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Viewing noise as a disorder in time domain
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Zener was aware of Landau’s paper e

Rosenkewitsch* states that Tiandau has obtained the formula P ~¢ 7 Fi—T,
where A = 2¢,,. v is the relative velocitv. and F.. F. are the * forces 7’ acting
upon the two states. If the identification — (g,— €,) = v (F, — F,) can be

made, the exponent ot Landau’s formula 1s too small by a factor of Zx.

Stueckelberg quotes Landau’s and Zener’s papers

13) L. Laxpav. Sow. Phys. 2, 46 (1932). Zu éahnlichem Resultat fiir
grosse o* kommt auch C. ZENER (Proc. Roy. Soc. 137 A, 696 (1932)) durch eine
ganz verschiedene Betrachtungsweise,
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QUANTUM TRANSITIONS IN THE ADIABATIC APPROXIMATION
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Energy levels coincide at two points in the complex plane: t, =+
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Probability to stay on the same diabatic level:
transition time

1-P,=Q, = exp[_ 2 Imt_‘gdt [E+ ()-E (t)]j =€exp £_ e \t)

Probability to survive

Semiclassical description applies for Q7 <<1



Non-Aduabatic Crossing of Enerqy Levels
By CrarencE ZENER, National Research Fellow of U.S.A.
(Communicated by R. H. Fowler, F.R.8.—Received July 19, 1932.)

Asymptotic solution at -

Exact result:
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Why the problem is so delicate?

In the language of spin dynamics [a,(t)|* —|a,(t)[’=S,(t)

approach of
S, (1)
to the asymptotic value

J2
S, (0) =1—exp (— 2T j
Y

IS accompanied by slowly
decaying oscillations

2
S, (t) < exp [J_r %)

tion: i >> i

ﬁ Y J%
splitting of
energy levelsat t=0



Landau-Zener transition today: single passage

week endin
PRL 96, 050402 (2006) PHYSICAL REVIEW LETTERS 10 FEBRUARYgzmﬁ

Long-Lived Feshbach Molecules in a Three-Dimensional Optical Lattice

G. Thalhammer,' K. Winkler,' F. Lang,' S. Schmid,' R. Grimm,"* and J. Hecker Denschlag'

Unstitut filr Experimentalphysik, Universitat Innsbruck, 6020 Innsbruck, Austria
*Institut fiir Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
(Received 27 October 2003; published 8 February 2006)

We have created and trapped a pure sample of #’Rb, Feshbach molecules in a three-dimensional optical
lattice. Compared to previous experiments without a lattice, we find dramatic improvements such as long
lifetimes of up to 700 ms and a near unit efficiency for converting tightly confined atom pairs into
molecules. The lattice shields the trapped molecules from collisions and, thus, overcomes the problem of
inelastic decay by vibrational quenching. Furthermore, we have developed an advanced purification
scheme that removes residual atoms, resulting in a lattice in which individual sites are either empty or
filled with a single molecule in the vibrational ground state of the lattice.
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LZ transition is crucial for robust manipulation of coherent quantum states
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|. Pioneering paper on multistate LZ transition

SOVIET PHYSICS JETP VOLUME 26, NUMBER 5 MAY, 1968

STATIONARY AND NONSTATIONARY PROBLEMS IN QUANTUM MECHANICS THAT CAN
BE SOLVED BY MEANS OF CONTOUR INTEGRATION
Yu. N. DEMEKOV and V. I. OSHEROV

Leningrad State University and Institute for Chemical Physics of the U.S.S5.R. Academy of Sciences
Submitted June 22, 1966

It is shown that if the energy operator consists of a time-independent part Ho and a perturbation which
depends linearly on time and is a projection operator onto a state |¢), the exact solution of the
Schrodinger equation can be expressed as a contour integral. The S-matrix for such a problem pos-
sesses the triangular property and decomposes into elementary Landau-Zener factors, each of which
mixes only a pair of states. Similar results are derived for the corresponding stationary problem.
Some generalizations are considered, as well as examples, and the connection with previous solutions
of the problem of electron detachment and of ionization in atomic and ionic collisions.
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The net survival probability is a
product of partial probabilities

PHYSICAL REVIEW A. VOLUME 61, 032705
Multipath interference in a multistate Landau-Zener-type model

Yu. N. Demkov and V. N. Ostrovsky’

Institute of Physics, The University of St. Petersburg, 198904 St. Petersburg, Russia
(Received 1 June 1999: published 10 February 2000)



Main result on multistate LZ transition

“No-go” theorem

Upper level is not populated in the limit f — oo



Consider 3 — 1 in the following two situations. Semi-classically, one can view
the system as staying on some diabatic level unless met with crossings.

