

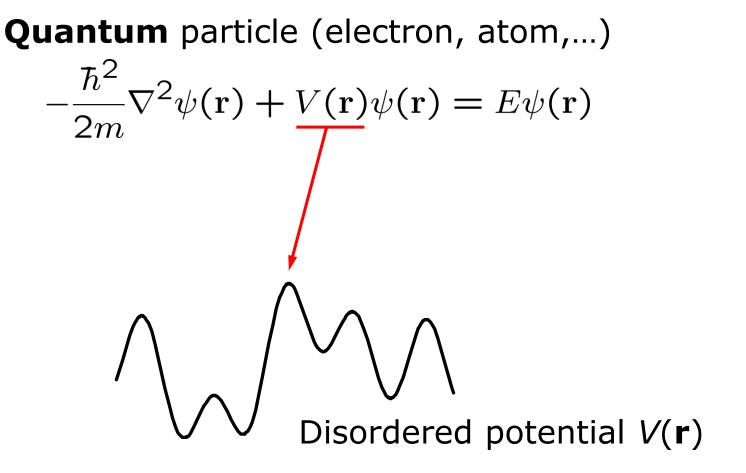
Anderson localization of vector waves

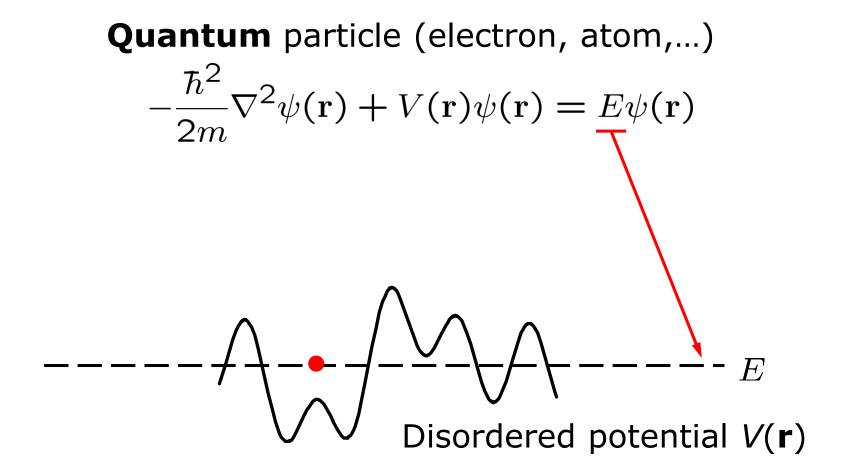
Sergey E. Skipetrov

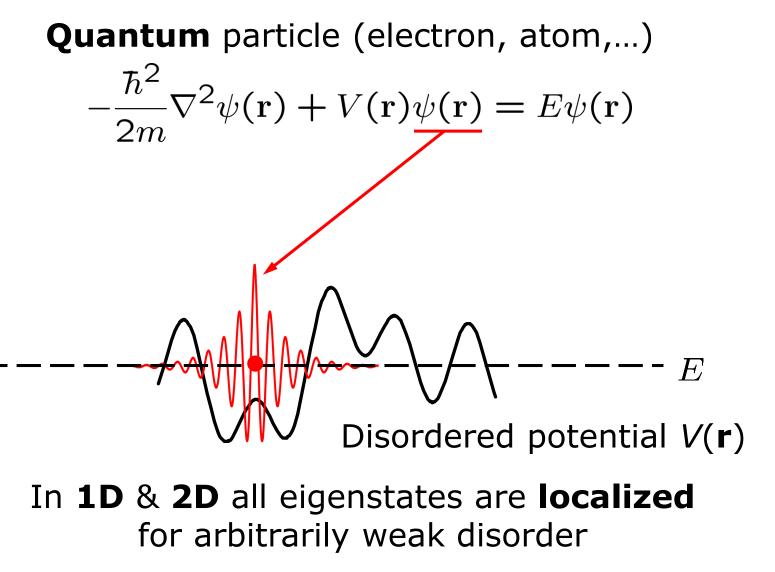
Laboratoire de Physique et Modélisation des Milieux Condensés CNRS and Université Grenoble Alpes, France

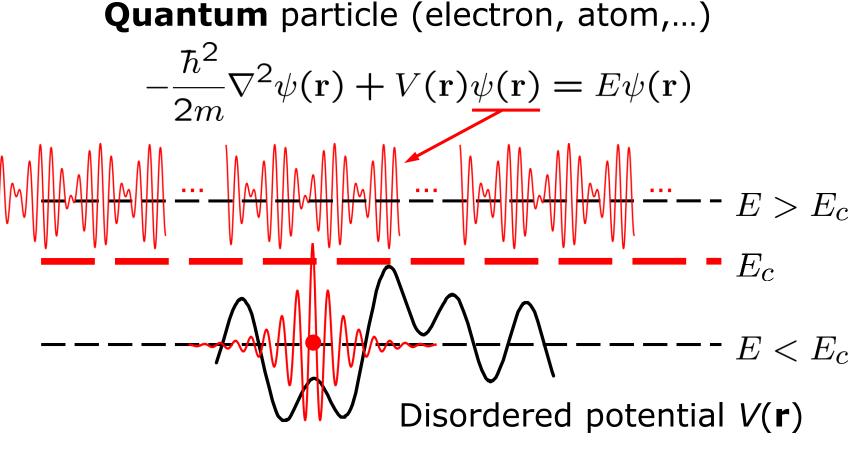
Quantum particle (electron, atom,...)

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\psi(\mathbf{r}) = E\psi(\mathbf{r})$$









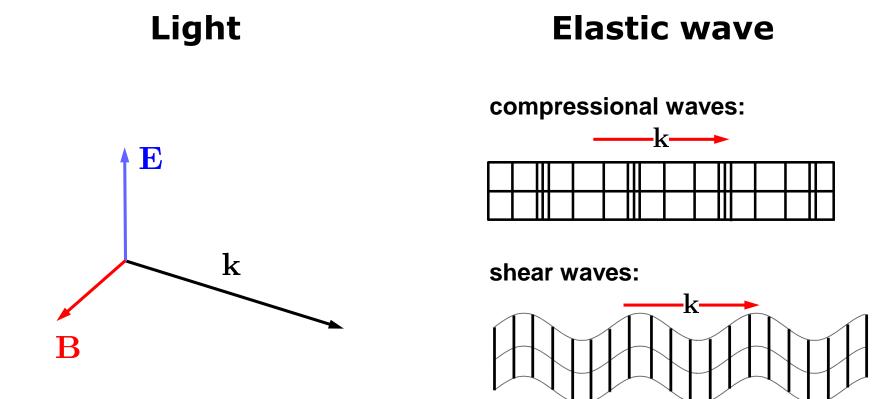
In **3D** a **mobility edge** E_c separates localized and extended states

Localization of classical waves: light, sound, etc.

$$\nabla^{2}\psi_{\omega}(\mathbf{r}) + k^{2} \left[1 + \underline{\delta\mu(\mathbf{r})}\right] \psi_{\omega}(\mathbf{r}) = 0$$
Fluctuating
In 3D mobility edges ω_{c} separate...
"dielectric constant"
...and localized eigenmodes
$$\psi_{\omega}(\mathbf{r})$$
In the second sequence of the second sequence of

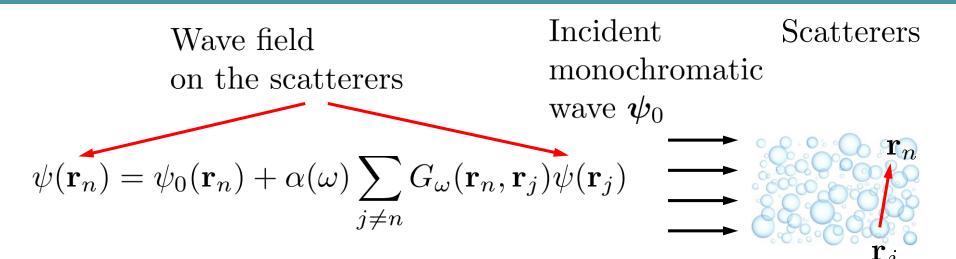
- In 1D and 2D all modes are localized whatever ω

Classical waves are often vector waves



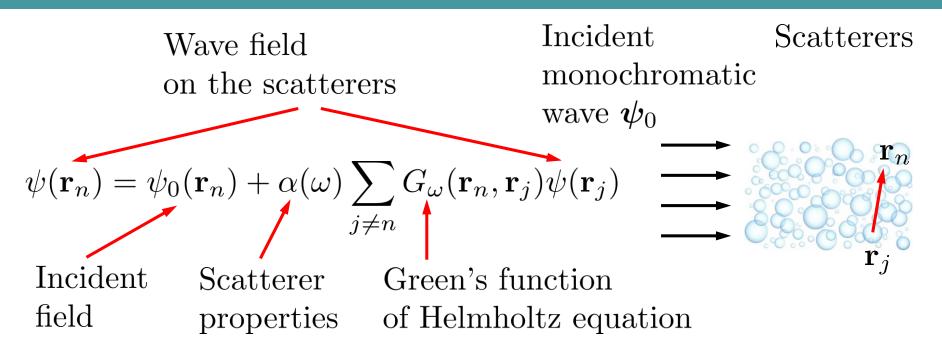
Does the vector character of excitations have any importance?

