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Introduction



Scaling function for the localization problem

𝑔(𝐿) = 𝜎𝐿𝑑−2

(Ohm’s law)

𝑔 𝐿 ∝ 𝑒𝑥𝑝(−𝐿/𝜉)
(localized states)

o

𝑑 ln 𝑔

𝑑 ln 𝐿
= 𝑑 − 2 −

1

𝜋2𝑔

𝑔 ≡ 𝐺/(𝑒2/ℏ)
(dimensionless conductance)

𝐿

L
(system size)



Localization in two dimensions

✓ Metal-insulator transition at gc = π2

𝑑 𝑙𝑛 𝑔

𝑑 𝑙𝑛 𝐿
= 1 −

1

𝜋2𝑔
In three dimensions

𝑑 ln 𝑔

𝑑 ln 𝐿
= −

1

𝜋2𝑔
In two dimensions

✓ Insulating phase only
o

✓ This picture is based on non-interacting systems. How about in interacting systems?

o



T(K)
1 2 3 4

o

Discovery of a metal-insulator transition in two dimensions

In Si-MOSFET, a metal-insulator transition 
by varying a carrier density

S.V. Kravchenko, G.V. Kravchenko, J.E. Furneaux, 

V.M. Pudalov, and M.D’Iorio, Phys. Rev. B (1994)

Metallic behavior

Weak-localization
ρ~ ln(1 /T)

Scaling behavior → phase transition

o



Spin-triplet interaction: a cause for metal-insulator transition

g: dimensionless conductance
Θ: scattering amplitude of diffusion modes

𝑑 ln 𝑔
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= −

1

𝜋2𝑔
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Θ

𝜋2𝑔
+

1

𝜋4𝑔2 Θ − 0.8Θ2

𝑑Θ

𝑑 ln 𝐿
=

1

𝜋2𝑔
2 + Θ −

4

𝜋4𝑔2 2Θ +
1

2
Θ2 + 0.08Θ3

A. Punnoose and A.M. Finkel'stein, Science (2005)

Non-linear sigma model: diffusion modes 

+ scattering due to spin-triplet interaction
Metal

Insulator

o

Strong disorder Weak disorder

✓ Spin-triplet interaction induces delocalization, resulting in a metallic phase.



Quantum criticality as a new route to delocalization phenomena

✓ Can quantum criticality induce delocalization as spin-triplet interaction does?

✓ To answer this question, we study 2d nematic quantum critical point in disordered systems.

✓ We figure out whether critical fluctuations suppress localization correction or not.



Our approach to the problem

✓ We start from the clean critical point, and add disorder. 

✓ In the presence of critical fluctuations, does the system flows 
to a weak-disorder fixed point or Anderson insulator?

dln 𝑔

𝑑 ln 𝐿
= −

1

𝜋2 + 𝐹1(𝑔, 𝛼)

𝑑𝛼

𝑑 ln 𝐿
= 0.5𝛼 − 3𝛼2 + 𝐹2(𝑔, 𝛼)

✓ We use a renormalization group approach. 

g: dimensionless conductance
𝛼: coupling of electrons and critical fluctuations

Non-Fermi liquid, 

Sung-Sik Lee (’13)

Anderson insulator

Weak-disorder 

fixed point



Nematic order



Electronic nematicity

✓ 𝑂 ≡ σ
𝑘

𝑐
𝑘

†𝑐𝑘 exp 𝚤2𝜃
k

: nematic order parameter
Isotropic phase (𝑂 = 0)

𝜃

Ordered phase (𝑂 ≠ 0)

𝜃

✓ Nematic order: lattice symmetry breaking 

driven by electronic degree of freedom

✓ Electronic structure change≫ structural change

✓ Pomeranchuk instability in the l=2 channel

𝛿𝐸~ ෍

𝑙

1 +
𝐹𝑙

2𝑙 + 1
𝐶𝑙 𝛿𝜙𝑙

2

✓ If 𝐹𝑙 ≤ −(2𝑙 + 1), the Fermi surface is unstable.

𝐹𝑙: interaction decomposed with the spherical harmonics

𝛿𝜙𝑙: deformation of Fermi surface



Materials

Science (2010)

Science (2007)



Nematic quantum critical point

Im Π = 𝛾
𝜔

Ԧ𝑞

Im Σ = 𝑎 sgn(𝜔) 𝜔 2/3 cf) Im ΣFL = 𝑎 sgn(𝜔) 𝜔 2

✓ Bosons gets a Landau damping term from soft fermionic excitations.

✓ Due to the Landau damping term, fermions get singular corrections.

✓ We start from the clean critical point and add disorder.

