknk + nko nk" — nkonk — nknke]. As one

can see, Eq. (11) does not contain both eigenvalues and

eigenfunctions. This means that in order to get the initial

spread of the correlator, there is no need to diagonalize

the Hamiltonian. Concerning the saturation value, it can
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As for the saturation values n, after the relaxation
time ts, they can be also obtained analytically,

ms =Y nf[k[PE)2 =) nF) |CRPICR?. (8)
k k o
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FIG. 3: (a) Correlation function Css+1(t) for all s =
1,...,M —1. (b) Time evolution of the global two-point corre-
lation function C® (t). Dashed line is due to Eq.11. Horizon-
tal line corresponds to Eq.12. The initial state and parame-
ters are the same as in Fig.(2). The average over 10 random
realizations of the potential V' was used.



Thanks for your attention!

Natal, June 10, 2016




Assuming a Gaussian shape for both the density of states
and the LDOS (33|, we show that the maximal value of
N 1s

pc

N2** =ny/1—n°D (12)

where n = I'/0v/2 and o is the width of the density of
states (see details in SM [33|). For M ~ 2N and for
M, N > 1 one gets the estimate

ts ~ N/T = Nitr. (13)
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Comments to FPU

1. We do not need ergodicity for thermalization

2. Onset of chaos — dependence on N, and strength of
Interaction !
3. Dependence on initial conditions !!

4. Two different situations: finite N and
thermodynamic limit N/ — oo

5. Thermalization as the relaxation to a steady-state
distribution of energy
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Comments to TBRI model

1. Condition for the onset of chaos

2. Analytical expression to find a temperature

3. Gaussian fluctuations around the mean occupation
numbers

4. The control parameter is not the number of
particles, but the number of principal components in
chaotic eigenstates

5. Statistical (from the BE-distributions) equal to the
thermodynamical temperature
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Fundamental principle of statistical
physics

L.D.Landau and E.M.Lifshitz:

T It may again be mentioned that, according to the fundamental principles of statistical
physics, the result of the averaging is independent of whether it is done mechanically over
the exact wave function of the stationary state of the system or statistically by means of
the Gibbs distribution. The only difference is that in the former case the result is expressed
in terms ﬂ.f the energy of the body, and in the latter case as a function of its temperature.

Statistical Physics, Vol.5 (Pergamon, Oxford, 1969)
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R.V. Jensen and R. Shankar, “ Statistical Behavior in
Deterministic Quantum Systems with Few
Degrees of Freedon”, Phys. Rev. Lett. 54 (1985)
1879.
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FIG. 2. The magnetization, M, plotted against energy for

each of energy eigenstates (small dots) for (a) a noninte-

grable Hamiltonian and (b) an integrable Hamiltonian; the

solid curves represent the microcanonical average of the

magnetization as functions of energy, and the large dots

show the equilibrium values approached in numerical exper-

iments performed with a variety of initial states. The associ-

Daejon, Sept. 3, 2018 a_ted error bars_ represent an estimate of the typical fluctua-
tions from equilibrium.



Strength function: from Breit-Wigner to Gauss
Onset of strong chaos

2

Pnm

BW is characterized by half-width: T, = Zﬂ‘HnOm

2
. 2 _
Gauss is characterized by its variance: (AE),,O = Z ‘Hnom‘

m#ny

Crossover to chaos occurs when

I~ AE !
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F..Borgonovi, F.Mattiotti and F.M.lzrailev,

“Temperature of a single chaotic eigenstate”,
Phys. Rev. E., 95 (2017) 042135.

F..Borgonovi, F.M.lzrailev, L.F.Santos, V.G.Zelevinsky,
“Quantum Chaos and Thermalization in Isolated
Systems of Interacting Particles”, Phys. Rep. 625
(2016) 1-58.

Thank you for your attention!
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Chaos in integrable systems

B.V.Chirikov, “Transient Chaos in Quantum and Classical
Mechanics”, Foundation of Physics, Vol.16, No.1 (1986).

Abstract: “Bogolubov’s classical example of statistical relaxation
In a many-dimensional linear oscillator is discussed. The
relation of the discovered relaxation mechanism to quantum
dynamics as well as to some new problems in classical
mechanics is considered.”

