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The key player problem

Borgatti : “The key player problem” (2003); Comput Math Organiz Theor (2006)

1. Given a network, find the node which, if removed, would maximally disrupt 
communication among the remaining nodes. 

2. Given a network, find the node that is maximally connected to all other 
nodes. 
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A bit of literature
Centralities have been introduced to solve the “key player” problem 
*vs. graph/network matrix (geodesic, betweenness, Bonacich, Katz, PageRank…)

Econometrica, Vol. 74, No. 5 (September, 2006), 1403–1417

WHO’S WHO IN NETWORKS. WANTED: THE KEY PLAYER

BY CORALIO BALLESTER, ANTONI CALVÓ-ARMENGOL, AND YVES ZENOU1

Finite population noncooperative games with linear-quadratic utilities, where each
player decides how much action she exerts, can be interpreted as a network game with
local payoff complementarities, together with a globally uniform payoff substitutability
component and an own-concavity effect. For these games, the Nash equilibrium action
of each player is proportional to her Bonacich centrality in the network of local comple-
mentarities, thus establishing a bridge with the sociology literature on social networks.
This Bonacich–Nash linkage implies that aggregate equilibrium increases with network
size and density. We then analyze a policy that consists of targeting the key player, that
is, the player who, once removed, leads to the optimal change in aggregate activity. We
provide a geometric characterization of the key player identified with an intercentrality
measure, which takes into account both a player’s centrality and her contribution to the
centrality of the others.

KEYWORDS: Social networks, peer effects, centrality measures, policies.

1. INTRODUCTION

THE DEPENDENCE OF INDIVIDUAL OUTCOMES on group behavior is often re-
ferred to as peer effects in the literature. In standard peer effects models, this
dependence is homogeneous across members and corresponds to an average
group influence. Technically, the marginal utility to one person of undertak-
ing an action is a function of the average amount of the action taken by her
peers. Generative models of peer effects, though, suggest that this intragroup
externality is, in fact, heterogeneous across group members and varies across
individuals with their level of group exposure.2 In this paper, we allow for a
general pattern of bilateral influences and analyze the resulting dependence of
individual outcome on group behavior.

More precisely, consider a finite population of players with linear-quadratic
interdependent utility functions. Take the matrix of cross-derivatives in these
players’ utilities. Our first task is to decompose additively this matrix of cross-
effects into an idiosyncratic component, a global interaction component, and

1We are grateful to the editor, Andrew Postlewaite, and three anonymous referees for very help-
ful comments and suggestions. We also thank Phillip Bonacich, Antonio Cabrales, Alessandra
Casella, Joan de Martí, Steve Durlauf, Sanjeev Goyal, Matt Jackson, Rachel Kranton, Jordi
Massó, Karl Schlag, Joel Sobel, Giancarlo Spagnolo, and Sergio Vicente for their comments.
Financial support from the Fundación Ramón Areces, the Spanish Ministry of Education and
Feder through Grant SEJ2005-01481/ECON, and the Barcelona Economics Program CREA is
gratefully acknowledged by Coralio Ballester and Antoni Calvó-Armengol. Yves Zenou thanks
the Marianne and Marcus Wallenberg Foundation for financial support.
2For instance, when job information flows through friendship links, employment outcomes vary
across otherwise identical agents with their location in the network of such links (Calvó-Armengol
and Jackson (2004)). Durlauf (2004) offers an exhaustive survey of the theoretical and empirical
literature on peer effects.
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Identifying sets of key players in a social network

Stephen P. Borgatti

C⃝ Springer Science + Business Media, LLC 2006

Abstract A procedure is described for finding sets of key players in a social network. A
key assumption is that the optimal selection of key players depends on what they are needed
for. Accordingly, two generic goals are articulated, called KPP-POS and KPP-NEG. KPP-
POS is defined as the identification of key players for the purpose of optimally diffusing
something through the network by using the key players as seeds. KPP-NEG is defined as
the identification of key players for the purpose of disrupting or fragmenting the network by
removing the key nodes. It is found that off-the-shelf centrality measures are not optimal for
solving either generic problem, and therefore new measures are presented.

