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Introduction



Scaling function for the localization problem
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_ocalization in two dimensions
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In three dimensions

v’ Metal-insulator transition at g, = m?
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v" This picture is based on non-interacting systems. How about in interacting systems?



Discovery of a metal-insulator transition in two dimensions

In SI-MOSFET, a metal-insulator transition

by varying a carrier density
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Scaling behavior — phase transition

10°

10' |
® 0.59x10" cm*

2 | = 064 o
10 + 071 %0l oy
<078 % & H
= 089 10" %
e 09 . i

101 | 0O 1.02

..........

% " Il N i
> 1.13 . 0.0 10 2.0
4 1.24 - n (10" em™
v 1.35 e i )
+ 145 -«

o | % 165
10 o 2.42 -

goum *
o 285 ﬂ o ® . .
>
10"+

p (We))

3.0 1




Spin-triplet interaction: a cause for metal-insulator transition

Non-linear sigma model: diffusion modes lolm T o T

+ scattering due to spin-triplet interaction

A. Punnoose and A.M. Finkel'stein, Science (2005)

!
f \ T
dlng: 1 Q) l

1 K

_ _ 2 [

dlnL n2g+nzg+n4gz(® 0.86%) I /\ X \ 'X
0.2k1../

de 1 4 1, ; Insulator \ \
=—(2+0)- <2@+—@ +0.080 > | R s ]
2 4 12
dInL  mg g 2 00 02 04 06 08 10
g: dimensionless conductance Strong disorder g/(1+g) Weak disorder
0: scattering amplitude of diffusion modes — ”

v" Spin-triplet interaction induces delocalization, resulting in a metallic phase.



Quantum criticality as a new route to delocalization phenomena

v Can quantum criticality induce delocalization as spin-triplet interaction does?
v To answer this question, we study 2d nematic quantum critical point in disordered systems.

v We figure out whether critical fluctuations suppress localization correction or not.



Our approach to the problem

v We start from the clean critical point, and add disorder. 05F
0.4
v We use a renormalization group approach. 0.3t
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g: dimensionless conductance
a: coupling of electrons and critical fluctuations /g

v" In the presence of critical fluctuations, does the system flows
to a weak-disorder fixed point or Anderson insulator?



Nematic order



Electronic nematicity

v Nematic order: lattice symmetry breaking

driven by electronic degree of freedom
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v’ Electronic structure change>> structural change
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v Pomeranchuk instability in the =2 channel

5E~z (1 L _f )01(54)1)2 F: interaction_decompose_d with the spherical harmonics
2l+1 5¢,: deformation of Fermi surface

v If F; < —(21 + 1), the Fermi surface is unstable.



Materials
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Nematic quantum critical point

v" Non-Fermi liquid state at the critical point

Fermi—liquid

v Bosons gets a Landau damping term from soft fermionic excitations.

Non-Fermi-liquid

ImII = )/M
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v Due to the Landau damping term, fermions get singular corrections.

) m ) Im X = a sgn(w)|w|?/3 cf) Im Zpp, = a sgn(w)|w|?

v No quasiparticles — we cannot use a non-linear sigma model.

v" We start from the clean critical point and add disorder.



Effective Model



Two-patch model : effective model at the critical point

We can construct an effective theory with two patches.

v' Fermion-boson coupling: ¢ty

v" Critical bosons scatter fermions
along the tangential direction.
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v The overlap is

negligible. Different

‘/ “patCh”
patches are decoupled.




Two-patch model : effective model at the critical point (cont’d)

We can construct an effective theory with two patches.
Parabolic dispersion
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“Yukawa” coupling
Sung-Sik Lee, Phys.Rev B (2013)



Disorder: forward & backscattering

We include two types of disorder scattering: forward and backscattering.

® forward scattering (I);) — Drude conductivity

® Backscattering (I';;) — localization correction

v We use the replica trick for disorder average.



Disorder: forward & backscattering (cont’d)

Backscattering— localization correction, forward scattering — Drude conductivity

Q = O + @ + o (Drude conductivity)

v o(L) = 0y — b0, 00~Fi,60~F7¥
0

(Localization correction)
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(2 line) = 1—nrn ; v T, > 0 means that localization correction is suppressed.



Effective action

Parabolic dispersion

! Fermion-boson coupling @
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Forward scattering Backscattering \

Nf: the fermion’s flavor number



Renormalization group analysis



Beta functions up to two-loop order
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o = e*/3, e: fermion-boson coupling, Iy: forward scattering amplitude

I';: backscattering scattering amplitude, b: a scale parameter (b — oo means the low-energy limit)

v We consider (i) clean, (ii) non-interacting, (iii) disordered, interacting case one by one.



Case I: clean, interacting system

Setting [\, = I; = 0,

do 2 v" Here, plus sign means that a coupling

= — 5— — 402
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Increases as an energy scale is lowered.

v Fermi liquid state (a* = 0) is unstable.

v" The system goes to non-Fermi liquid state(a™ = 0.14).  D. Dalidovich, Sung-Sik Lee, Phys.Rev. B (2013)



Case II: disordered, non-interacting system
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v Clean Fermi liquid state(I'* = Iy = 0) is unstable. oo

v" The system goes to disordered Fermi liquid state (I'; = 0.11,[; = 0.027).

v" Localization correction is present.




Case I11: disordered, interacting system
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v" The clean Fermi-liquid fixed point (a* = Ty = I’y = 0) is unstable.
v' If Nf <20, I'; is finite. v' If Nf > 20, I, vanishes.

v’ In the system of N¢ < 20(Nr > 20), localization correction remains(disappears).



Case I11: disordered, interacting system (cont’d)

do 2
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v" Altshuler-Aronov like correction. This results in a strong screening in a.

v" When N, is small(large), this correction is large(small). So a becomes small(large).

v" a screens I, strongly. When a > a.(a < a,), I; vanishes(survives).



Phase diagram

n; 1
Anderson insulator v In physical context, Ny is translated as the
- : valley number in a band-structure.
/ Critical point
v' When there are a small number of valleys,

Ordered Fermi liquid only Anderson insulator exists.

v However, if there are a large number of

valleys, a metallic phase can appeatr.
Metallic phase y ¥ PP




Summary

v We consider quantum criticality as a new route to delocalization phenomena.

v We studied nematic quantum critical point in two dimensions, introducing disorder.

v' By performing renormalization group analysis, we find two kinds of fixed points: a weak-
disorder fixed point where backscattering is suppressed and another one with backscattering.

v We interpret the first one as a metallic state and the second one as Anderson insulator.

v" The valley number controls whether the system is in a metallic phase or in an insulating phase.
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