Many-Body Invariants of

Multipolar Higher-order Topological Insulators

Gil Young Cho (POSTECH)

Byungmin Kang (KIAS)

Hyun Woong Kwon (KIAS)

Prof. Kwon Park (KIAS)

Main Research Themes:

1. Developing Novel Theories

for Topological States/Strongly-Correlated States

Ex: new types of quantum field theory (geometric deg. of. freedom)

anomalies, topological field theory, and so on

Today, but no equation/no field theory

2. Designing Models for Topological States

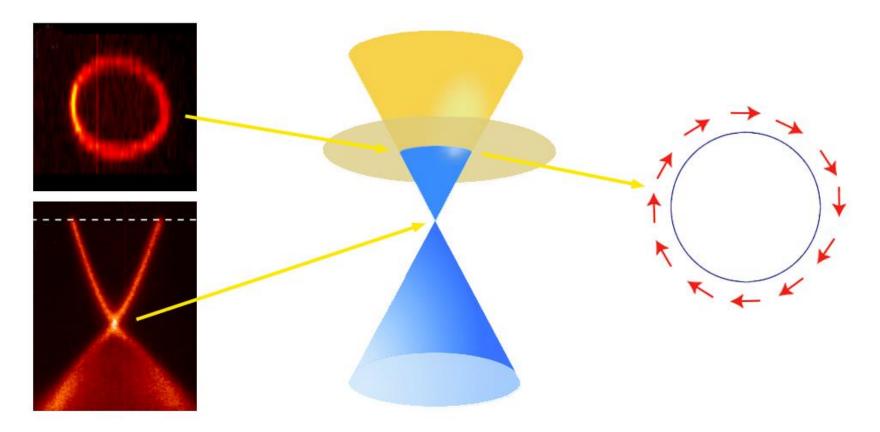
Ex: Topological superconductors [Majorana fermions]

Anyons in fractional quantum Hall states, and/or heterostructures

Contents:

1. Introductions

2. Conjectures & Numerical Results


3. Conclusions

1. Introductions

Topological Insulators

:Topological properties often manifested by "Surface States"

EX: 3D Topological Insulator

Surface: Symmetry-protected Dirac cone

New Generation of Topological Insulators:

"Higher-Order Topological Insulators"

RESEARCH

TOPOLOGICAL MATTER

Quantized electric multipole insulators

Wladimir A. Benalcazar,¹ B. Andrei Bernevig,² Taylor L. Hughes^{1*}

[Science, 2017]

Reflection-Symmetric Second-Order Topological Insulators and Superconductors

Josias Langbehn, Yang Peng, Luka Trifunovic, Felix von Oppen, and Piet W. Brouwer Phys. Rev. Lett. **119**, 246401 – Published 11 December 2017

[PRL, 2017]

Higher-Order Topology in Bismuth

Frank Schindler,¹ Zhijun Wang,² Maia G. Vergniory,^{3,4,5} Ashley M. Cook,¹ Anil Murani,⁶ Shamashis Sengupta,⁷ Alik Yu. Kasumov,^{6,8} Richard Deblock,⁶ Sangjun Jeon,⁹ Ilya Drozdov,¹⁰ Hélène Bouchiat,⁶ Sophie Guéron,⁶ Ali Yazdani,⁹ B. Andrei Bernevig,⁹ and Titus Neupert¹

[Nat. Phys., 2018]

