Quantum criticality as a new route to delocalization phenomena

International Workshop on Disordered Systems: From Localization to Thermalization and Topology

September 3-7, 2018, PCS IBS, Daejeon

<u>Kyoung-Min Kim</u>, Ki-Seok Kim POSTECH

Outline

1. Introduction

- quantum criticality as a new route to delocalization phenomena

- 2. Nematic order
- **3. Effective model**

- effective theory at the critical point, disorder scattering

4. Renormalization group analysis

- weak-disorder fixed point, suppression of localization correction

5. Summary

Introduction

Scaling function for the localization problem

$$g \equiv G/(e^2/\hbar) \qquad L \qquad (\text{system size}) \qquad \longleftarrow \qquad L$$

 $\frac{d\ln g}{d \ln g} = (d-2) - \frac{1}{\pi^2 g}$ $g(L) = \sigma L^{d-2}$ (Ohm's law) $g(L) \propto exp(-L/\xi)$ (localized states)

Localization in two dimensions

 $d \ln g$

✓ This picture is based on non-interacting systems. How about in interacting systems?

Discovery of a metal-insulator transition in two dimensions

In Si-MOSFET, a metal-insulator transition by varying a carrier density

S.V. Kravchenko, G.V. Kravchenko, J.E. Furneaux, V.M. Pudalov, and M.D'Iorio, Phys. Rev. B (1994)

Spin-triplet interaction: a cause for metal-insulator transition

Non-linear sigma model: diffusion modes

+ scattering due to spin-triplet interaction

A. Punnoose and A.M. Finkel'stein, Science (2005)

$$\frac{d\ln g}{d\ln L} = -\frac{1}{\pi^2 g} + \frac{\Theta}{\pi^2 g} + \frac{1}{\pi^4 g^2} (\Theta - 0.8\Theta^2)$$

$$\frac{d\Theta}{d\ln L} = \frac{1}{\pi^2 g} (2+\Theta) - \frac{4}{\pi^4 g^2} \left(2\Theta + \frac{1}{2}\Theta^2 + 0.08\Theta^3 \right)$$

g: dimensionless conductance Θ: scattering amplitude of diffusion modes

✓ Spin-triplet interaction induces delocalization, resulting in a metallic phase.

Quantum criticality as a new route to delocalization phenomena

- ✓ Can quantum criticality induce delocalization as spin-triplet interaction does?
- \checkmark To answer this question, we study 2d nematic quantum critical point in disordered systems.
- \checkmark We figure out whether critical fluctuations suppress localization correction or not.

Our approach to the problem

 \checkmark We start from the clean critical point, and add disorder.

 \checkmark We use a renormalization group approach.

$$\frac{\mathrm{dln}\,g}{\mathrm{d}\,\mathrm{ln}\,L} = -\frac{1}{\pi^2} + F_1(g,\alpha)$$
$$\frac{\mathrm{d}\alpha}{\mathrm{d}\,\mathrm{ln}\,L} = 0.5\alpha - 3\alpha^2 + F_2(g,\alpha)$$

g: dimensionless conductance α: coupling of electrons and critical fluctuations

 ✓ In the presence of critical fluctuations, does the system flows to a weak-disorder fixed point or Anderson insulator?

Nematic order

Electronic nematicity

- Nematic order: lattice symmetry breaking driven by electronic degree of freedom
- ✓ Electronic structure change≫ structural change
- ✓ $0 \equiv \sum_{\vec{k}} c_{\vec{k}}^{\dagger} c_{\vec{k}} \exp[i2\theta_{\vec{k}}]$: nematic order parameter
- ✓ Pomeranchuk instability in the l=2 channel

$$\delta E \sim \sum_{l} \left(1 + \frac{F_l}{2l+1} \right) C_l (\delta \phi_l)^2$$

- F_l : interaction decomposed with the spherical harmonics $\delta \phi_l$: deformation of Fermi surface
- ✓ If $F_l \le -(2l+1)$, the Fermi surface is unstable.