Keywords Social networks · Centrality · Cohesion

1. Introduction

The problem of identifying key players in a social network is, at first glance at least, an
old one. One stream of relevant research is node centrality (e.g., Bonacich, 1972; Freeman,
1979), which attempts to quantify the structural importance of actors in a network. In addition,
work on identifying cores and peripheries (e.g., Seidman, 1983; Borgatti and Everett, 1999;
Everett and Borgatti, 1999a) is relevant, as is work on group-level centrality (Everett and
Borgatti, 1999b). Structural measures of social capital (e.g., Coleman, 1990; Burt, 1992;
Borgatti, Jones and Everett, 1998) also tend to identify key players, although the perspective
is reversed in that with social capital research one asks what features of the network contribute
to the individual, whereas with key player research we ask which individuals are important
for the network.

However, in this paper I attempt to show that existing measures and algorithms do not
optimally solve the key player problem as I define it, and that new approaches are needed.
The approach I explore is based on measuring explicitly the contribution of a set of actors to

S. P. Borgatti (!)
Department of Organization Studies, Boston College
E-mail: borgatts@bc.edu
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Navigability of networks, that is, the ability to find any given destination vertex starting from any other

vertex, is crucial to their usefulness. In 2000 Kleinberg showed that optimal navigability could be

achieved in small world networks provided that a special recipe was used to establish long range

connections, and that a greedy algorithm, that ensures that the destination will be reached, is used.

Here we provide an exact solution for the asymptotic behavior of such a greedy algorithm as a function of

the system’s parameters. Our solution enables us to show that the original claim that only a very special

construction is optimal can be relaxed depending on further constraints, such as, for example, cost

minimization, that must be satisfied.

DOI: 10.1103/PhysRevLett.102.238703 PACS numbers: 89.75.Hc, 05.40.!a, 89.75.Fb

By endowing nodes with both well-connected local
neighborhoods and long-range shortcuts that dramatically
reduce the distances to any other node, transport on small
world (SW) networks is both locally and globally efficient
[1]. Such a feature has made SW networks appealing for
several fields, such as social, computer, and life sciences
[2– 8]. Unfortunately, taking full advantage of the small
node-to-node distances requires a global knowledge of the
system that is, in general, not accessible. It is thus impor-
tant to devise decentralized algorithms that rely only on
local information and that are able to find good, although
suboptimal, routes from source to destination [9]. The
analysis of a prototype decentralized algorithm showed
that the precise recipe used to establish the long-range
shortcuts affects the ability of decentralized algorithms to
navigate the networks [10].

SW networks can be obtained from regular lattices in d
dimensions by adding to every node, with probability q, a
long-range connection to another node taken at random
over the whole lattice [11]. The key feature of SW net-
works is that the average distance between any two nodes
grows at most logarithmically with the linear size L of the
lattice [11]. In order to analyze how different shortcut
addition schemes affect the performances of a decentral-
ized algorithm, Kleinberg [10] specified an additional rule
for the selection of the long-range partnerships: the proba-
bility sðlÞ that the shortcut added to a node ends at a node at
a Euclidean (or lattice) distance l is a decaying power law,
sðlÞ ¼ N l!!, where N is the normalization over the
whole lattice. The two key ingredients for the construction
of the SW network are thus the shortcut addition probabil-
ity q and the exponent !.

The simple decentralized algorithm considered in [10] is
of greedy nature: starting from a given node, at every step
the algorithm chooses the edge with the end node which is
closer, in Euclidean or lattice distance, to the selected
destination; such a scheme guarantees that the destination
is always certainly reached. Using arguments from proba-
bility theory, it was possible to find, in d¼ 2, a lower

bound for the average number of steps "ðLÞ that are neces-
sary to connect nodes separated by a distance proportional
to the lattice linear size L: "ðLÞ % L#, with # ¼
ð2! !Þ=3 if 0 % !< 2 and # ¼ ð!! 2Þ=ð!! 1Þ if !>
2 (see Fig. 2, dashed lines). In the case ! ¼ 2, the upper
bound "ðLÞ % ðlnLÞ2 was found instead. As a conse-
quence, the best choice for an optimized navigability of a
SW network using a decentralized algorithm would be
! ¼ 2 in d¼ 2 and, more generally, ! ¼ d in d dimen-
sions [10,12].
In what follows, we derive the exact asymptotic behav-