Foldy-Lax equations for multiple scattering



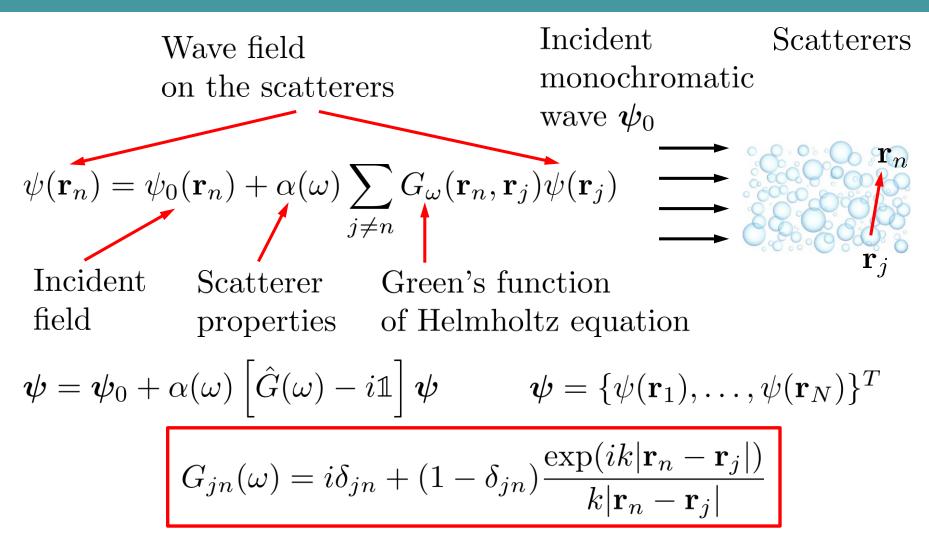
Foldy, Phys. Rev. **67**, 107 (1945) Lax, Rev. Mod. Phys. **23**, 287 (1951)

Foldy-Lax equations for multiple scattering



Foldy, Phys. Rev. **67**, 107 (1945) Lax, Rev. Mod. Phys. **23**, 287 (1951)

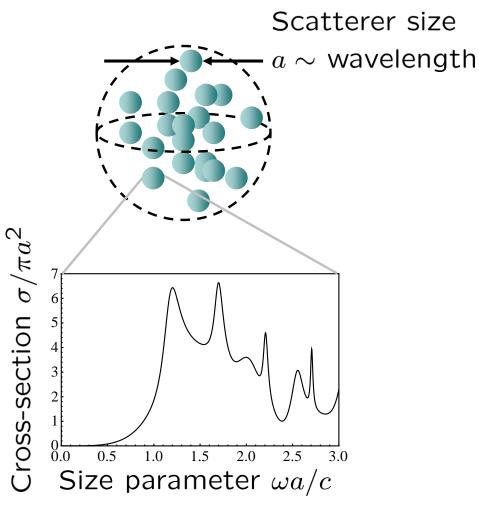
Foldy-Lax equations for multiple scattering



Foldy, Phys. Rev. **67**, 107 (1945) Lax, Rev. Mod. Phys. **23**, 287 (1951)

A minimal model of disordered media

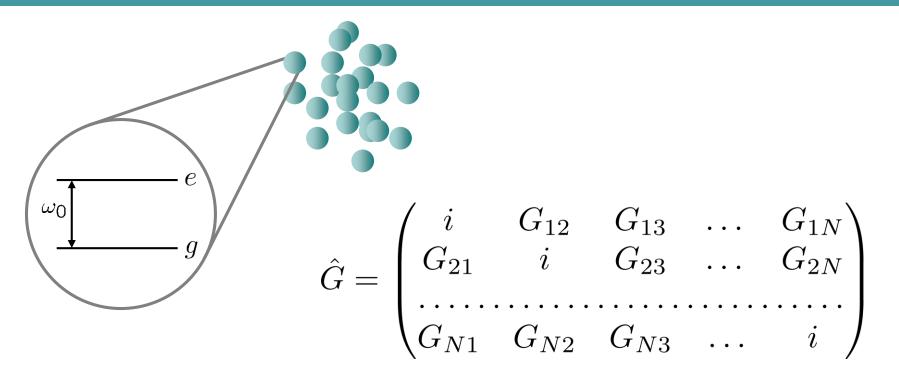
Real samples complex



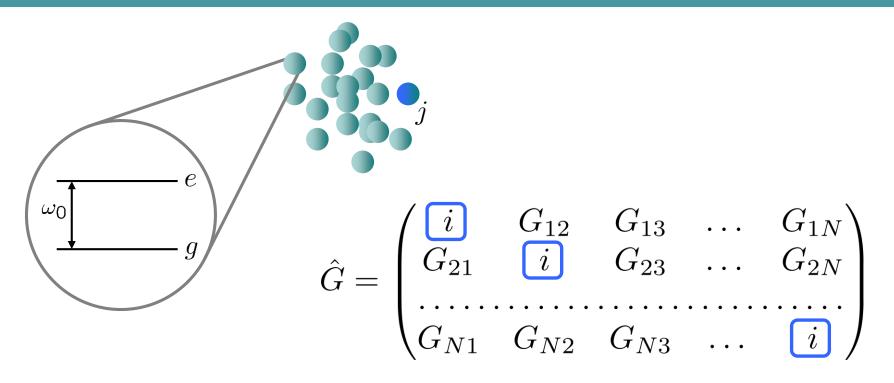
A minimal model of disordered media



Structure of the Green's matrix



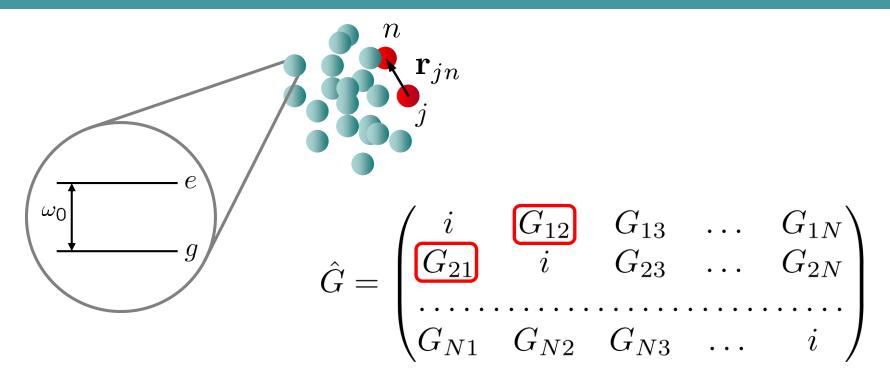
Structure of the Green's matrix



One-atom dynamics:

 $G_{jj} = i$ describes the decay $e^{-\Gamma_0 t}$ of the excitation of an isolated excited atom. Deterministic (not random).

Structure of the Green's matrix



Pairwise coupling between atoms 1 & 2: $G_{12} = e^{ik_0r_{12}}/k_0r_{12}$ is the field at position 2 due to a source at position 1. Random.