SCIENCE ADVANCES | RESEARCH ARTICLE

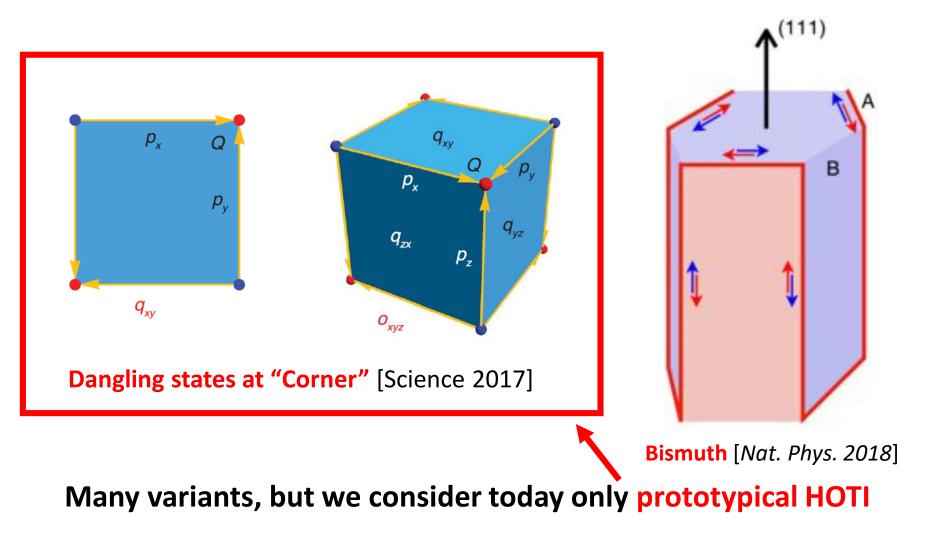
MATERIALS SCIENCE

Higher-order topological insulators

Frank Schindler,¹ Ashley M. Cook,¹ Maia G. Vergniory,^{2,3}* Zhijun Wang,⁴ Stuart S. P. Parkin,⁵ B. Andrei Bernevig,^{4,2,6†} Titus Neupert^{1†}

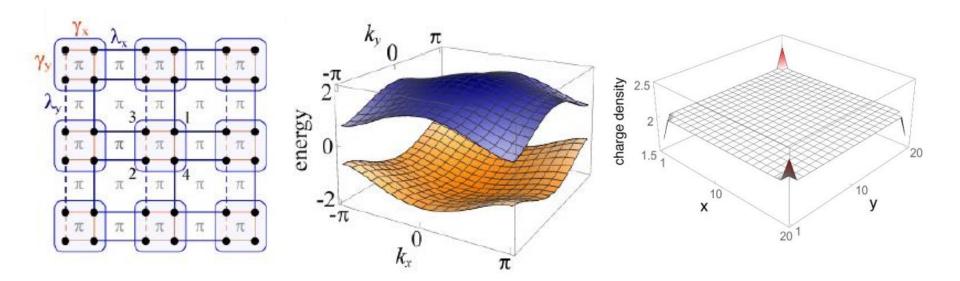
[Science, 2018]

Observation of a phononic quadrupole topological insulator


Marc Serra-Garcia, Valerio Peri, Roman Süsstrunk, Osama R. Bilal, Tom Larsen, Luis Guillermo Villanueva & Sebastian D. Huber ⊠

[Nature, 2018]

...and so on.


Higher-Order Topological Insulators (HOTI):

"Topology" = Non-trivial Edge of Edge states

"Multipolar Charge Distribution" from Corner States

[Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

Topological if $|\lambda_a| > |\gamma_a|$ for a = x, y

Quadrupolar Corner Charges

Using *semi-classical* arguments, it has been shown that:

[Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

This state has "quantized quadrupolar moments $Q_{xy} = \frac{1}{2} \mod 1$ "

Key claims: [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

1. Multipoles can be quantized.

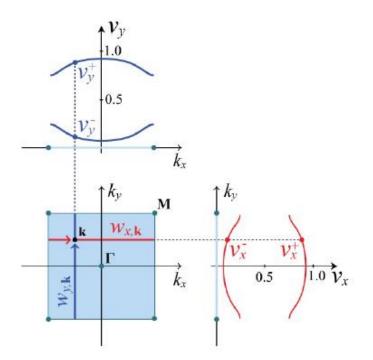
1. With proper symmetries: mirrors $\{M_x, M_y\}$ and/or C_{4z}

2. When lower poles are vanishing:

E.g., Translation by $\vec{d}: Q_{xy} = \sum xy q \rightarrow Q_{xy} + d_x P_y + d_y P_x + d_x d_y Q_{tot}$

[Invariance (well-defined): P_{χ} , P_{γ} vanish (no polarization)]

2. Topologically Trivial/non-trivial Multipoles


Ex: quadrupole in 2d with C_{4z} and no polarization

 $Q_{xy} = \frac{1}{2} \mod 1$ for higher-order topological states

 $Q_{xy} = 0 \mod 1$ for trivial states

Topological Band Indices:

"Polarizations" of "Wilson Loop Operators"

$$\mathcal{W}_{\mathcal{C},\mathbf{k}} \equiv e^{iH_{\mathcal{W}_{\mathcal{C}}}(\mathbf{k})}.$$

Not clear enough for me...