A

left: 322 S 1or3 Z3 41 5 1, complications arise due to interference.
This intuitively explains why there is no general solution.

Right: 3 Z, 1. The other path would require going backwards in time.

We see a simple re-ordering of the levels would dramatically change the
situation. However, simplification is possible if one (a) considers 3 — 3 or
1 — 1, or (b) turns off the some of the couplings.



PHYSICAL REVIEW B 66. 205303 (2002)
Multiparticle Landau-Zener problem: Application to quantum dots

N. A. Simitsyn
Department of Phvsics, Texas A&M Universitv, College Station. Texas 77843-4242

We propose a simple ansatz that allows us to generate new exactly solvable multistate Landau-Zener models.
It 1s based on a system of two decoupled two-level atoms whose levels vary with time and cross at some
moments. Then we consider multiparticle systems with Heisenberg equations for annihilation operators having
a similar structure as the Shrodinger equation for amplitudes in multistate Landau-Zener models and show that
the corresponding Shrodinger equation in the multiparticle sector belongs to the multistate Landau-Zener class.

This observation allows us to generate new exactly solvable models from already known ones. We discuss
possible applications of the new solutions in the problem of the driven charge transport in quantum dots.

E All these models provide very simple results. For ex-
ample, fransition probabilities in the Demkov-Osherov
model coincide with those taken from successive application
of the two state Landau-Zener formula. The same 1s true for
the generalized bow-tie model. Finally in all models the tran-
sition probabilities are simple polynomials of z;=exp
(—m|gi?). This fact gives a strong feeling that there should
be a common symmetry in the background of all these mod-
els. Our results demonstrate the same properties and we
know that the reason for this was the symmetry that makes

t the Hamiltonian equivalent in some sense to the one for a

FIG. 1. Time dependence of the adiabatic energies (solid lines) much simpler problem.

and diagonal elements (dashed lines) of the Hamiltonian (5). The

choice of parameters 1s B;=5, B,=—3, B;=0, B4=—15, E;

=3, E,=05, E;=—2, E,=—15, g=1, y=15.

No interference effects in exactly solvable
multilevel LZ problem
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Landau-Zener transitions in a multilevel system: An exact result

A. V. Shytov

Lyman Laboratory, Physics Department, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138, USA
and L.D. Landau Insfitute for Theorefical Physics, Kosygin Sireet, 2, Moscow 117934, Russia
(Received 7 July 2004; published 17 November 2004)

We study the S matrix for the transitions at an avoided crossing of several energy levels, which is a
multilevel generalization of the Landau-Zener problem. We demonstrate that, by extending the Schrddinger
evolution to complex time, one can obtain an exact answer for some of the transition amplitudes. Similar to the
Landau-Zener case, our result covers both the adiabatic (slow evolution) and the diabatic (fast evolution)
regimes. The form of the exact transition amplitude coincides with that obtained in a sequential pairwise level
crossing approximation, in accord with the conjecture of Brundobler and Elser [J. Phys. A 26, 1211 (1993)].

A,
Si_1=by=exp(mey) =exp| — w2, ——
jF1V;

n-]\____/ . Similarly. for the /=n component. after going through

analvtical confinuation over the contour (a), we obtain

n A. 2
1 /W\ Sn—m = E:Xp(_ ﬂa'rn) —CXp| — ﬂ'z A

j#FnVn = Vj

-

FIG. 1. Time evolution of the adiabatic (frozen) energy levels of
the Hamiltonian (1). The transitions analyzed in this work are
1) e o= [1)mee and 1) o — 1) e



Mutiple Passage

The adiabatic-impulse approximation
@ Between crossings, adiabatic:

ot
r K ftj E_ dt 0
[ — _ tf
0 (_"Efti E_ dt

@ At crossings, instantaneous:

! N — (v [ —Qrze " —VQLz )
' o VQLz V1—Qrze”*

To finally arrive at £, one can

P ST L N L Aro i
either follow the blue-red-red Pe=Ta T (]” v 1) +argl (1 Ev’?)'
path or the blue-blue-red path. @ Interference: Q+ = 4Qrz(1 — Qrz)sin® d;.