Isotropic phase (0 = 0)

Ordered phase $(0 \neq 0)$

Materials

100

0

200

Temperature (K)

300

Formation of a Nematic Fluid at High Fields in Sr₃Ru₂O₇

R. A. Borzi,^{1,2,3}* S. A. Grigera,^{1,4} J. Farrell,¹ R. S. Perry,¹ S. J. S. Lister,¹ S. L. Lee,¹ D. A. Tennant,⁵ Y. Maeno,⁶ A. P. Mackenzie¹*

Nematic Electronic Structure in the "Parent" State of the Iron-Based Superconductor $Ca(Fe_{1-x}Co_x)_2As_2$

T.-M. Chuang, $^{1,2}*$ M. P. Allan, $^{1,3}*$ Jinho Lee, 1,4 Yang Xie, 1 Ni Ni, 5,6 S. L. Bud'ko, 5,6 G. S. Boebinger, 2 P. C. Canfield, 5,6 J. C. Davis 1,3,4,7 †

Science (2010)

Nematic quantum critical point

- ✓ Non-Fermi liquid state at the critical point
- \checkmark Bosons gets a Landau damping term from soft fermionic excitations.

$$\gamma \sqrt{\frac{|\omega|}{|\vec{q}|}}$$

 \checkmark Due to the Landau damping term, fermions get singular corrections.

$$\rightarrow$$

 $\operatorname{Im} \Sigma = a \operatorname{sgn}(\omega) |\omega|^{2/3}$

cf) Im
$$\Sigma_{\rm FL} = a \operatorname{sgn}(\omega) |\omega|^2$$

- ✓ No quasiparticles \rightarrow we cannot use a non-linear sigma model.
- \checkmark We start from the clean critical point and add disorder.

Effective Model

Two-patch model : effective model at the critical point

We can construct an effective theory with two patches.

- ✓ Fermion-boson coupling: $\phi \psi^{\dagger} \psi$
- ✓ Critical bosons scatter fermions along the tangential direction.
- ✓ The overlap is negligible. Different patches are decoupled.

Two-patch model : effective model at the critical point (cont'd)

We can construct an effective theory with two patches.

Sung-Sik Lee, Phys.Rev B (2013)

Disorder: forward & backscattering

We include two types of disorder scattering: forward and backscattering.

• forward scattering $(\Gamma_0) \rightarrow$ Drude conductivity

• Backscattering $(\Gamma_{\pi}) \rightarrow$ localization correction

 \checkmark We use the replica trick for disorder average.

Disorder: forward & backscattering (cont'd)

Backscattering \rightarrow localization correction, forward scattering \rightarrow Drude conductivity

$$(1^{\text{st line}}) = \frac{1}{1 - \Gamma_0 I} \qquad \checkmark \sigma(L) = \sigma_0 - \delta\sigma, \sigma_0 \sim \frac{1}{\Gamma_0}, \delta\sigma \sim \Gamma_\pi^2$$

 $(2^{\text{nd}} \text{ line}) = \frac{(\Gamma_{\pi})^2 I}{1 - \Gamma_{\pi} I} \qquad \checkmark \quad \Gamma_{\pi} \to 0 \text{ means that localization correction is suppressed.}$

Effective action

Parabolic dispersion

$$\begin{split} \mathcal{L}_{\psi} &= \psi_{+}^{\dagger} \left[-\imath\omega + k_{x} + k_{y}^{2} \right] \psi_{+} + \psi_{-}^{\dagger} \left[-\imath\omega - k_{x} + k_{y}^{2} \right] \psi_{-}, \\ \mathcal{L}_{\phi} &= \frac{1}{2} \left[q_{y}^{2} + \left(\frac{|\omega|}{|q_{y}|} \right) \right] |\phi|^{2}, \quad \text{Landau damping} \\ \mathcal{L}_{\psi\phi} &= \frac{e}{\sqrt{N_{f}}} \phi \left[\psi_{+}^{\dagger} \psi_{+} + \psi_{-}^{\dagger} \psi_{-} \right], \\ \mathcal{L}_{\psi,dis} &= -\frac{\left[\Gamma_{0} \right]}{2N_{f}} \left[\psi_{+}^{\dagger} \psi_{+} + \psi_{-}^{\dagger} \psi_{-} \right] \left[\psi_{+}^{\dagger} \psi_{+} + \psi_{-}^{\dagger} \psi_{-} \right] - \frac{\Gamma_{\pi}}{2N_{f}} \psi_{-}^{\dagger} \psi_{+} \psi_{+}^{\dagger} \psi_{-}, \\ \text{Forward scattering} \quad \text{Backscattering} \end{split}$$