ior of "ðLÞ in any dimensions. We resort to the same
implicit assumption already used in the probabilistic ap-
proach in [12]: we treat the algorithm as a stochastic
Markov process, by looking simultaneously at all possible
network realizations [13]. If at a given stage the message is
at site i, at lattice distance di from the target, at the next
step it will surely be at a site j, with distance dj < di, due to
the greediness of the algorithm. More in detail, if j is a
nearest neighbor of i, then their connecting edge is chosen
only if there are no shortcuts from i to sites k with dk < dj.
If, instead, such a useful shortcut exists, the greedy algo-
rithm chooses it over the nearest neighbor connection. In
general, we can write the following recursive relation for
the average number of steps from a site i to the destination:

"ðiÞ ¼
X

j

pi!jð"ðjÞ þ 1Þ; (1)

where the probability pi!j depends on the presence and
greedy-usefulness of shortcuts. In Eq. (1) we assume,
following [10], that the time it takes to travel a network
edge, be it a shortcut or a link of the underlying lattice, is 1.
Equation (1) can be easily solved numerically, on a

lattice, by recursion. However, it is more instructive to
take its continuous space limit, where a lattice site i is
mapped onto a position ~r and the lattice spacing vanishes.
The continuous version of Eq. (1) is obtained as follows,
assuming that the target is at the origin (Fig. 1). Starting
from point ~r, the algorithm proceeds along a ray (greedy
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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M
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Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge

* Present address: Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA
Building, 420 W118 St, New York, New York 10027, USA.

…leading to purely graph-theoretic approaches (rather successful)
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BIRDS OF A FEATHER: Homophily
in Social Networks

Miller McPherson1, Lynn Smith-Lovin1, and
James M Cook2
1Department of Sociology, University of Arizona, Tucson, Arizona 85721;
e-mail: mcpherson@u.arizona.edu; smithlov@u.arizona.edu
2Department of Sociology, Duke University, Durham, North Carolina 27708;
e-mail: jcook@soc.duke.edu

Key Words human ecology, voluntary associations, organizations

■ Abstract Similarity breeds connection. This principle—the homophily princi-
ple—structures network ties of every type, including marriage, friendship, work,
advice, support, information transfer, exchange, comembership, and other types of re-
lationship. The result is that people’s personal networks are homogeneous with regard
to many sociodemographic, behavioral, and intrapersonal characteristics. Homophily
limits people’s social worlds in a way that has powerful implications for the infor-
mation they receive, the attitudes they form, and the interactions they experience.
Homophily in race and ethnicity creates the strongest divides in our personal envi-
ronments, with age, religion, education, occupation, and gender following in roughly
that order. Geographic propinquity, families, organizations, and isomorphic positions
in social systems all create contexts in which homophilous relations form. Ties be-
tween nonsimilar individuals also dissolve at a higher rate, which sets the stage for
the formation of niches (localized positions) within social space. We argue for more
research on: (a) the basic ecological processes that link organizations, associations,
cultural communities, social movements, and many other social forms; (b) the impact
of multiplex ties on the patterns of homophily; and (c) the dynamics of network change
over time through which networks and other social entities co-evolve.

INTRODUCTION

People with different characteristics—genders, races, ethnicities, ages, class back-
grounds, educational attainment, etc.—appear to have very different qualities. We
often attribute these qualities to some essential aspect of their category member-
ship. For example, women are emotional, educated people are tolerant, and gang
members are violent. These essentialist attributions ignore the vast differences in
the social worlds that these people occupy. Since people generally only have sig-
nificant contact with others like themselves, any quality tends to become localized
in sociodemographic space. By interacting only with others who are like ourselves,
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A bit of literature

Do topological models provide good information about electricity
infrastructure vulnerability?