Off-diagonal disorder: see, e.g., Eilmes, Römer, Schreiber, Physica B **296**, 46 (2001)

Green's matrix as an effective Hamiltonian

Disordered system

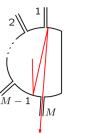
Chaotic billiard

$$\widehat{H}_{\mathsf{eff}} = \widehat{G}$$

Hermitian $\operatorname{Re}\widehat{G}$ and anti-Hermitian $\operatorname{Im}\widehat{G}$ parts of $\widehat{H}_{\operatorname{eff}}$ are correlated

 \hat{G} has correlated elements

see J. Phys. A: Math. Theor. 44, 065102 (2011)



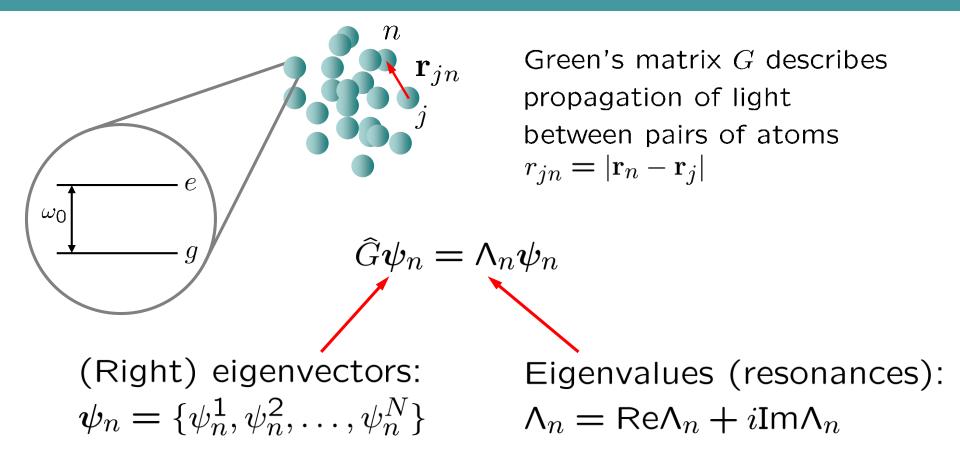
$$\hat{H}_{\rm eff} = \hat{H}_0 - \frac{i}{2} \hat{V} \hat{V}^{\dagger}$$

Hermitian (\hat{H}_0) and anti-Hermitian $(-\frac{i}{2}\hat{V}\hat{V}^{\dagger})$ parts of $\hat{H}_{\rm eff}$ are independent

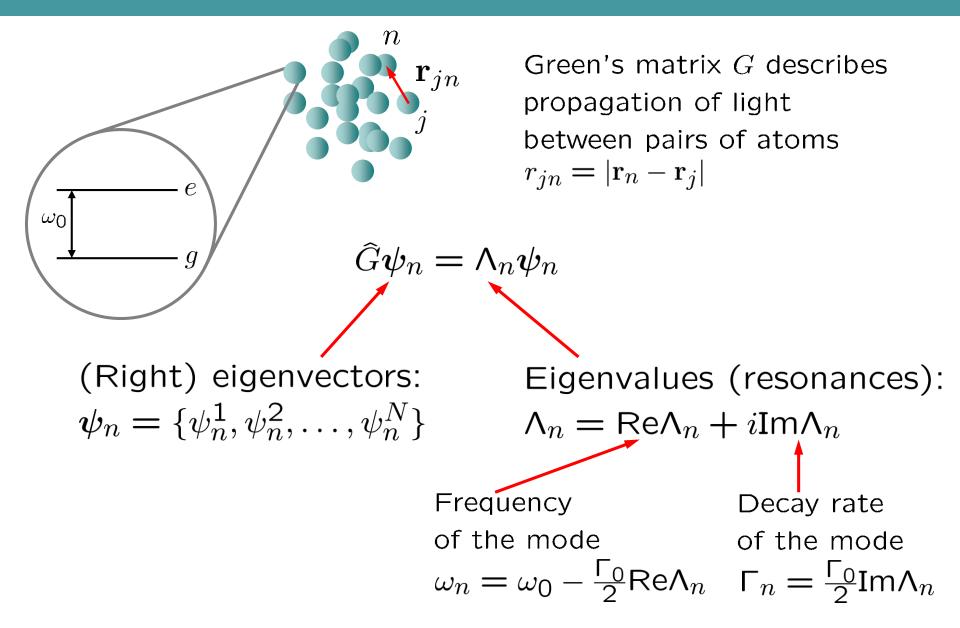
 \hat{H}_0 and \hat{V} have i.i.d. elements \rightarrow "simple" theory

see Haake, Izrailev, Lehmann, Saher, Sommers, Z. Phys. B 88, 359 (1992)

