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Question

Does an isolated system reach equilibrium ?
Boosted by recent interest in
— the dynamics after quantum quenches of cold atomic systems
rGle of interactions (integrable vs. non-integrable)
— many-body localisation

novel effects of quenched disorder

And, an isolated classical system ?

The (old) ergodicity question revisited

LFC, Lozano & Nessi 17. LFC, Lozano, Nessi, Picco & Tartaglia 18
Quantum: Foini, Gambassi, Konik & LFC 17. de Nardis, Panfil et al. 17



Quantum quenches

Definition & questions

Take an isolated quantum system with Hamiltonian ﬁo

Initialize it in, say,

1)) the ground-state of ﬁo (or any p(to))

Unitary time-evolution U = 6_%Ht with a Hamiltonian 77 =+ ﬁo.

Does the system reach a steady state ?

Is it described by a thermal equilibrium density matrix e PH 9
Do at least some observables behave as thermal ones?

Does the evolution occur as in equilibrium ?

If not, other kinds of density matrices ?




Classical quenches

Definition & questions

Take an isolated classical system with Hamiltonian /4, evolve with /{

Initialize it in, say, 1)y a configuration, e.g. {;, p; } for a particle system

1/, could be drawn from a probability distribution, e.g. Z e~ foHo(vo)

Does the system reach a steady state ?

Is it described by a thermal equilibrium probability ¢ 7 2
Do at least some observables behave as thermal ones ?

Does the evolution occur as in equilibrium ?

If not, other kinds of probability distributions ?




Quenches

Simple examples (kind of building blocks)
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energy extraction
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energy injection




Classical quenches

Models

We chose to study classical disordered many-body models
iIsolated p spin spherical disordered models

Interesting & very well characterised

equilibrium phases & relaxational dissipative dynamics
rich free-energy landscapes with metastability, flat regions, large and
small barriers, etc.

(also interesting in the context of many-body localisation studies)



Quenched disorder

A particle

Spin Disordered Potential
position 5= (s1,...,SN)

V = — Eij JijSIiSj — Zz’jk JiijiSjSk 4+ ...

the exchanges J;;, J; i, etc. taken from

in an /V dimensional space

under a random potential V(5
a probability distribution (details later) Sketch for N = 2

17
r" T - r'J F

Real variables s; € R

Spherical constraint - 52 = N

=1 1%

Connection with the following problem

but wrapped on the sphere



Classical dynamics

Coordinate-momenta pairs {§, ﬁ} and Hamiltonian (const w/Lagrange mult.)

H= K@)+ V(

N
with the kinetic energy & (p) = Z

1
2m “

Newton-Hamilton equations

:pz/m :—dV( )/dsz

The potential energy landscape makes the models behave differently

— IV saddles (including min/max) for two body-interactions V() = > " Ji;s;s;
17 ]
— exp(/NX) saddles for more than two body interactions >~ J;;p.s:5;s,
ik

(With dissipation used to model domain-growth & fragile glasses, respectively)



Classical dynamics

Coordinate-momenta pairs {§, ﬁ} and Hamiltonian (const w/Lagrange mult.)

H=K(p) + V(s

N
with the kinetic energy x(p) = Z

1
2m 4

Newton-Hamilton equations

:pz/m :—dV( )/dSZ

The potential energy landscape makes the models behave differently
— Finite energy barriers for two body-interactions vV (s5) = ZJijsisj
i#]
— Barriers scale with /V for more than two body interactions Z JijkSiS;Sk
i#jF#k

(With dissipation used to model domain-growth & fragile glasses, respectively)



The p

spin models

p = 3 clearly non-integrable

Gibbs-Boltzmann equilibrium at 3¢ expected

unless the system is set on the threshold

p = 2 integrable!

Neumann’s 1850 model of classical mechanics (thanks to O. Babelon)

N constants of motion in involution K. Uhlenbeck 82

No Gibbs-Boltzmann equilibrium expected

Generalized Gibbs Ensemble:

P(g;ﬁ) — 71~ 25:1 Bl (5,p) 2

Quantum: Rigol, Dunjko, Olshanii, Muramatsu 07-09

Calabrese, Cardy, Caux, Essler, etc.