Paul Hines,1,a! Eduardo Cotilla-Sanchez,1,b! and Seth Blumsack2,c!

1School of Engineering, University of Vermont, Burlington, Vermont 05405, USA
2Department of Energy and Mineral Engineering, Pennsylvania State University,
University Park, Pennsylvania 16802, USA

!Received 7 April 2010; accepted 24 August 2010; published online 28 September 2010"

In order to identify the extent to which results from topological graph models are useful for
modeling vulnerability in electricity infrastructure, we measure the susceptibility of power networks
to random failures and directed attacks using three measures of vulnerability: characteristic path
lengths, connectivity loss, and blackout sizes. The first two are purely topological metrics. The
blackout size calculation results from a model of cascading failure in power networks. Testing the
response of 40 areas within the Eastern U.S. power grid and a standard IEEE test case to a variety
of attack/failure vectors indicates that directed attacks result in larger failures using all three vul-
nerability measures, but the attack-vectors that appear to cause the most damage depend on the
measure chosen. While the topological metrics and the power grid model show some similar trends,
the vulnerability metrics for individual simulations show only a mild correlation. We conclude that
evaluating vulnerability in power networks using purely topological metrics can be misleading.
© 2010 American Institute of Physics. #doi:10.1063/1.3489887$

Electricity infrastructures are vital to the operation of
modern society, yet they are notably vulnerable to cas-
cading failures. Understanding the nature of this vulner-
ability is fundamental to the assessment of electric energy
reliability and security. A number of articles have re-
cently used topological (graph theoretic) models to assess
vulnerability in electricity systems. In this article, we il-
lustrate that under some circumstances these topological
models can lead to provocative, but ultimately misleading
conclusions. We argue that empirical comparisons be-
tween topological models and higher fidelity models are
necessary in order to draw firm conclusions about the
utility of complex networks methods.

I. INTRODUCTION

Motivated by the importance of reliable electricity infra-
structure, numerous recent papers have applied complex net-
work methods1,2 to study the structure and function of power
grids. Results from these studies differ greatly. Some mea-
sure the topology of power grids and report exponential de-
gree distributions,3–5 whereas others report power-law
distributions.6,7 Some models of the North American power
grid suggest that power grids are more vulnerable to directed
attacks than to random failures,4,8 even though power grids
differ from scale-free networks in topology. Recently, Wang
and Rong9 used a topological model of cascading failure and
argue that attacks on nodes, which are known as buses in the
power systems literature,10 transporting smaller amounts of
power can result in disproportionately large failures. Albert

et al.4 draw the opposite conclusion using similar data. Be-
cause of the potential implications of these results for infra-
structure security, these papers4,9 have attracted the attention
of government and media.11

The value of purely topological models of power grid
failure in assessing actual failure modes in the electricity
infrastructure is not well-established. Commodity !electric
energy" flows in electricity networks are governed by Ohm’s
law and Kirchhoff’s laws, which are not captured particu-
larly well in simple topological models !see Fig. 1". Some
have identified relationships between the physical properties
of power grids and topological metrics5,12,13 and find that
some metrics do correlate to measures of power system per-
formance. However, to our knowledge, no existing research
has systematically compared the results from a power-flow
based cascading failure vulnerability model with those from
graph theoretic models of vulnerability. Because cascading
failures !and hurricanes" cause the largest blackouts14 and
contribute disproportionately to overall reliability risk,15

models that incorporate the possibility of cascading failure
are necessary to provide a sufficiently broad view of power
network vulnerability. While there is extensive literature on
cascading failure and contagion in abstract networks !see,
e.g., Sec. IV of Ref. 2", and some application of these meth-
ods to power networks,16,17 direct comparisons are needed to
draw firm conclusions about the utility of topological meth-
ods.