Can we diagnose "Multipoles"

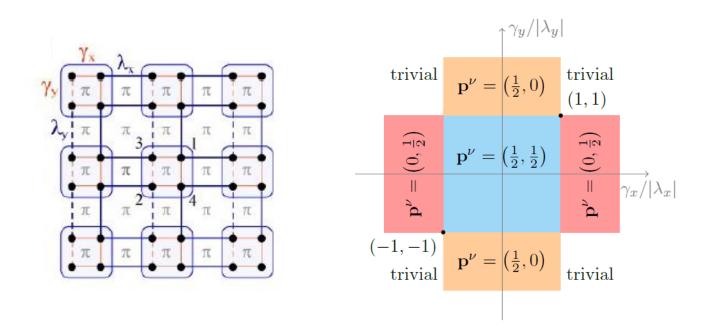
in Condensed Matter Systems?

[Generically "Quantum" + "Many Body"

I.E., Beyond "free fermion + momentum space" definitions]

(Simpler) *Definitions of Multipoles?*

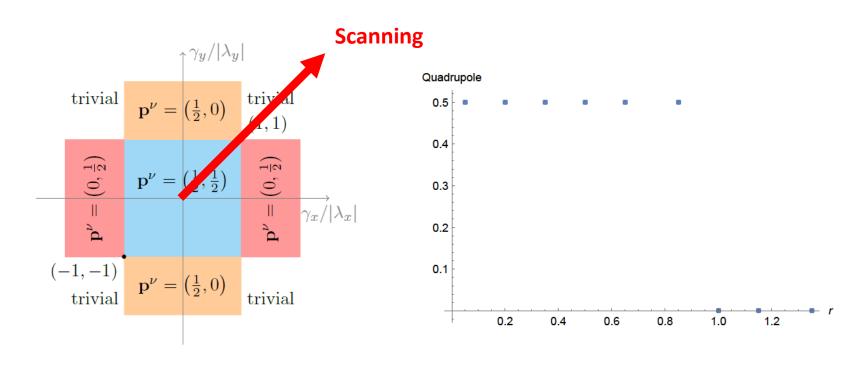
In a fully-quantum, interacting set-up


2. Conjectures & Numerical Results

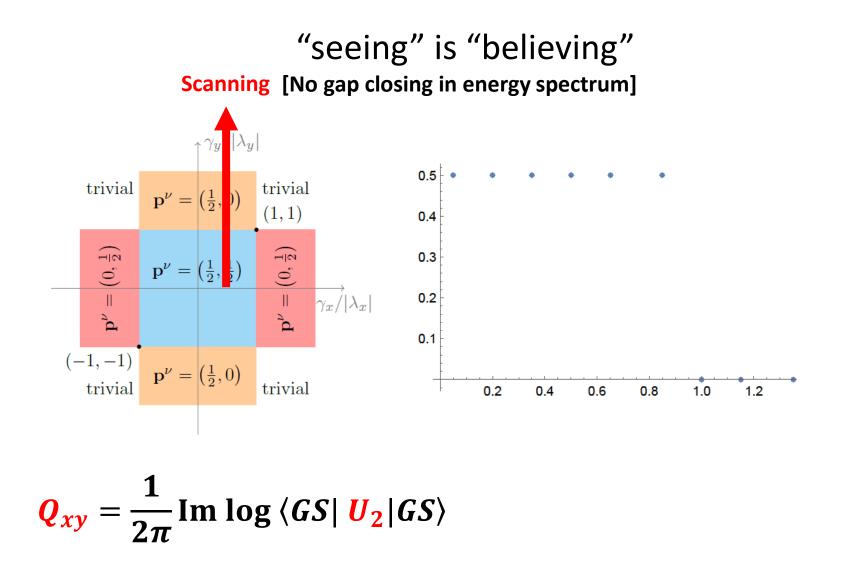
Instead of *showing you lengthy arguments* for this