The Initial conditions

We chose initial states drawn from canonical equilibrium with Hamilto-

nian /1, at inverse temperature 5’
The models have phase transitions at a finite [3,.
The high temperature phase is a disordered one, a paramagnet (PM)

The low temperature phase is different in the two-body and more than

two-body interaction models :
two ferromagnetic (FM)-like equilibrium states for two-body (p = 2)
O(eV*) metastable states, like in a glass, inthe p > 3 case

Initial conditions: disordered (PM) or confined (FM/metastable) TAP



The quench

Spin Disordered Potential

V =— Zij Jijsis; — Zijkl Jijk15i5jSkS]

with exchanges J;;, J;;.;, etc. taken

from a Gaussian pdf

zero mean [J;,..;,] =0 and

2
Bhy

Initial

..'Lp

| =plJg/(2NP~1)

energy scale Jy

Attimet =0
Same configuration £, (0), s;(0)

quench | .J" = Jiy

11...2

Final energy scale J

The rugged landscape is

stretched/contracted and pulled up/down

On the sphere



Dynamic equations

Conservative dynamics

In the N — o0 limit exact causal Schwinger-Dyson equations
(m0? — z)R(t, tw) = /dt’ Y(t, YRt tw) + 6(t — ty)

(m0O? — 2)C(t, tw) = /dt’ (6, t)C(t, ty) + D(t, t)R(ty, t')]

B'Jy
3" Da(t,0)Cl (b, 0
J 2 (£,0)Cal )

_|_

(M0} — 2¢)Cq(t,0) = fdt’ X(t, t")Co(t',0) + 5Jo ZDb(t, 0)Qab
a=1

J

a=1,...,n— 0, replica method to deal with ¢~ 770 and fix Q)



Dynamic equations

Conservative dynamics

In the N — oo limit exact causal Schwinger-Dyson equations

with the post-quench self-energy and vertex

2
D(t, ty) = %Cp—l(t,tw)
2
D,(t,0) = L 037! (1,0)
2
1
S(t, ty) = ‘]p(g )CP—2(t,tw)R(t,tw)

and the Lagrange multiplier z; fixed by C'(¢,1) = 1

Solvable numerically & analytically at long times



Three body model

Dynamic phase diagram
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Out of equilibrium relaxation with ageing effects when ey = ey,



Three body model

e.g., from equilibrium within a TAP state to the PM
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Three body model

Initial & final configurations in a metastable (TAP) state

0.9 |

0.8 H

C(tq,t2)

0.7 L

0.6

0.55

th — 1t

C'(t1,0) — qo > 0 Fidelity

limtl —to >t limt2>>t0 C(tl, tQ) =q > 0 Decorrelation

1 —

Following metastable states, equilibration at 5 fixed by ey = eljiin + e

pot
f




Three body model

Energy extraction from PM to threshold

t1 —to t

Similar to the relaxational case. Two temperature behaviour, fast and slow decay.

Out of equilibrium relaxation when quench parameters tuned so that ey = ey,




Three body model

Dynamic phase diagram - recap
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Quenches

Sketches

Solid to dashed: final state PM

Kin pot
E1 = E1 P E1 T
E2 = E2k|n + E2p0t 77777777’

N i
\ '
\ '
\ .
N .
\ .
N ‘.
. ’
. ’

X Xos Po X

Both: following TAP Dashed to solid : threshold




The p spin models

p > 3 clearly non-integrable
Gibbs-Boltzmann equilibrium expected (5 ¢)
unless the system is set on the threshold

p = 2 integrable !

Neumann’s 1850 model of classical mechanics (thanks to O. Babelon)

N constants of motion in involution K. Uhlenbeck 82

No Gibbs-Boltzmann equilibrium expected

Generalized Gibbs Ensemble:
P(5.) = 21 e Sin Aulu(E)

Quantum: Rigol, Dunjko, Olshanii, Muramatsu 07-09
Cardy, Caux, Calabrese, Essler, etc.




Two body model

Non-linear coupling through the Lagrange multiplier only

Stat-phys notions: Potential energy landscape

The /N eigenvectors of the J;; matrix are saddles, the barriers between
them are (J(1), the absolute minimum is the alignment of 5 on the ei-

genvector U with eigenvalue Ay at the edge of the spectrum.

Kosterlitz, Thouless & Jones 76 ... LFC & Dean 96 ... Fyodorov 12-17 ...