Our primary goal, therefore, is to compare the vulner-
ability conclusions that result from topological measures of
network vulnerability with those that result from a more re-
alistic model of power network failure. Section II describes
the vulnerability measures used for comparison. Section III
describes the attack and failure vectors with which we per-

a"Electronic mail: paul.hines@uvm.edu.
b"Electronic mail: eduardo.cotilla-sanchez@uvm.edu.
c"Electronic mail: blumsack@psu.edu.
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The key player problem : deterministically coupled systems

Resistance distance 
centrality

a.k.a. LRank Numerically computed
performance measure

Tyloo, Pagnier and PJ : to be published (2018)

#nodes : 3809
#edges : 4944 



The program

1) Dynamics of electric power grids (coupled oscillators) 

2) Synchronous operational setpoints 

3) Transient dynamics under perturbations - local vs. averaged



A bit of electric power engineering

• Electricity production with rotating 
machines 

• Potential, chemical, nuclear or thermal 
energy converted into mechanical 
energy (rotation) 

• Mechanical energy converted into 
electric energy 

• Time-dependence : think power instead 
of energy 

• Balance between power in, power out 
and energy change in rotator : SWING 
EQUATIONS



• i : node/bus index 
•     : voltage angle (rotating frame @ 50/60 Hz) 
• P>0  : production 
• P<0  : consumption 
• I : inertia ~ rot. kinetic energy 
• D : damping ~ control 
• Admittance : y = g + i b;  

G=g V0      B=b V0

Dynamics: swing Eqs. (neglect voltage variations from now on) 

A bit of electric power engineering



Dynamics: swing Eqs. (neglect voltage variations from now on) 

A bit of electric power engineering

High to very high voltage approximation 
G/B < 0.1 -> neglect G

• i : node/bus index 
•     : voltage angle (rotating frame @ 50/60 Hz) 
• P>0  : production 
• P<0  : consumption 
• I : inertia ~ rot. kinetic energy 
• D : damping ~ control 
• Admittance : y = g + i b;  

G=g V0      B=b V0
2 2



A bit of electric power engineering

We are interested in  

a) the synchronous fixed-points of (*) - operational 
    states of the power grid 

b) their stability - under specific or 
    average disturbances (=local vulnerabilities vs. global robustness)

(*)

Sync : Kuramoto (1975); Strogatz “Sync: The Emerging Science of Spontaneous Order” (2004)  



Synchronous fixed points vs. Josephson junctions

50m

Josephson current  AC transmitted power



Superconductivity vs. AC electric power grids !

State

Current /
power flow

Superconductor
high voltage

AC power grid

Josephson current Power flow; lossless line approx.

winding # 
q=Σi|θi+1-θi|/2π

Flux quantization
Persistent currents

Circulating 
loop flows



Circulating loop flows

Dörfler, Chertkov, Bullo, PNAS ’13; Delabays, Coletta and PJ, JMP ’16

Janssens and Kamagate ‘03

*Voltage angle uniquely defined 
   q=Σi|θi+1-θi|2π /2π      ~topological winding number 
  discretization of these loop currents  ~vortex flows 

            number of stable solutions ~ number of possible vortex flows
Delabays, Coletta and PJ, JMP ’16, JMP ’17; Coletta, Delabays, Adagideli and PJ, NJP ’16,;Delabays, Tyloo and PJ, Chaos ‘17

*Thm: Different solutions to the following power-flow equation 

may differ only by circulating loop current(s) in any network
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Circulating loop flows

Dörfler, Chertkov, Bullo, PNAS ’13; Delabays, Coletta and PJ, JMP ’16

Janssens and Kamagate ‘03

*Voltage angle uniquely defined 
   q=Σi|θi+1-θi|2π /2π      ~topological winding number 
  discretization of these loop currents  ~vortex flows 

            number of stable solutions ~ number of possible vortex flows
Delabays, Coletta and PJ, JMP ’16, JMP ’17; Coletta, Delabays, Adagideli and PJ, NJP ’16,;Delabays, Tyloo and PJ, Chaos ‘17

*Thm: Different solutions to the following power-flow equation 

may differ only by circulating loop current(s) in any network



•Landau theory of superconductivity - macroscopic wavefunction 

•Gauge-invariant current 

•Take toroidal SC pierced by B-field 
•Contour well inside SC : Meissner effect

C

CC

-> 

-> 

-> flux quantization 
(winding number)