N.N.Bogoliubov, “On Some Statistical Methods in Mathematical

Physics”, Academy of Sciences USSR Publishers, Kiev, 1945,
p.115 (Russian); in: “Selected Papers” (Naukova Dumka, Kiev,
1970, Vol.2, p.77 (Russian).
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Foundation of statistical mechanics

Two mechanisms of a statistical behavior (relaxation to
a steady state distribution) in classical mechanics:

® Thermodynamical limit N — o0 :
@ Exponential instability plus boundary in phase
space (A >0 )-“dynamical (deterministic) chaos”

What is common for both mechanisms? — Infinite
number of statistically independent frequencies in
the time evolution of observables.

In quantum mechanics — only second mechanism

B.V.Chirikov, “Linear and nonlinear dynamical chaos”,
Open. Sys. & Informaion Dyn. 4 (1997) 241-280 .
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“Quantum chaos” in deterministic systems

S.W. McDonald and A.N. Kaufman, “Spectrum and

Eigenfunctions for a Hamiltonian with Stochastic Trajectories”,
Phys. Rev. Lett. 42 (1979) 1189.

G.Casatl, I.Guarneri, FValz-Gris, “On the connection between

guantization of nonintegrable systems and statistical theory
of spectra”, Lett. Nuovo Cimento 28 (1980) 279.

M.V. Berry, “Quantizing a Classically Ergodic System: Sinai’s

Billiard and the KKR Method”, Annals of Physics, 131 (1981)
163.

O.Bohigas, M.-J.Giannoni, C.Schmit, “Characterization of

Quantum Chaotic Spectra and Universality of Level
Fluctuation Laws”, Phys. Rev. Lett. 52 (1984) 1.
BarjarB @dpprra3 A048st 20, 2012
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Emergence of chaotic states
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FIG. 2 (color online). Typical localized (top) and extended
(bottom) eigenstates for model 1 (left) and model 2 (right).

‘0[> - basisof H \n) - basis of H,

Daejon, Sept. 3, 2018



Chaotic eigenstates

Yolume 108A, number 2 PHYSICS LETTERS 18 March [983

AN EXAMPLE OF CHAOTIC EIGENSTATES IN A COMPLEX ATOM

Boris ¥V, CHIRIKOV
Institute of Nuclear Physics, 630090 Novasibirsk, USSR

Received 7 January 1985
Statistically processing a group of excited states with the woal angular momentum and panty J° =17 n the cenum atom

reveals that their eigenfunctions are random superpositions of some few basic states. A possible dynamical mechanism
responsible for the formation of those chaotic states is briefly discussed.

M.Shapiro and G.Goelman, “Onset of Chaos in an

Isolated Energy Eigenstate”, Phys. Rev. Lett. 53
(1984) 1714.
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Delocalization in energy shell

_| 1 | 1 | 1 | 1 |_ Eﬂ | 1 | 1 | 1 | 1 | i
15 }L=[l_l—_

—
= =
1 I I | I | I

04 02 0 02 04
I-j | I | I | T | T | T | T |
iy A=0.4

o e oo 8 5 3

ﬂ - .E...:.... - .E..: o
A5-105005 1 1.5

N DL
Iy A=1.0-

I | | I |
[ P~
|||.:
||||_:.‘:
TN

FIG. 4 (color online). Structure of eigenstates in the energy

shells for model 1 (left) and model 2 (right) obtained by

averaging over 5 states in the middle of the energy band. Solid

curves correspond to the Gaussian form of the energy shell.
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Strength functions (LDOS)

FIG. 3 (color online). Strength functions for model 1 (left) and
model 2 (right) obtained by averaging over 3 close states in the
middle of the spectram. Middle panels: circles give a Breit-
Wigner fit. Lower panels: circles stand for a Gaussian fit. In all
panels, solid curves correspond to the Gaussian form of the

_ Enﬂtégjf shells.
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V.V.Flambaum and F.M.l., “ Statistical theory of finite Fermi systems

based on the structure of chaotic eigenstates”, Phys. Rev. E 56
(1997) 5144; V.V.Flambaum, F.M.l., G.Casati, Phys. Rev. E 54
(1996) 2136.

“ A type of “microcanonical” partition function is introduced and
expressed in terms of the average shape of eigenstates F(E,,E)
where E Is the total energy of the system. This partition function
plays the same role as the canonical expression exp(— E® /T)
for open systems in a thermal bath...”

The following problems have been considered:

(a) the distribution of occupation numbers and its relevance to the
canonical and Fermi-Dirac distribution;

(b) criteria of equilibrium and thermalization;

(c) the thermodynamical equation of state and the meaning of
temperature;

(d) the meaning of temperature, entropy and heat capacity;

(c) the increase of temperature due to the interaction....”
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