Mehta, Hauenstein, Niemerg, Simm & Stariolo 14

Classical mechanics/integrable systems K. Uhlenbeck 82

Motion of a particle on Sy_ 1, enforced by ZM si =N

sip,%—i—s%pi—qupMsypy
)\y_AM

The integrals of motion are /,, = SZ + % Z,,#M)



Two body model

Non-linear coupling through the Lagrange multiplier only

Diagonal in the basis of eigenvectors ﬁﬂ of the interaction matrix Jij
Projection of the coordinate (spin) vector on the eigenvectors s,, = 51,

with . = 1. ..., V. Newton equations are almost quadratic
m&,(t) = [2(t) — Aulsu(t)

with z(t) the Lagrange multiplier that enforces the spherical constraint

and ), the eigenvalues (semi-circle law, with support in [—2.J, 2.J])

Two methods to solve:
for N — 00, closed Schwinger-Dyson equations on C' (%, t,,,) and R(t, t,,),
the global self-correlation and linear response (already shown for general p)
for finite /V, solve Newton equations under the spherical constraint. Similar
to Sotiriadis & Cardy 10 for the quantum O(N) model



Two body model

Richer results!

2+ - P
Xst = 77
¢=0 Xet = %
q=0
154
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For all parameters lims.;, limy .~ 2(?)
Three phases

Initial conditions

Zp+ct @



Two body model

Richer results!
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Two body model

Large energy injection on a condensed state: equilibrium PM ?
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Stationary dynamics but no FDT at a single temperature

no GB equilibrium




Two body model

Mode temperatures spectrum Yy = 1 / T’ phase

0.9

0.8

0 20 100 150 200 250 300
t

T'=05,J =025 N =1024

Initial

Long times

0.75

/—/

0 0.5 1
n/N

0.5

0.25

Constant asymptotic Lagrange multiplier
eg. z2(t)—zp =T +J*/T
The time-dependent frequencies

Qi(t) — (25 = Ay)/m = wz

The /4 modes s, () decouple and be-

come | independent harmonic oscillators

with conserved energy after ¢
en = ey (t) + el (t)
Spectrum of mode temperatures
(HER(t)) = (HR*'(1) = T,
tst+T7

where ... = lim, s+ ft dt’ ...
st




Two body model

The T,s from the FDR at w,, = [(z; — \,)/m]!/?

(5) | | | B) ), N =102

Ly /‘g\- 125 | —Im[R(w)]/(wC(w)), N = 00— 1

0.75 + 4
3 / 3 1
& =
f/—Im

Analytical

[T, (wu)] ™, N = 1024

[R(w)]/(wC(w)), N = 0o —— 0.75 | ) ‘ﬁ
0.25 1 Analytical ’

0.75 1 1.25 1.5 0.5 1 1.5 2 2.5

w w

Injection Extraction

A way to measure the mode temperatures with a single measurement

A A

Bet(wp) = —ImR(wy,) /(wuC(wy)) = By

No “partial equilibration” contradiction from the effective temperature perspective. The

modes are uncoupled, they do not exchange energy, and can then have different /s



Two body model

The T,s from the FDR at w,, = [(z; — \,)/m]!/?

(&) | | | O T N =02

g /__—@F\' 125 1| —Im[R(w)]/(wC(w)), N = 00— 1

0.75 + ’ i
3 / 3 1)
Ral Q.
f/—Im

Analytical

[T, (w,)] ™", N = 1024

[R(w)]/(wC(w)), N = 0o —— 0.75 t )
0.25 | | \

Analytical

0.75 1 1.25 1.5 0.5 1 1.5 2 2.5

w w

Injection Extraction

A way to measure the mode temperatures with a single measurement

A

Beft (wp) = —ImR(wu)/(wﬂCA’(wﬂ)) = DBy

|ldea in Foini, Gambassi, Konik & LFC 17, de Nardis, Panfil et al 17 for quantum
integrable cases, in a classical integrable LFC, Lozano, Nessi, Picco & Tartaglia 18



Two body model

Two (or more) possibilities: GB, GGE (or none)

The system is not able to act as a bath on itself and equilibrate to
p#pap =2 te Pl

as it is an integrable system.

Does it approach a Generalised Gibbs Ensemble (GGE)

N
Z,uzl ﬁEGEIM

paeE =Z 1 e”

with Uhlenbeck’s constants of motion /,, and QEGE fixed by

(Tu)ace = Lu(t = 07) ?