 $\langle \phi_{R} | \phi_{R'} \rangle = \langle \phi_{R} | \int dx | x \rangle \langle x | \phi_{R'} \rangle = \rangle (\underbrace{\mathbb{Z}}_{n+k_0}) \underbrace{\mathbb{Z}}_{=} = \underbrace{\mathbb{I}}_{=} (2\ell - 4), \ \ell = 4, 2, \dots = > K_0 = -\underbrace{\mathbb{I}}_{=} (0, 4)$ $\langle \phi_{R} | \phi_{R'} \rangle = \int dx \ \phi_{R'} (x). \ \phi_{R'} (x) \langle \Psi_{U} (x) = [\underbrace{\mathbb{E}}_{=} \cos [\underbrace{\mathbb{I}}_{=} (2n - 4)x]; \ \mu_{R-1} + \mu_{0} = \underbrace{\mathbb{I}}_{=} : \ \Psi_{U}(x) = [\underbrace{\mathbb{E}}_{=} \sin [\underbrace{\mathbb{I}}_{=} nx]$ $\langle \phi_{R} | \phi_{R'} \rangle = \underbrace{4}_{=} \int dx \ \phi_{R'} (x). \ \phi_{R'} (x) \langle \Psi_{U} (x) = [\underbrace{\mathbb{E}}_{=} \cos [\underbrace{\mathbb{I}}_{=} (2n - 4)x]; \ \mu_{R-1} + \mu_{0} = \underbrace{\mathbb{I}}_{=} : \ \Psi_{U}(x) = [\underbrace{\mathbb{E}}_{=} \sin [\underbrace{\mathbb{I}}_{=} nx]$ $\langle \phi_{R} | \phi_{R'} \rangle = \underbrace{4}_{=} \int dx \ e^{-ikx} \ e^{-ikx} \ e^{-ikx} = ik'' : \ 0; \ h \neq h' \quad \Pi_{n} : \ \Psi_{U} (x) = \underbrace{\mathbb{I}}_{=} : \ \Psi_{U} (x) = \underbrace{\mathbb{I}}_{U} (x) = \underbrace{\mathbb{I}}_{U}$, n=1,2 ...; Hyman = === (217 (2n-1) "Ya(x)= == == == "a(x)-= 1 ==) /40/= (2Ta) 7mw2 (x-x,) : 6= 4 8x / H= fm (ap ib x) (ap-ibx +iba & p-ioba2 +b 22 + - 4X-X H= (ap + ib 2) (a p- ib 2) = bat ; De Ct (ap +ibx); C=(+) (ap-ibx)=> H=twctc anals Ar

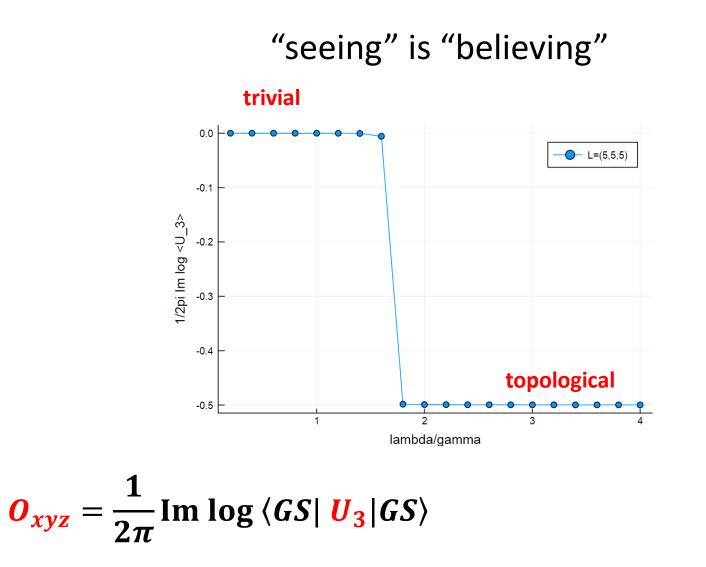
...which you probably don't care


"seeing" is "believing"

Blue Region:
$$Q_{xy} = \frac{1}{2} \mod 1$$
 (topological)

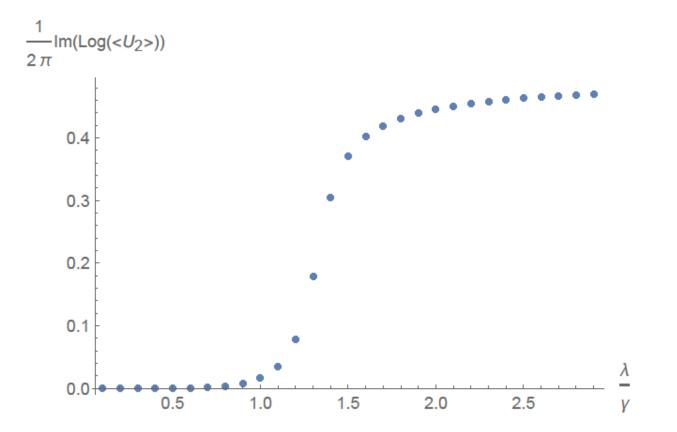

Others: $Q_{xy} = 0 \mod 1$ (trivial)