Both contribute Qrz(1 — Qrz). @ Generally after n periods, the evolution
matrix is (NU2NU,)™.



Physics Reports 492 (2010) 1-30

||. Landau-Zener-Stiickelberg interferometry

S.N. Shevchenko *P*, S. Ashhab®€, Franco Nori®¢

2 B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine
b RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
© Department of Physics, The University of Michigan, Ann Arbor, MI, USA

Multiple passage
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Fig. 2. (Color online) Time evolution of the energy levels during one period. The time-dependent adiabatic energy levels define a two-stage evolution:
transitions at the non-adiabatic regions, described by the evolution matrix N, and the adiabatic evolution, described by the matrices Uy » = exp(—iZ1.20z).
The acquired phases £y ; have a geometrical interpretation: they are equal to the area under the curves, shown by the yellow and blue regions. The diabatic
energy levels, £&(t)/2, are shown by the dashed lines.

Fig. 4. (Color online) Double-passage transition. Adiabatic energy levels as in Fig. 2 are plotted. The lines with one and two arrows show the two
trajectories where the transition to the upper level happens during the first and the second passages of the avoided level crossing. Their respective transition
probabilities are given by Piz (1 — Piz) and (1 — Pyz)Piz, while the interference is described by Eq. (27).

evolution matrice after n full periods

1 [
K“-f! ri] — E—/; ﬂ(f}df .ﬂ'[f] = ’!//ﬂz + E[I‘)E U (t, t, + Eﬂ'?ﬂ) {NUENU*l]n

. e iltrt) 0 _
between crossings Ults, t;) = - aicltrt) — e itltrL)o




Interferometry: Experiment

W. D. Oliver, ¥. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, T. P. Orlando, Science Vol. 310, 5754 (2005).

A time-dependent magnetic flux f(t) = f9 + f*(¢) threads the superconducting loop
and controls the qubit.

A B MZ#1 M2Z#2 : MZ#3 f(t) 5 (110/2,
2 O OO OOy s s 4
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g6 2  Constructive interference
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8, multi-photon resonances
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RF Field Amplitude (Aq/ hv)



Journal of the Physical Society of Japan . . .l
Vol. 54, No. 5, May, 1985, pp. 2037-2046 111. Noise-driven LZ transition
Pioneering paper:

Stochastic Theory for Nonadiabatic Level Crossing
with Fluctuating Off-Diagonal Coupling

-Yosuke KAYANUMA

Department of Physics, Faculty of Science,
Tohoku University, Sendai 980

(Received November 22, 1984)

Random coupling: <g(t)g(t) >=J*exp(—y|t—t'|)

- ® H = _V_t&z + g(t)OA_x
& 2
“ ol glt) General expression:
1) | _ P=(4{exp —iJ. H(zr)dr EXP —iJ. H(z)dz
0
1 —0 21 =ee 1,2

Fig. 1. Level crossing with fluctuating off-diagonal
coupling. The energy difference between the diabatic
states changes with a constant velocity v and the
off-diagonal matrix element g(¢) fluctuates around

the mean value {g(t)>=0.



Expansion in powers of J?2

(a)

Fig.2. Diagramatic representation of the time-
ordered integral for the perturbation expansion of
P. The system starts from |1} at t= — o0, propagates
to the right, making a transition at each time-
point, and reaches |2) at #= + c0. Figure 2(a) and
(b) correspond to two examples of the pairing for
a given configuration of the time-points. The two
time-points connected by the dashed lines lie within
a distance less than t,=1/y.

L™ = Z T dtletz...T dt,.
m=1_ ty —0

Fig. 3. Diagramatic representation of the serial time-

ordering, The diagram (a) and (b) correspond to (n) .
the diagram (a) and (b) of Fig. 2, respectively. The = (tl ’ t2 yreny t2n ) — E eXp —

diagram (a) is singly connected and (b) is multiply
connected. The pattern in this case is (+1, —1,
+1, =1, +1).

t2 n—-1

j dt,, x F™ (t,,....t,, )exp

—00

pairs

+ 00
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Two limiting cases:

Fast noise: correlation time .=y much shorter than the transition time

T, << T, =—

Leading contribution comes from diagrams with ordered times

-
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e

F™M (2,700 70 ) = zeXp[__er Ti 2k 1|j

pairs c k=1

tlvhiv]