Topological quantum number : flux quantization with SC

Exps.: Deaver and Fairbanks ’61 (Sn cylinders); Gough et al. ’87 (high Tc)



Nodal noise disturbance

• No spatial correlation
• Characteristic time 

Tyloo, Coletta and PJ, PRL ’18
Tyloo, Pagnier and PJ, submitted t [sec]
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Nodal noise disturbance



Restoration time

Rocof (rate of change of frequency)

frequency nadir

Nodal noise disturbance



Restoration time

Rocof (rate of change of frequency)

frequency nadir

Nodal noise disturbance

Take limit                when possible 
Divide by T otherwise

Our performance measures



Power grid with fluctuating feed-in

Angle dynamics

Can one characterize             given              ?

A: (i) linearize the dynamics about a fixed-point solution

(ii) spectral decomposition, i.e.
expand angles over eigenmodes of stability matrix

get equation for coefficients of expansion !

t [sec]
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Stability / weighted Laplacian matrix

Linearized dynamics about fixed point 

Stability matrix

General property + special case 
• It’s a Laplacian matrix

•      Limit of no flow -> graph Laplacian



Local vulnerabilities Global robustness



Local vulnerabilities Global robustness

They all depend on

!!!



Local vulnerabilities Global robustness

They all depend on

!!!
They all depend on

!!!



Results : (i) global robustness vs. Kirchhoff indices

Kirchhof index Kf1 : Klein and Randic, JMC ’93.

is shortest time scale

is longest time scale

Introduce “generalized Kirchhoff indices”



Results : (i) global robustness vs. Kirchhoff indices

Box disturbance Noise disturbance



Results : (i) global robustness vs. Kirchhoff indices

Box disturbance Noise disturbance

Take-home message #1 
• Global robustness assessment via Kirchhoff indices



Results : (ii) specific / local vulnerabilities

Tyloo, Pagnier and PJ, in preparation

Resistance distance vs. Laplacian matrix (its pseudoinverse)

~effective resistance between i and k, for equivalent network of resistors

1



Results : (ii) specific / local vulnerabilities

Tyloo, Pagnier and PJ, in preparation

Resistance distance vs. Laplacian matrix (its pseudoinverse)
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Tyloo, Pagnier and PJ, in preparation

Resistance distance vs. Laplacian matrix (its pseudoinverse)

~effective resistance between i and k, for equivalent network of resistors

~resistive centrality

~resistive centrality 
for squared Laplacian
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Results : (ii) specific / local vulnerabilities

Tyloo, Pagnier and PJ, submitted

Resistance distance vs. Laplacian matrix (its pseudoinverse)

~effective resistance between i and k, for equivalent network of resistors

is shortest time scale

is longest time scale

C(1) C(2)



Results : (ii) specific / local vulnerabilities

!!! Resulting ranking depends on performance measure of interest !!!



The key player problem : deterministically coupled systems
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The key player problem : deterministically coupled systems

Resistance distance 
centrality

a.k.a. LRank Numerically computed
performance measure

Tyloo, Pagnier and PJ : to be published (2018)

#nodes : 3809
#edges : 4944 

Take-home message #2 
• Local vulnerabilities ranked with resistive centralities



Low-lying modes of the Laplacian matrix



Connection between e-values and extension of e-vectors

Germany scigridPegase 9241

300 matpower2848 rte
European model



Conclusion

Robustness assessment and local vulnerability ranking / key player problem 
in deterministic, network-coupled dynamical systems

Look at distances, centralities, indices related to the matrix M ! 

Impact : 
planning of electric power grids 
real-time assessment of grid stability 

Note : -method based on gradient and Lyapunov equation also applicable 
            Coletta, Bamieh and PJ arXiv:1807.09048 

-*even for line faults* 
 Coletta and PJ arXiv:1711.10348 



One open question (in progress)

Theory based on                      with        
       = distance from stable sync point  
          to first saddle node 

topological winding number : q=Σi|θi+1-θi|2π /2π     
       different solutions ~ different vortex flows

Noise-induced transition from one sync  
state to another ~configuration space picture
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