Quartic integrals to compute, hard but feasible numerically, work in progress
mﬁxﬁfGE



Two body model

Two (or more) possibilities: GB, GGE (or none)

The system is not able to act as a bath on itself and equilibrate to
p#pop=Z te P
as it is an integrable system.

Can one use a simpler Generalised Gibbs Ensemble (GGE)

N

pe=Z"1te” 2p=1 Buen

with asymptotic mode energies €,, and the associated 3, = (kgT),) ™"

Use Uhlenbeck’s constants of motion / p to check whether

<Iu>pe - Iu<t — 0+)

iIs consistent with the BM from the asymptotic mode energies




Two body model

About p.: yes, if following the FM state

T =0.5, J=0.8, sec. III

0.48 *

= 046 -

0.44
0 0.5 1
/N
THE T Ty

and in the other cases ?



Two body model

Two (or more) possibilities: GB, GGE (or none)

The system is not able to act as a bath on itself and equilibrate to
p#pap =2 te Pl

as it is an integrable system.

Can one use a simpler Generalised Gibbs Ensemble (GGE)

De = z—1 e~ 25:1 Brueu

with asymptotic mode energies ¢,, and the associated BM — (kBTM)_l?

What are the relations between BE'GE and Bw and [, and ¢, ?



Conclusions

Study of the quenched dynamics of classical isolated disordered models

We showed that they can
equilibrate to GB measures
undergo non-stationary (aging) dynamics
or do not reach GB measures and (most probably) approach a GGE

depending on the type of model (highly interacting or quasi quadratic)

and the kind of quench performed.

Works on the extension of these studies to the quantum models and the

better understanding of the approach to a GGE are under way



Two body model

Integrals of motion and mode energies - work in progress

T' = 1.25, J = 1.5625, sec. I
8 — :

T =1.25,J=0.5, sec. |
8 ! :

i

kin
4
'S

J(I)

TL{in .

T =05, J = 0.8, sec. III T =05, J =025, sec. IV

kin
Tu
e
T
.
e
T

I,

(L,0%)) - Tin —— (L0%))  » Tiin ——
Tl

in
1, - "



Three body interactions

Potential energy landscape in canonical equilibrium




Two body model

Non-linear coupling through the Lagrange multiplier only

Diagonal in the basis of eigenvectors ﬁﬂ of the interaction matrix .J;;

Projection of the coordinate (spin) vector on the eigenvectors s,, = 51,
withpy=1,..., N

Newton equations are almost quadratic
m&,(t) = [2(t) — Aulsu(t)
with z(t) the Lagrange multiplier that enforces the spherical constraint

and ), the eigenvalues (semi-circle law, with support in [—2.J, 2.J])

Two methods to solve :

for N — 00, closed Schwinger-Dyson equations on C' (%, t,,,) and R(t, 1),
the global self-correlation and linear response (already shown for general p)

for finite /V, solve Newton equations under the spherical constraint



Dynamic equations

Conservative dynamics for p = 2

In the /N — o0 limit exact causal Schwinger-Dyson equations

(m0O? — 2)C(t, tw) = /dt’ (L, t")C(t' ty) + D(t, t)R(tw, t')]

B'Jo
+ N D(t,0)C(ty,0) 4 Other Term
(MmO — z)R(t, ty) = [ dt' T(t, R, tw) + 6(t — tw)

Other equation
with the post-quench self-energy and vertex
D(t,ty) = J* C(t,ty) M(t,tw) = J? R(t, ty)

and the Lagrange multiplier z; fixed by C'(t,1) = 1 (Technical)



Two body model

An implicit solution for finite /V

The projection of the spin configuration on the eigenvector 77# reads (m = 1)

B $1.(0) . ! / /
su(t) = q/ M( COS/ dt’ Q,(t") + 02 (0)20 () sm/o dt’ Q. (t")

The time-dependent frequency €1, () and Lagrange multiplier z(%) are fixed by
190,00 3 (%®)
1 < I 2 — o
20,() 4 <wﬂ(t)> () = =)

with initial conditions ©2,,(0) = 0, Q2 (0) = Anax—Au and z(t) = ep+2 > A (s7 (1))

Note that the initial conditions {s,,(0), 5,,(0) } know about the pre-quench po-

tential and the )‘u about the post-quench one

Similar to Sotiriadis & Cardy 10 for the quantum O(N) model



Two body model

lll Confined states global behaviour as in GB equilibrium at 5

Zr=limy 0 2(t) = %
17 T —
1.65 | (e 0 (f)