Only a single out of (2n —21)!! pairings contributes

1 (4r) 1 4rJ?
(M — - |[1— =
2<n!>(|v|j i 2{1 e"p( y H

Probabilities T 571 and 1T-—J{ arealmostequal




Derivation for the fast-noise limit

In the language of spin dynamics

Py =Py =S,(»)

ds t t2 _t2
2 =—|dt, cos| Vv L (b ()b (t.)S.(t
b,=% b, =3t d [O 1 H 1 ﬂ (OB, (1)5; (1)
d—S = bxS For the fast noise: <b, ()b, (t,) >=J% exp[—lt_—rth
t
S |
S,E?rllJ ?y'ﬁgmofcs a (Vtrj ‘:>S () =S, (—0) exp{ 471:‘]}

exponentially small polarization
In rapidly changing magnetic field



1. Slow noise: very long correlation times Z= o

Tc

Contributions of all diagrams of the same order are equal

T Tz‘* *’%4 -~
f "' -"'"f J"'"-

lu TsTa T”U TQT’

Combinatorial factor:

F O (2,750 750) = (20 1)1 o - CrrRn( 5

N o

2073 dePLz(Q)exp[ 232)

PSF —

271Q°%

| V]

LZ probability Pz (Q) 21—eXp[— j of non-diagonal matrix element
Is averaged over the distribution of couplings

In both limits correlation time does not enter into the answer



Our study: Motivation

1. Analytical results for slow noise do not contain correlation time <_
Crossover from “slow” to “fast” noise is not captured by the Kayanuma theory

for adiabatic LZ transition ;

Q2
1., v
2 there are two small parameters: Iz and v

c

c

2. For the telegraph noise with correlator <J(t)J(t) >= Jjexp{—l ; q

J(t) takes the values +J; =) Average LZ probability is not affected by noise

Js - I —
0.5} - J?

0 » 1-P,=Q,,=exp| -2n—=>

0.5} ] \'

_J0|- — - -
0 2 4 6 8 10




We start from slow telegraph noise: ¢, =0«

LZ
~ B

iy vt Y
13, :—Eaﬁ\]a2 13, =Ea2+Ja1

- -
o
—_——_———_————_——r——_——_—_———_———_—k - - — g - — ————_—— —— - =}
- -

¢ Switching takes place at t=t,

Our prime finding:

. " J
Main contributionto Qiz comes from sparse moments t, <<t ,=—
V

For t<t, thesolution with right behavior at t— —o

al = Dv(z) a'2 — _ivllzDv—l(Z)

N

parabolic cylinder function & (—OO) —0 Without switching:

- - i 12 F
with index y=_M and argument z =% Q, = |DV(OO)|22:exp(—27z|v|)<<1

v “ D, (—)|
LZ resultﬁ




Switching at t=t

t<t, a=D,(2) a,=-iv"D,(2)

_____________

t
General solution for t>t,

a =AD,(z)+BD,(-z)  a,=iv'?|AD,,(z)-BD, (-2)]

D, (z,)=AD, (z,)+BD,(-z,) |
Continuity at t=t, O ’ where z, =v"‘e™",

Dv—l (Zo) = _ADv—l (Zo)+ BDv—l(_ZO)

Solution:
Dv—l(_ZO) _ D, (_Zo) 5 2
D, (7 D, (Z, =
AN Posln) , D (2]
D,.(z) ' D,(z) D,.(z) D.(z)

For switchingat t=0 wehave B=1 |:> complete survival !



Our prime observation:
Telegraph-noise switching takes place at

J
0
t,<<1,=

Y

— e For t<t, the solution with

;diabaﬁg‘[eve.s right behavior at t— -

+ 12
12 . =D (z a,=—-1v_-°D .,z
Where V:—IJO and Z:\/1/2en|/4 a:[ V( ) 2 V—l( )
Vv

General solution for t>t, 8,(=0) >0

a, =AD,(z)+BD,(-2) a, =iv'?’[AD,_,(z)-BD, ,(-2)]

Without switching: With switchingat t=(
|3,(e0) "
B=0 I:',>Q = =exp(—2n|v]|)<<1 A=0 |:'|>Q =1
LZ | : (_ )|2 ( ) LZ

Rare realizations of noise have an exponentially strong effect



Typical switching moment: t,~z. >>7,

[ Qrz Survival probability at small t,
1

Qu (to) =, 2

exp(—2m|v|)

O
I

vV T vV VT

c

2 2
Q,, = exp[—ZﬂJ—°j+ 2z exp[—ZﬂJ—C]+ 27 .

c

finite- 7, correction
contribution from rare dominates for strongly

noise realizations adiabatic LZ transition



Gausslian noise

When J(t) changes continuously,

the major contribution to the survival
probability comes from realizations for

which J(t) passes though zero
near the level crossing

With linearized J(t) upon introducing the new variables:

b,=acosp+a,sing b,=asing-a,cose

!