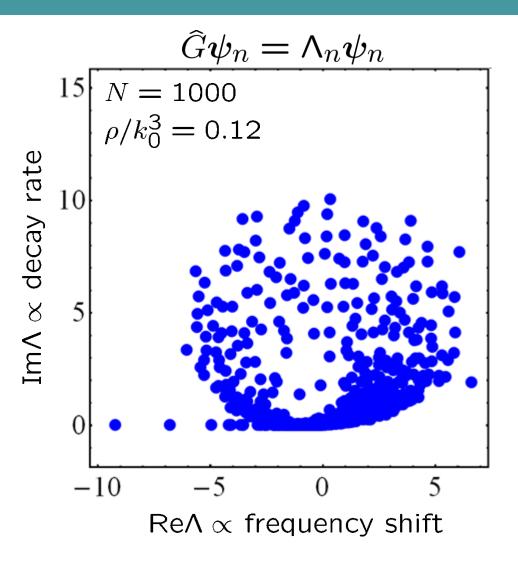
Quasi-modes of the system



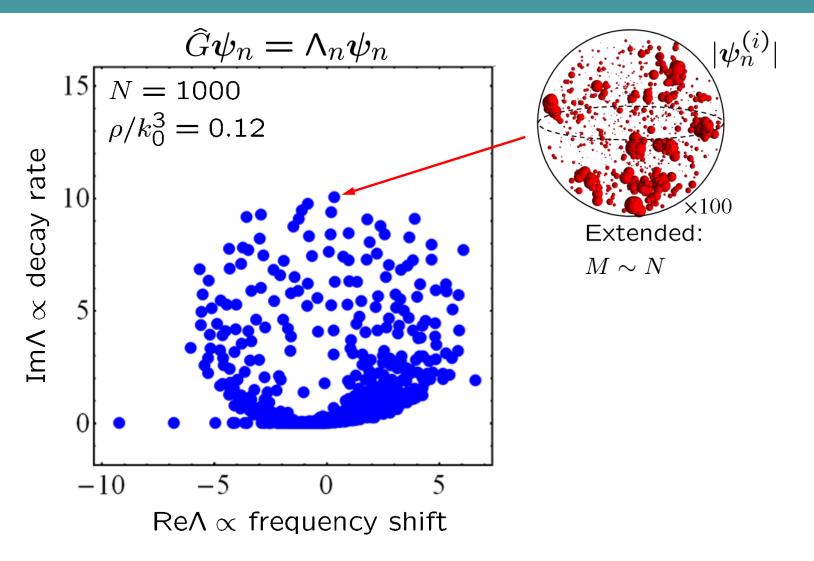
Quasi-modes of the system



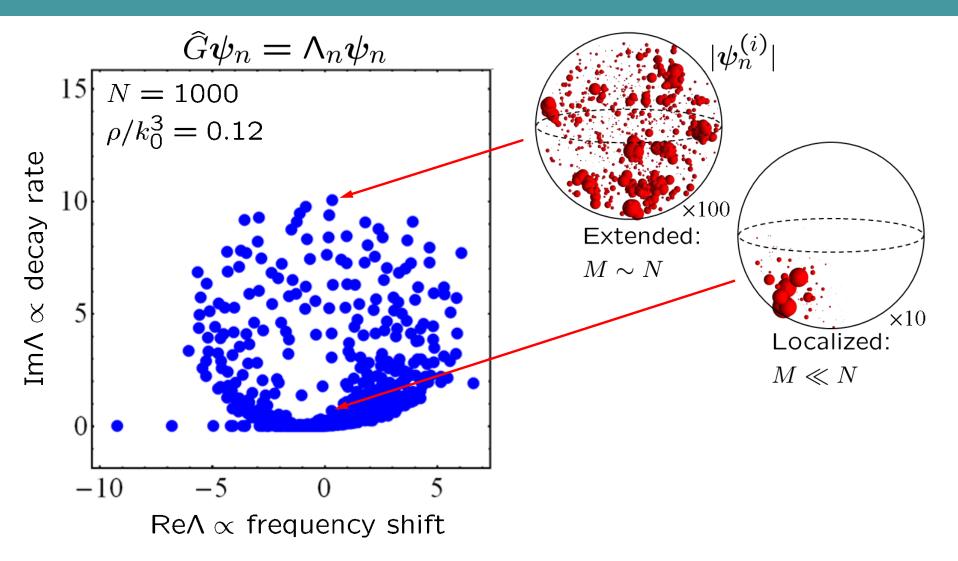
Green's matrix for $N \gg 1$



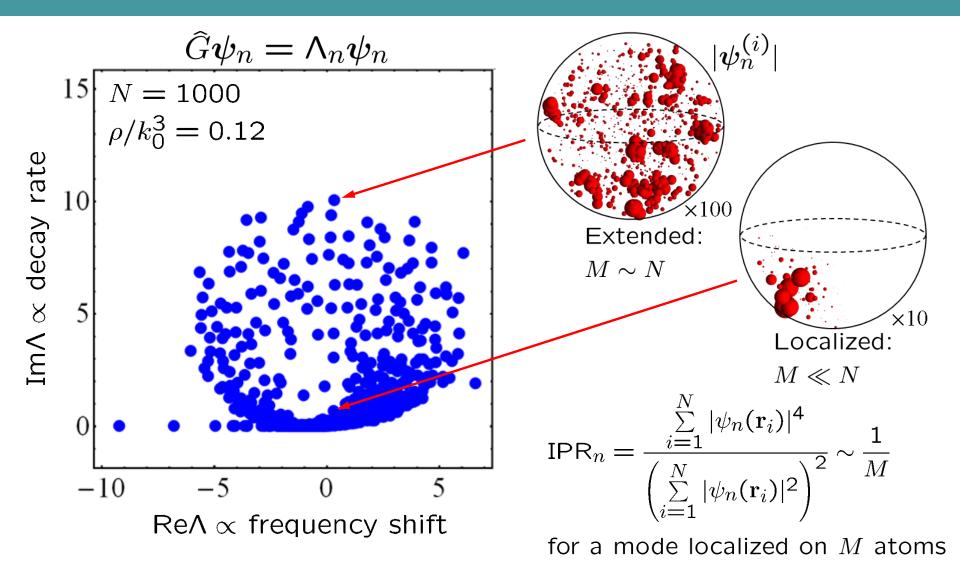
Green's matrix for $N \gg 1$



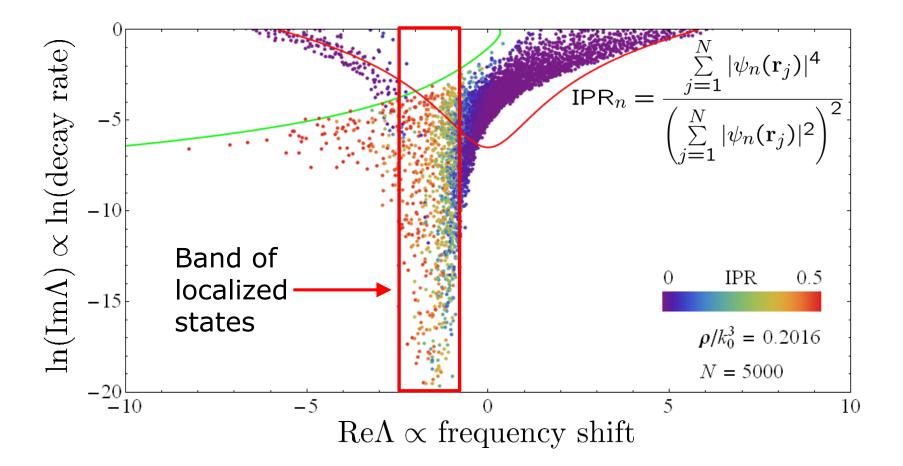
Green's matrix for $N \gg 1$



Green's matrix for $N\gg 1$



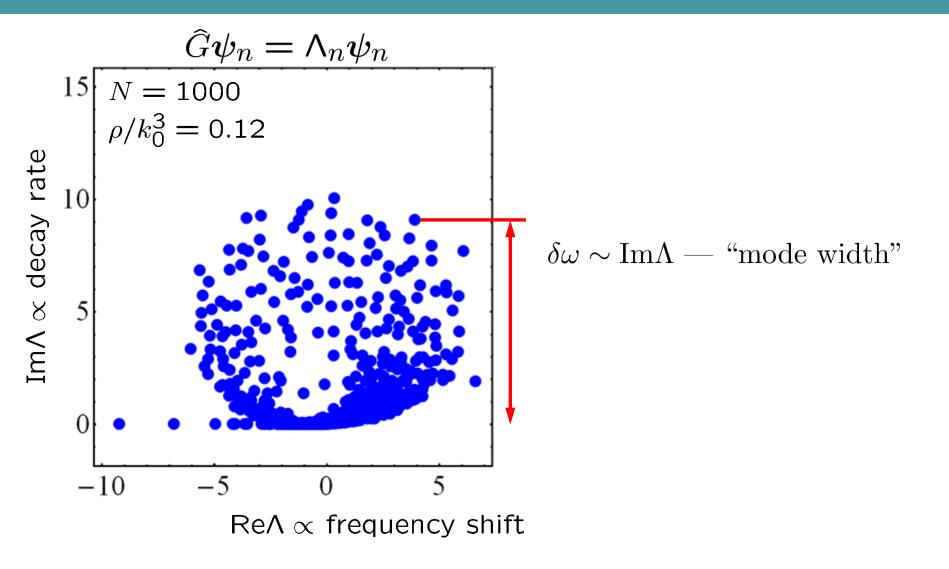
IPR at a sufficiently high density



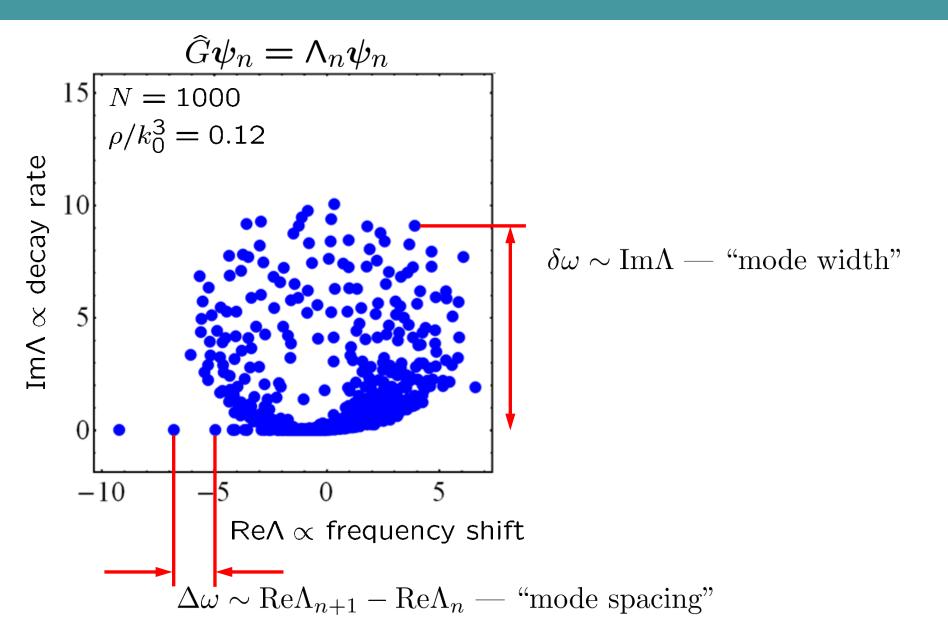
Eigenvalue domain boundary from the diffusion theory
 Subradiant states localized on 2 closely located atoms

PRL 112, 023905 (2014)