Ij;ot = limy— 00 €pot (¢)

elj;n — hmt—>oo ekin(t)

€

ef — eﬁim + egot



Two body model

lll Confined states global behaviour as in GB equilibrium at 5

Zr=limy 0 2(t) = %
17 T —
1.65 | (e 0 (f)

= ' 1 = 0.2

) I
1.6 \/\/\NWv 04 -
155 LV o —0.6 ¥

got = limy—yo0 €pot (1)

e
T¢/2 = ef;n = limy_ oo €kin (1)

Cf = 6ljicim + 61];0‘5



Two body model

lll Confined states global behaviour as in GB equilibrium at 5

Fidelity Integrated linear response
t
C(t1,0) — qo x(t1,t2) = ft21 dt’ R(t1,t")
Ly o 0 1.6 S
(a) =0 —— 11.25 - — o BT T
08 | 375 - - - 1875 —-- | 1.2 | Ty = 0450 - | 1
: sl O | 7; (1=C)
= 0.6 - I
S 0.4 | for
04 'Y T T T 0 I | | | | | |
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(d) -
0.6 | —Tifatlc*(tl,tQ),t2 :1:1),:32 == q and Tf
0.45 ¢ 0.4 nE -
as in GB equil.
0.4
in a confined state
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t t1 — o



Two body model

lll Confined states global behaviour as in GB equilibrium at 5

Fidelity Integrated linear response
t
C(t1,0) — qo x(t1,t2) = ft21 dt’ R(t1,t")
1 T T T T T T T T T T 1.6 N T T T T
-0 —— 11925 ----- 1 oS to=75 —
sl @ R TTRE 12| ST
= - (b) ] = 1 (1-C
%0-6* < 08 | X Tf( )
, 0.4 | ]
04 [\ N for
0 1 on o 0.4 0.6 0.8 1
0 5 10 15 20 25 30 . C(t1,t2) > q
05 \ 0.8 ¢ | | R(‘tl,tg),tg‘:3.75‘ —
oo \@ MR
: —A0,C(t1,t2),t2 =3.75 - - L
0.45 | 0.4 ' n2% - - 2eii, = 1y
fo_ =1
04 - 26pot T, (1_Q)

0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t1 — o



Two body model

Richer results!

— 1
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Three Sectors

| xst = 1/T" and limys, C(t,t,) =0
1 Xst — 1/J and limt>>tw C(t,tw) =0

> GGE?

I xst = 1/J and limgsy, C(t,ty) > 0 GB equilibrium ?



Two body model

| Large energy injection on a confined state

cgt,og S
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Stationary dynamics but no FDT at a single temperature: no GB equilibrium



Two body model

| Large energy injection on a confined state: /), spectrum

0.9

0.8

0 20 100 150 200 250 300
t

T'=05,J =025 N =1024

Initial

Long times
0.75

/—/

0 0.5 1
n/N

0.5

0.25

2(t) = zp =T + J*/T

The time-dependent frequencies too
Qi(t) — (25— Ay)/m = wz
The /1 modes s, () decouple and
become independent harmonic oscillators
with conserved energy

e = e (t) + en (1)

Mode temperatures

(HE™) = (HE™) =T,

where ... =limqs L[S0 dil




Two body model

| Large energy injection on a confined state: TM from the FDR

[T,(w,)] ™Y, N = 1024
/—Im[R(w)]/(wC(w)), N = 00 =— |

Analytical

0.4

0.6

0.8 1

2(t) = 2p =T+ J*/T

The time-dependent frequencies too
2 — 2

QL) = (zf = Ap)/m = wj,

The /1 modes s, () decouple and

become independent harmonic oscillators

with conserved energy

e, = elﬁin (t) + b (t)

Mode inverse temperatures vs

FDR inverse temperature

—ImR(w)/(wC(w)) = Peogr (w)



Two body model

An integrable model ? Yes, Neumann’s model (1850)

Motion of a particle on Sy 1, enforced by >, z7 = N

The Hamiltonian is
H = ﬁ Zk;él L, + % > ayTy,
with Ly, = (xppr — 2ipr) //m

L2

Ak —ajg

K. Uhlenbeck 1982

The integrals of motion are [, = 17 + Zl(#)

Translation from Neumann to p = 2 spherical model

Sip% +33pi —28uPuSvPu

1
ap — —Ay and [, = SZ TN Zy(#) -