✓ No quasiparticles → we cannot use a non-linear sigma model.

✓ Non-Fermi liquid state at the critical point



Effective Model



Two-patch model : effective model at the critical point

✓ The overlap is 

negligible. Different 

patches are decoupled.
✓ “patch”

We can construct an effective theory with two patches.

✓ Critical bosons scatter fermions 

along the tangential direction.

✓ Fermion-boson coupling: 𝜙𝜓†𝜓



Two-patch model : effective model at the critical point (cont’d)

𝑘𝑥

𝑘𝑦

𝜓+𝜓−

𝑘𝑥

𝑘𝑦

Sung-Sik Lee, Phys.Rev B (2013) 

We can construct an effective theory with two patches.

“Yukawa” coupling

Landau damping

Parabolic dispersion



Disorder: forward & backscattering

𝜓+𝜓−

✓ We use the replica trick for disorder average.

We include two types of disorder scattering: forward and backscattering.

⚫ forward scattering (Γ0) → Drude conductivity

⚫ Backscattering (Γ𝜋) → localization correction



Disorder: forward & backscattering (cont’d)

(1st line) =
1

1−Γ0 𝐼

(2nd line) =
Γ𝜋

2 𝐼

1−Γ𝜋 𝐼 ✓ Γ𝜋 → 0 means that localization correction is suppressed.

Backscattering→ localization correction, forward scattering → Drude conductivity 

(Drude conductivity)

(Localization correction)

✓ 𝜎 𝐿 = 𝜎0 − 𝛿𝜎, 𝜎0~
1

Γ0
, 𝛿𝜎~Γ𝜋

2



Fermion-boson coupling

Landau damping

Forward scattering Backscattering

Effective action

Parabolic dispersion

𝑁𝑓: the fermion’s flavor number



Renormalization group analysis



Beta functions up to two-loop order

α = e4/3, e: fermion-boson coupling,  Γ0: forward scattering amplitude

Γπ: backscattering scattering amplitude, b: a scale parameter (𝑏 → ∞ means the low-energy limit)

✓ We consider (i) clean, (ii) non-interacting, (iii) disordered, interacting case one by one.



Case I: clean, interacting system

✓ The system goes to non-Fermi liquid state(𝛼∗ = 0.14). 

✓ Fermi liquid state (𝛼∗ = 0) is unstable.

✓ Here, plus sign means that a coupling 

increases as an energy scale is lowered.

Setting Γ0 = Γ𝜋 = 0,

D. Dalidovich, Sung-Sik Lee, Phys.Rev. B (2013)



Case II: disordered, non-interacting system

✓ Localization correction is present. 

Setting α = 0,

✓ The system goes to disordered Fermi liquid state (Γ0
∗ = 0.11, Γ𝜋

∗ = 0.027).

✓ Clean Fermi liquid state(Γ∗ = Γ𝜋
∗ = 0) is unstable.



Case III: disordered, interacting system

✓ If 𝑁𝑓 > 20, Γ𝜋 vanishes. 

✓ The clean Fermi-liquid fixed point (𝛼∗ = Γ0
∗ = Γ𝜋

∗ = 0) is unstable.

✓ If 𝑁𝑓 < 20, Γ𝜋 is finite. 

✓ In the system of 𝑁𝑓 < 20(𝑁𝑓 > 20), localization correction remains(disappears). 



Case III: disordered, interacting system (cont’d) 

✓ 𝛼 screens Γ𝜋 strongly. When 𝛼 > 𝛼𝑐(𝛼 < 𝛼𝑐), Γ𝜋 vanishes(survives). 

✓ Altshuler-Aronov like correction. This results in a strong screening in 𝛼.

✓ When 𝑁𝑓 is small(large), this correction is large(small). So 𝛼 becomes small(large).



Phase diagram

Anderson insulator

Fermi liquidOrdered
𝛿

𝑛𝑖

N

𝑁𝑐

Critical point

Metallic phase

✓ In physical context, 𝑁𝑓 is translated as the 

valley number in a band-structure.

✓ When there are a small number of valleys, 

only Anderson insulator exists.

✓ However, if there are  a large number of 

valleys, a metallic phase can appear.



Summary

✓ We consider quantum criticality as a new route to delocalization phenomena.

✓ We studied nematic quantum critical point in two dimensions, introducing disorder. 

✓ By performing renormalization group analysis, we find two kinds of fixed points: a weak-

disorder fixed point where backscattering is suppressed and another one with backscattering.

✓ We interpret the first one as a metallic state and the second one as Anderson insulator.

✓ The valley number controls whether the system is in a metallic phase or in an insulating phase.



Thank you!