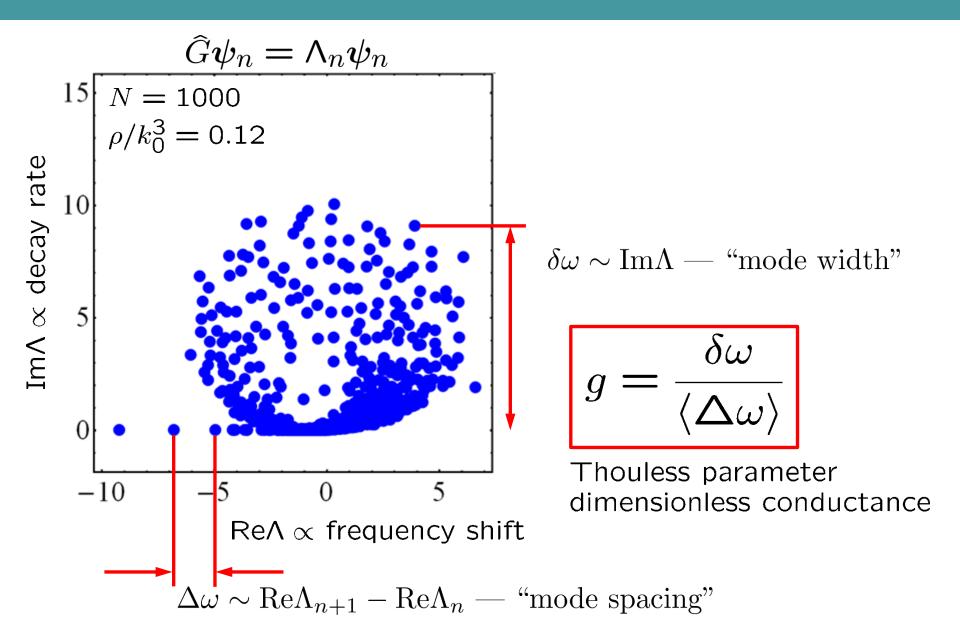
Dimensionless conductance = normalized decay rate



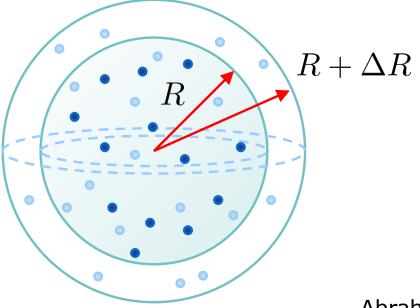
Dimensionless conductance = normalized decay rate



Dimensionless conductance = normalized decay rate

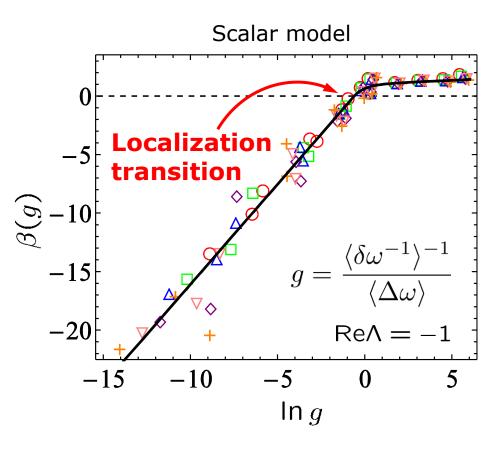


Main idea: Study how *g* evolves with sample size *R* If the modes are extended, *g* grows with *R* If the modes are localized, *g* decreases with *R* At the critical point $g = g_c$ is independent of *R*



Abrahams et al., PRL **42**, 673 (1979)

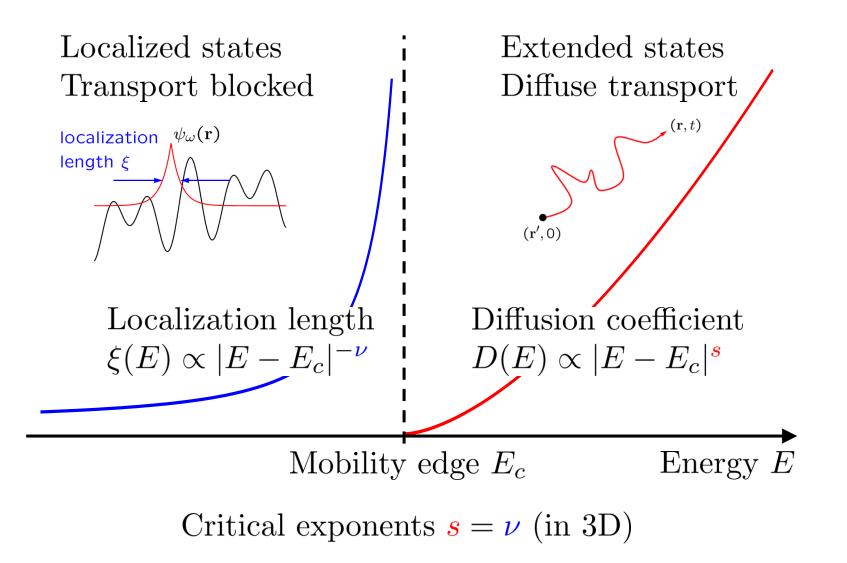
Scaling of dimensionless conductance



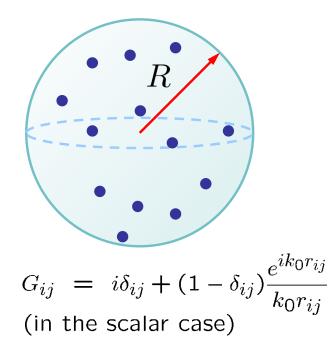
$$\beta(g) = \frac{\partial \ln g}{\partial \ln k_0 R}$$

PRL **112**, 023905 (2014)