2
where the angle @ is defined as 1N (2¢) = ~—

~

. _ L vt -
., the Hamiltonian reduces to the effective LZ Hamiltonian H =?GZ +Jo,




~

Effective LZ Hamiltonian: H :ﬂgz +Jo,

E
renormalized velocity and coupling
" V 3 ' '
= G_ vt, sin(2¢) tan (29) _ar
f cos(2¢) 9 v
Effective transition time: 7, = % __ v g
Voovi+4(d)

Effective survival probability:

277(\]')2*[5 " 42 Since 7, <t;, the condition t, <<,
Q) =exp) - Vv Ve +4(J ')ZJ ensures the validity of linearization of J(t)

Upon averaging over [, <<7,

_ oodto B X 1/2
Q.= [ %0 ~( 5]

2 over the distribution of ]’

1 (Vz +4(] ,)zj3/4 The result should be averages
Vv

[z,

—00 C



Gaussian distribution of the slopes J’ has the width:

0°K
o2 "
1

JOIE)= K (t-t) = (I') =17

1/2 . o \3/4
Averaging of (jLZ :(Xj 1 (V +4(J) ] over J'

2) |37, V2

Averaging in the domain  J' >>V

_ N P 2 ) 203\ )"
<Q|_z>:m_!;d3 QLZ(\] )GXF{_(J,)i}:ﬂ(Vuzj (Vl/zrj
Decay of the survival probability

with increasing

C



Averaging in the domain  J' <<V

~ (v 1 (a2t (Y 3"
QLZ . ' 2 ~l 5 ' 1+3 o
2) |3z, Vv 2) |3z, Vv

Leading contribution:

— 3 1 12 1 K dJ’ _ J'Z _ 1 V2 1 |(‘J')C|Tc
@)= i 5 ex“{ <J'>§Nﬂj - '”( j

minimal J’ exceeds the standard result

(e 3

C

] _ by a big logarithmic factor
Sub-leading correction: yapigioy

(Qi2 (.))~(Quz () = 3@)1/2 (VJ”CZ J ["ﬂ%“ jz




finite- 7_

b =

Summarizing:

B ] 1/2 1 3/2
<QLZ>~( ] [ ]
e

(@ (2.)~Qup () - (J—J (ij
v v'r,

Evolution of the survival probability
with the noise correlation time

i 1 4]’
Fast noise: Q. (TC—>0)=§{l+exp(— ’iﬂ

correction originates from rare realizations when the switching

does not take place during anomalously long time

Probability that the switching does not take place during the time 77 is exp(—£]
.

1 1
>Rz =

2 2

c

Ar]? J contribution from rare realizations
—exp| — = |+exp| ——= C?



Other moments when coupling passes through zero

do not affect Q,,

|
-
]

FIG. 5. Inthe domain of correlation times J ! /v?3 <« 7. < J, [v
a crossover between the slow-noise and the fast-noise regimes takes
place. In this domain, time-dependent adiabatic levels acquire local
minima due to the randomness of J(¢). The duration of the Landau-
Zener transition (shown with red) in the vicinity of each minimum is
much shorter than t... The probability to remain on the same adiabatic
level after the transition, given by Eq. (36), is close to 1 so that only
the transition in the vicinity of ¢ = #; is responsible for Q7.



Correlator of the telegraph noise

easily made (Itakura and Tokura, 2003). The number k of
switches that the fluctuator experiences within a time ¢ follows
a Poisson distribution

?’Uk —
Pi(t) = e (44)
The number of switches k determines the number of times the

function y(r) changes its sign contributing (—1)* to the
correlation function C(#) = (¥(1)y(0)). Therefore,

C(z)ze—-ﬂf”z 1)k U _n 150, as)

k
k=0 2°k!
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