 N_f : the fermion's flavor number

Renormalization group analysis

Beta functions up to two-loop order

$$\begin{split} \frac{d\alpha}{d\ln b} &= \frac{2}{3}\alpha \bigg[0.5 - 3\alpha - 4\alpha^2 - \Gamma_0 - 18\Gamma_0^2 - 77\Gamma_0\sqrt{\alpha/N_f} - \Gamma_\pi \bigg],\\ \frac{d\Gamma_0}{d\ln b} &= \Gamma_0 \bigg[0.5 + 0.86\Gamma_0 - 48\Gamma_0^2 - \alpha - 1.3\alpha^2 - 1.3\Gamma_0\alpha - 34\Gamma_0\sqrt{\alpha/N_f} + \Gamma_\pi + 3\Gamma_\pi^2/\Gamma_0 \bigg],\\ \frac{d\Gamma_\pi}{d\ln b} &= \Gamma_\pi \bigg[0.5 - 3.6\Gamma_0 - 3\Gamma_\pi - 13\alpha \bigg] \end{split}$$

 $\alpha = e^{4/3}$, e: fermion-boson coupling, Γ_0 : forward scattering amplitude

 Γ_{π} : backscattering scattering amplitude, b: a scale parameter ($b \rightarrow \infty$ means the low-energy limit)

✓ We consider (i) clean, (ii) non-interacting, (iii) disordered, interacting case one by one.

Case I: clean, interacting system

Setting $\Gamma_0 = \Gamma_\pi = 0$,

$$\frac{d\alpha}{d\ln b} = \frac{2}{3}\alpha \left[0.5 - 3\alpha - 4\alpha^2 \right]$$

 ✓ Here, plus sign means that a coupling increases as an energy scale is lowered.

✓ Fermi liquid state ($\alpha^* = 0$) is unstable.

✓ The system goes to non-Fermi liquid state($\alpha^* = 0.14$). *D. Dalidovich, Sung-Sik Lee, Phys.Rev. B* (2013)

Case II: disordered, non-interacting system

Setting $\alpha = 0$,

$$\frac{d\Gamma_0}{d\ln b} = \Gamma_0 \left[0.5 + 0.86\Gamma_0 - 48\Gamma_0^2 + \Gamma_\pi + 3\Gamma_\pi^2/\Gamma_0 \right],$$
$$\frac{d\Gamma_\pi}{d\ln b} = \Gamma_\pi \left[0.5 - 3.6\Gamma_0 - 3\Gamma_\pi \right]$$

✓ Clean Fermi liquid state($\Gamma^* = \Gamma_{\pi}^* = 0$) is unstable.

✓ The system goes to disordered Fermi liquid state ($\Gamma_0^* = 0.11$, $\Gamma_{\pi}^* = 0.027$).

✓ Localization correction is present.

Case III: disordered, interacting system

0.12

✓ The clean Fermi-liquid fixed point ($\alpha^* = \Gamma_0^* = \Gamma_\pi^* = 0$) is unstable.

✓ If $N_f < 20$, Γ_{π} is finite. ✓ If $N_f > 20$, Γ_{π} vanishes.

✓ In the system of $N_f < 20(N_f > 20)$, localization correction remains(disappears).

Case III: disordered, interacting system (cont'd)

✓ Altshuler-Aronov like correction. This results in a strong screening in α .

✓ When N_f is small(large), this correction is large(small). So α becomes small(large).

✓ *α* screens $Γ_π$ strongly. When *α* > *α*_{*c*}(*α* < *α*_{*c*}), *Γ*_π vanishes(survives).

Phase diagram

- ✓ In physical context, N_f is translated as the valley number in a band-structure.
- ✓ When there are a small number of valleys, only Anderson insulator exists.
- ✓ However, if there are a large number of valleys, a metallic phase can appear.

Summary

- \checkmark We consider quantum criticality as a new route to delocalization phenomena.
- \checkmark We studied nematic quantum critical point in two dimensions, introducing disorder.
- ✓ By performing renormalization group analysis, we find two kinds of fixed points: a weakdisorder fixed point where backscattering is suppressed and another one with backscattering.
- \checkmark We interpret the first one as a metallic state and the second one as Anderson insulator.
- \checkmark The valley number controls whether the system is in a metallic phase or in an insulating phase.

Thank you!