Critical behavior around the mobility edge



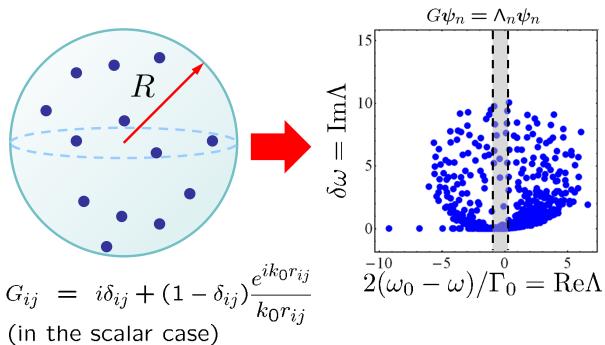
N scatterers at density ρ

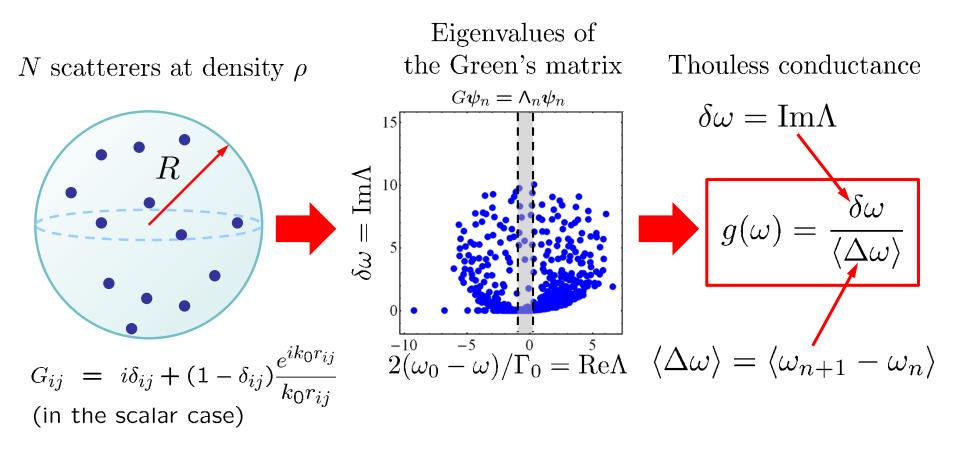


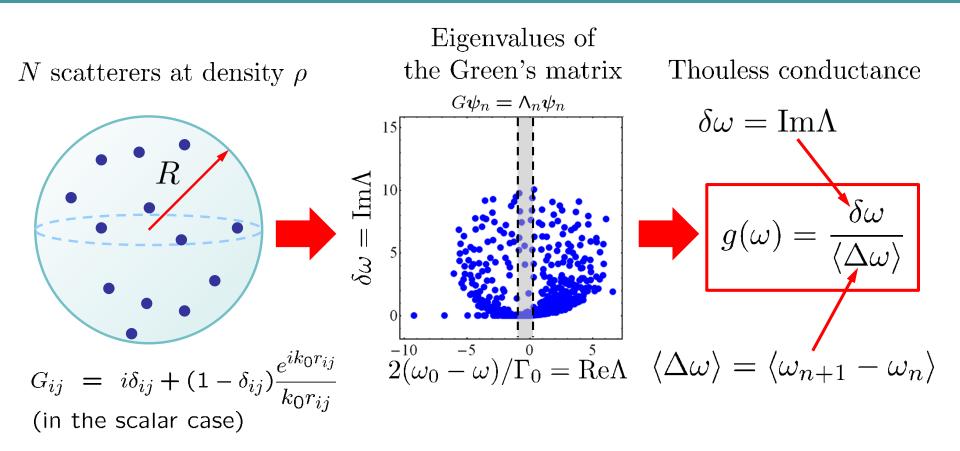
Eigenvalues of

the Green's matrix

N scatterers at density ρ

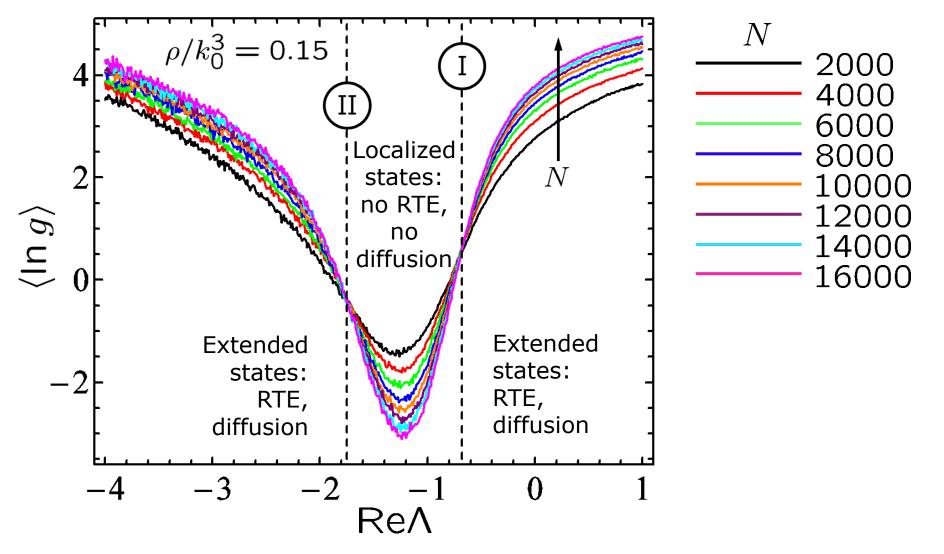




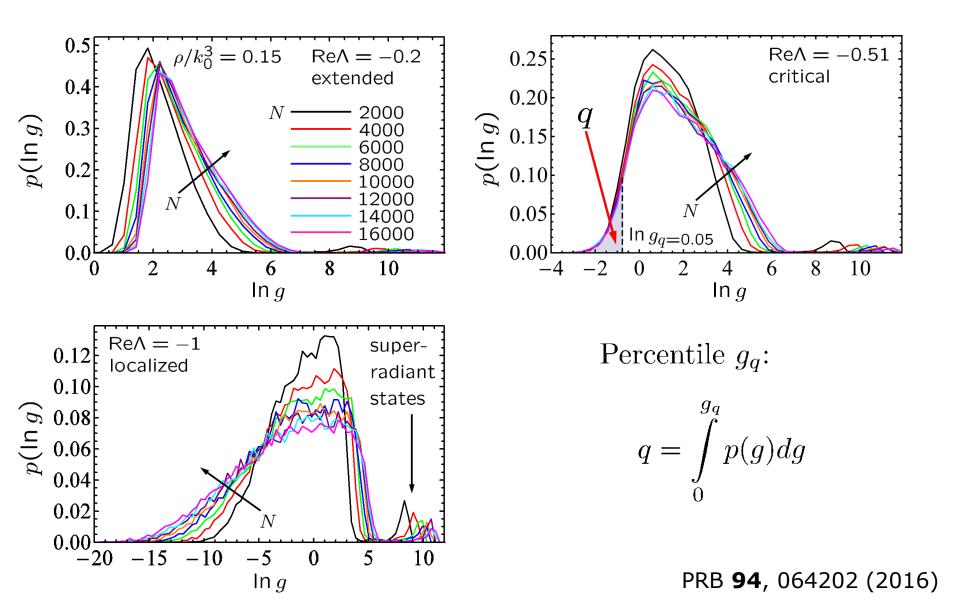


We are going to study statistical properties of $g(\omega)$ at high $\rho > 0.1k_0^3$ at which localized states are expected

Scaling of the average lng



Distribution of conductance

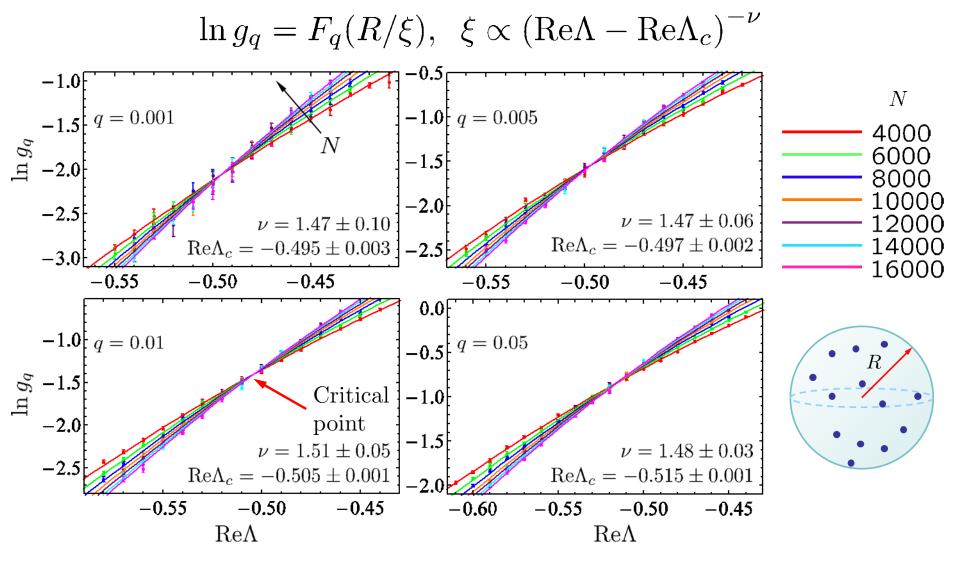


Single-parameter scaling

$$\begin{split} R &- \text{system size} \qquad \ln g_q = F_q(R/\xi) \qquad \xi \propto \frac{1}{(\text{Re}\Lambda - \text{Re}\Lambda_c)^{\nu}} \\ &- \text{localization} \\ & \text{ln } g_q = F_q(R/\xi) = F_q[R(\text{Re}\Lambda - \text{Re}\Lambda_c)^{\nu}] \\ &= F_q[R^{1/\nu}(\text{Re}\Lambda - \text{Re}\Lambda_c)] \longrightarrow F_q(\psi, \phi) \\ \\ & \text{Relevant scaling variable:} \\ & \psi = R^{1/\nu}u(\text{Re}\Lambda - \text{Re}\Lambda_c), \quad u(x) = u_1x + u_2x^2 + \dots \\ & \text{Irrelevant scaling variable:} \end{split}$$