"seeing" is "believing"



$$Q_{xy} = \frac{1}{2\pi} \operatorname{Im} \log \langle GS | U_2 | GS \rangle$$

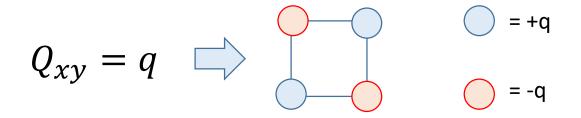
Reproduces (i) quantization, (ii) phase transition, (iii) topological/non-topological dichotomy



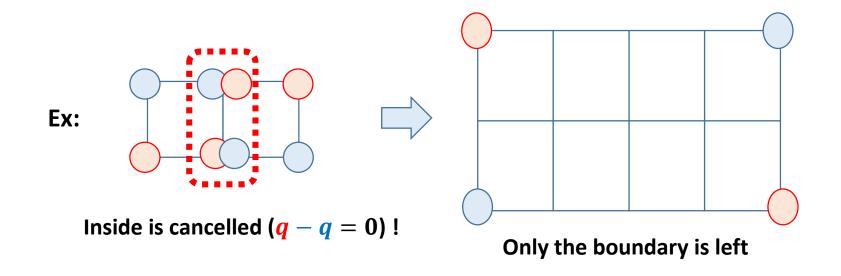
Reproduces (i) quantization, (ii) phase transition, (iii) topological/non-topological dichotomy

Reproduces: (i) quantization, (ii) phase transition (with finite size effect) (iii) topological/non-topological dichotomy

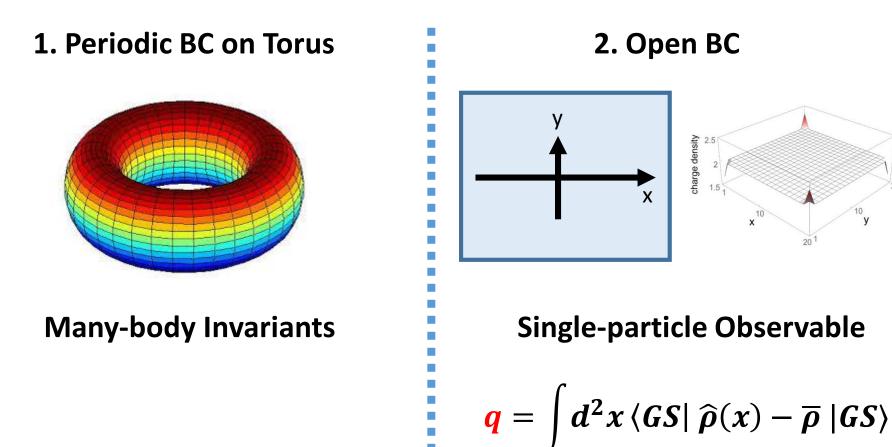
Note: with (weak) symmetry breaking terms



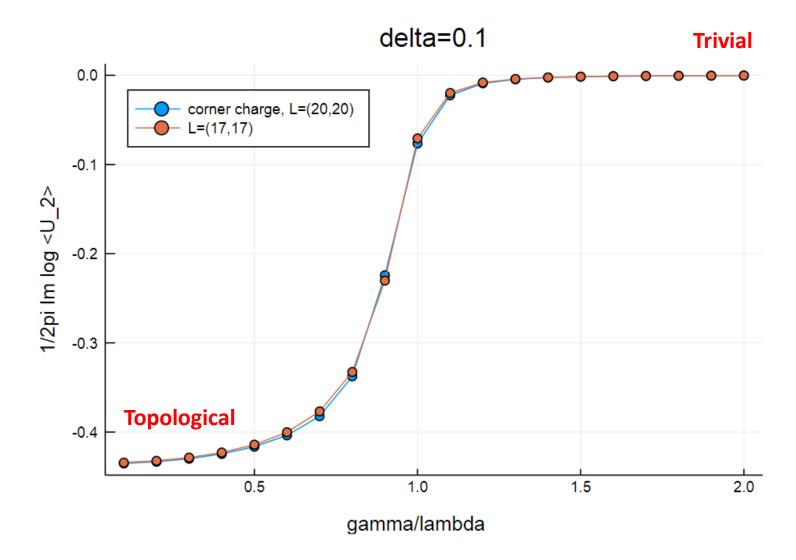
Smooth phase boundary + non-quantization (as expected).