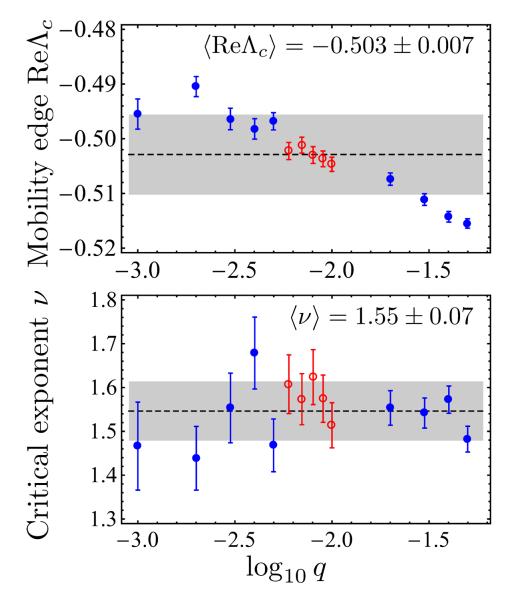
 $\phi = R^{-y}v(\operatorname{Re}\Lambda - \operatorname{Re}\Lambda_c), \quad v(x) = v_0 + v_1x + v_2x^2 + \dots$

Slevin, Markos, Ohtsuki, PRB 67, 155106 (2003)



PRB **94**, 064202 (2016)

Best-fit parameters

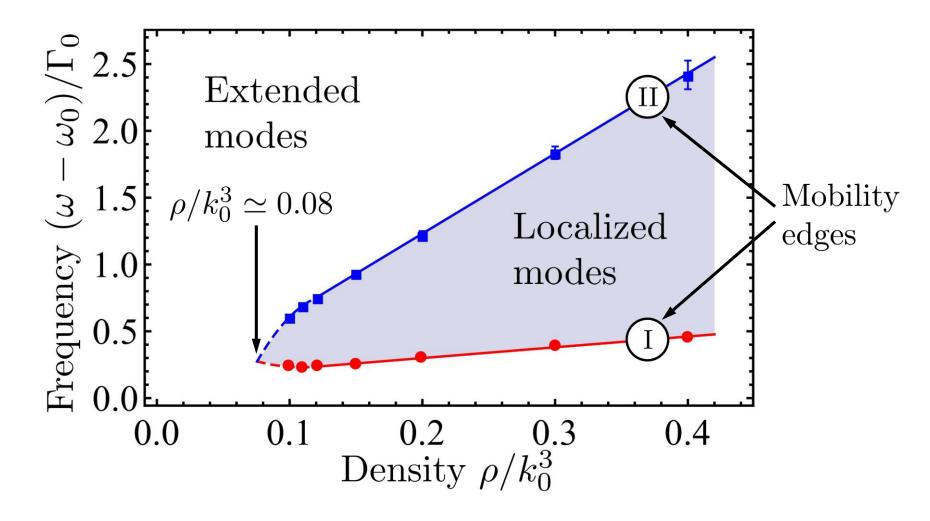


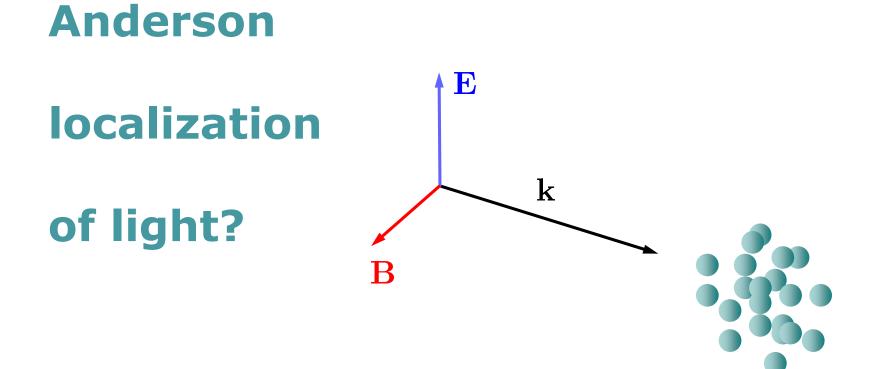
The value of critical exponent following from the fits is close to $\nu \simeq 1.57$ expected for the 3D orthogonal symmetry class.

We conclude that the observed transition is likely to belong to the same symmetry class as the Anderson transition in a system of spinless electrons.

PRB **94**, 064202 (2016)

Phase diagram for scalar waves



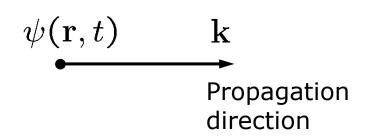


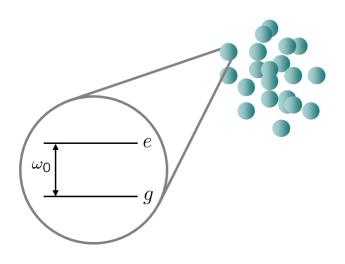
Pioneering theoretical works: John, PRL **53**, 2169 (1984) Anderson, Philos. Mag. B **52**, 505 (1985)

Experiments inconclusive: Wiersma et al., Nature **390**, 671 (1997) Sperling et al., Nat. Photonics **7**, 48 (2013) Sperling et al., New J. Phys. **18**, 013039 (2016)

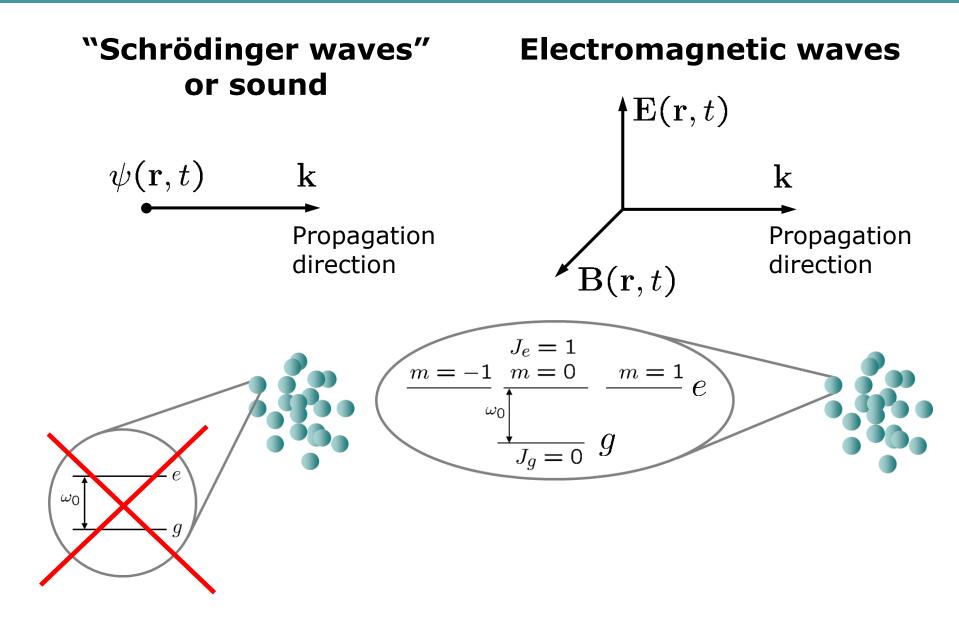
Light is a vector wave

"Schrödinger waves" or sound

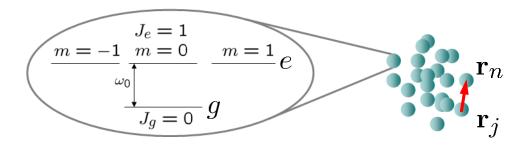




Light is a vector wave



Green's matrix for light



 $\mu, \nu = x, y, z$

Green's matrix G describes propagation of light between pairs of atoms $\mathbf{r}_{jn} = \mathbf{r}_n - \mathbf{r}_j$

$$G_{jn}^{\mu\nu} = i\delta_{jn}\delta_{\mu\nu} + (1 - \delta_{jn})\frac{3}{2}\frac{e^{ik_0r_{jn}}}{k_0r_{jn}} \left[P(ik_0r_{jn})\delta_{\mu\nu} + Q(ik_0r_{jn})\frac{r_{jn}^{\mu}r_{jn}^{\nu}}{r_{jn}^2}\right]$$