Physically, what can we learn from this?

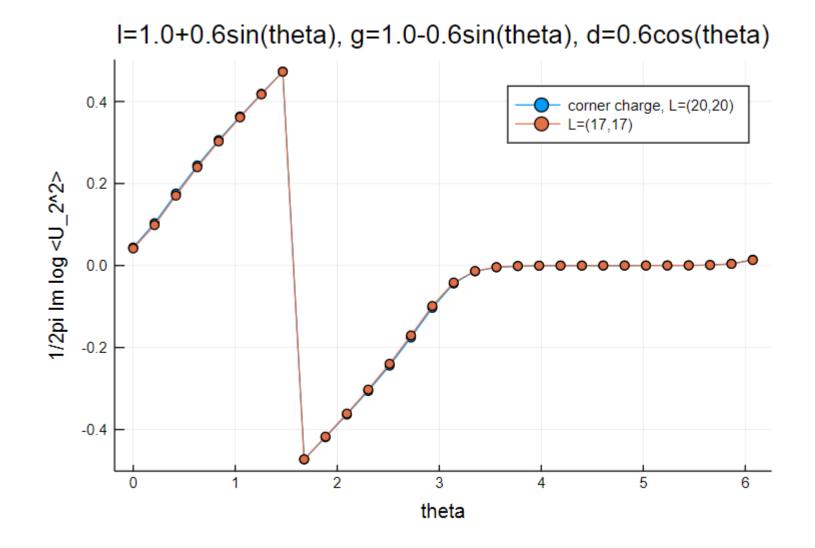
If $Q_{xy} = q$ is **the quadrupolar density**, then...


q is the charge localized at the boundary

When the quadrupolar density is uniformly stacked,

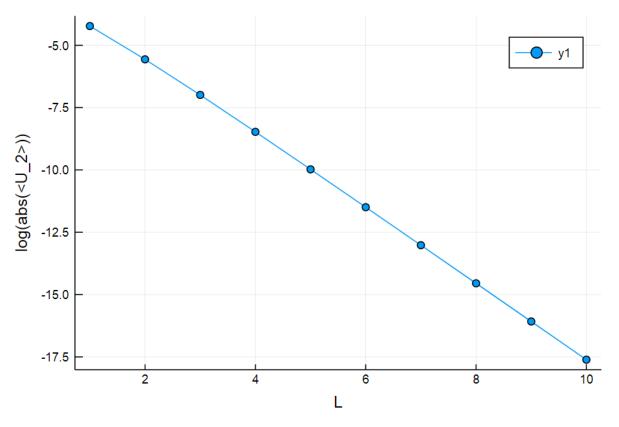


So we compare the following two quantities:


Do I find
$$Q_{xy} = q$$
?

From bulk invariant to boundary charge

Many-body invariant exactly matches localized boundary charge!


Even for more complicated processes, e.g., Thouless pumping

 Q_{xy} tracks well of the charge over the full parameter space !

New Order parameter for Metals & Insulators

At the critical point: $|\langle U_2 \rangle| \rightarrow 0$ as $L_{\chi} \rightarrow \infty$

2d critical: $|\langle U_2 \rangle| \sim c_1 \exp(-aL_x) \rightarrow 0$ [2d insulator: $|\langle U_2 \rangle| \sim const.$]

This is analogous with the original Resta's conjecture.

In Summary:

$$\langle U_2 \rangle = |\langle U_2 \rangle| \operatorname{Exp} \left(2\pi i Q_{xy} \right)$$
 is an order parameter

(1) Phase = (Detail-free) Topology = Multipoles

(2) Amplitude = Spectral Property, i.e. Metal/Insulator

3. Conclusions

Conclusions:

- 1. Conjectured (definition of) many-body invariants for multipoles
- 2. Numerically confirmed the invariants
- 3. Novel order parameter for "metal" & "insulator"

Ref. Byungmin Kang, Hyun Woong Kwon, Kwon Park, and GYC, in progress

4. Several future directions

Thank you for your attention !