natural basis

 \mathcal{Z}

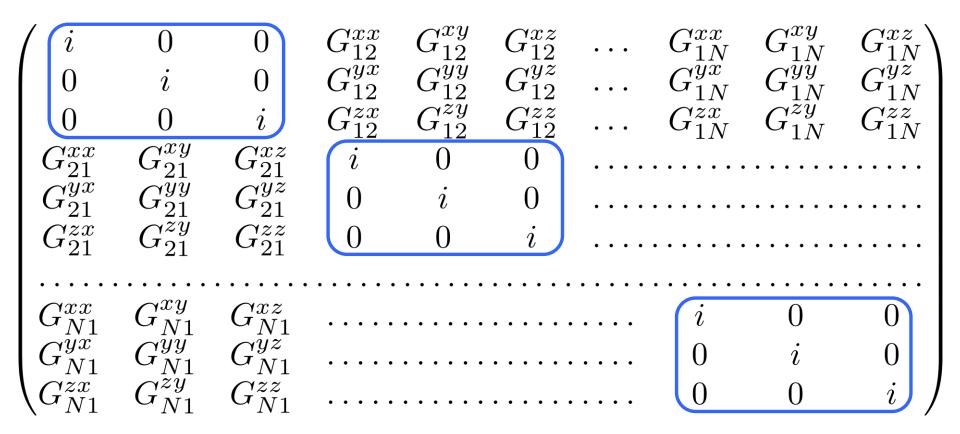
y

$$P(x) = 1 - 1/x + 1/x^2, \ Q(x) = -1 + 3/x - 3/x^2$$

Structure of the Green's matrix

(i	0	0	G_{12}^{xx}	G_{12}^{xy}	G_{12}^{xz}	• • •	G_{1N}^{xx}	G_{1N}^{xy}	G_{1N}^{xz}
0	i	0	$G_{12}^{ar{y}ar{x}}$	$G_{12}^{ar{y}ar{y}}$	$G_{12}^{\overline{y}\overline{z}}$	•••	$G_{1N}^{\bar{y}x}$	$G_{1N}^{ar{y}ar{y}}$	
0	0	i	G_{12}^{zx}	G_{12}^{zy}	G_{12}^{zz}	•••	G_{1N}^{zx}	G_{1N}^{zy}	G_{1N}^{zz}
G_{21}^{xx}	G_{21}^{xy}		i		0	••••			
G_{21}^{yx}	G_{21}^{yy}		0	i	0	••••		• • • • • •	
G_{21}^{zx}	G_{21}^{zy}	G_{21}^{zz}	0	0	i	••••		• • • • • •	
	•••••					• • • • •		• • • • • •	
G_{N1}^{xx}	G_{N1}^{xy}	G_{N1}^{xz}	• • • • •	• • • • • •		• • • •	i	0	0
G_{N1}^{yx}	G_{N1}^{yy}	G_{N1}^{yz}	• • • • •			• • • •	0	i	0
C_{N1}^{zx}	G_{N1}^{zy}	G_{N1}^{zz}	••••	•••••	••••	••••	0	0	i /

Structure of the Green's matrix



One-atom dynamics:

Excitation of an isolated excited atom decays as $e^{-\Gamma_0 t}$

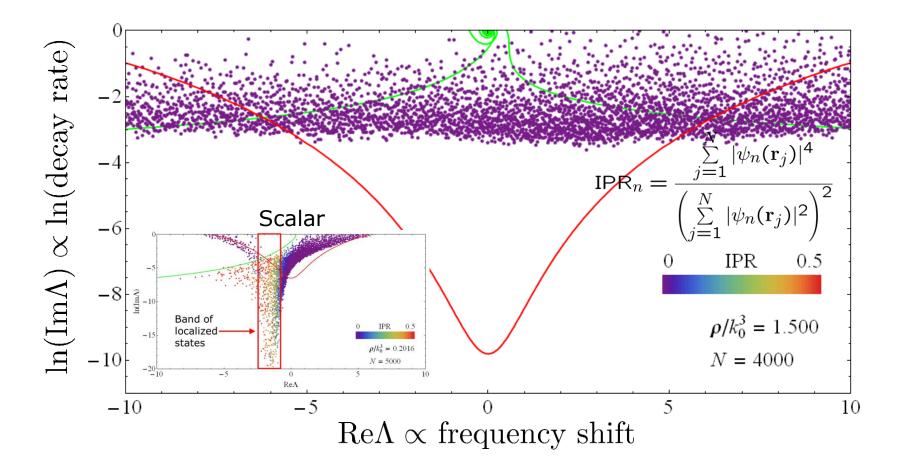
Structure of the Green's matrix

$i \\ 0 \\ 0 \\ G_{21}^{xx} \\ G_{21}^{yx} \\ G_{21}^{zx} \\ G_{21}^{zx}$	$egin{array}{c} 0 \\ i \\ 0 \\ G_{21}^{xy} \\ G_{21}^{yy} \\ G_{21}^{zy} \\ G_{21}^{zy} \end{array}$	$egin{array}{c} 0 \ 0 \ i \ G_{21}^{xz} \ G_{21}^{yz} \ G_{21}^{zz} \ G_{21}^{zz} \end{array}$	$\begin{matrix} G_{12}^{xx} \\ G_{12}^{yx} \\ G_{12}^{zx} \\ G_{12}^{zx} \\ i \\ 0 \\ 0 \\ 0 \end{matrix}$	$\begin{array}{c} G_{12}^{xy} \\ G_{12}^{yy} \\ G_{12}^{zy} \\ G_{12}^{zy} \\ 0 \\ i \\ 0 \end{array}$	$\begin{array}{c} G_{12}^{xz} \\ G_{12}^{yz} \\ G_{12}^{zz} \\ G_{12}^{zz} \\ 0 \\ 0 \\ i \end{array}$	· · · · · · · · · · · · ·	G_{1N}^{xx} G_{1N}^{yx} G_{1N}^{zx} \cdots	G_{1N}^{xy} G_{1N}^{yy} G_{1N}^{zy} \cdots \cdots	$ \begin{array}{c} G_{1N}^{xz} \\ G_{1N}^{yz} \\ G_{1N}^{zz} \\ \cdots \\ \cdots$
$\begin{bmatrix} G_{N1}^{xx} \\ G_{N1}^{yx} \\ G_{N1}^{zx} \\ G_{N1}^{zx} \end{bmatrix}$	$\begin{array}{c} G_{N1}^{xy} \\ G_{N1}^{yy} \\ G_{N1}^{zy} \\ G_{N1}^{zy} \end{array}$	G_{N1}^{xz} G_{N1}^{yz} G_{N1}^{zz} G_{N1}^{zz}	· · · · · · · ·	· · · · · · · ·	· · · · · · ·	• • • • • •	i 0 0	$\begin{array}{c} 0\\ i\\ 0\end{array}$	$\begin{pmatrix} 0 \\ 0 \\ i \end{pmatrix}$

Pairwise coupling between atoms 1 & 2:

 G_{12}^{xy} is the y component of the field at position 2 due to a dipole oscillating along x at position 1

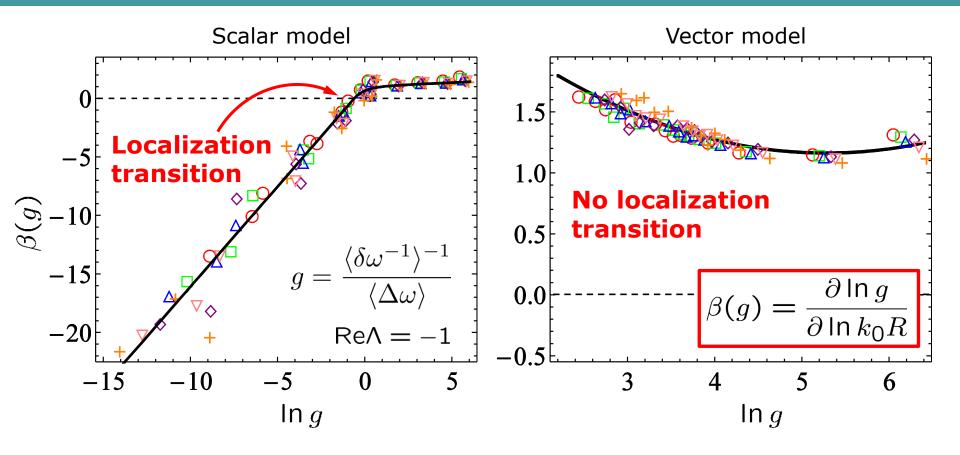
Inverse participation ratio for light



Eigenvalue domain boundary from the diffusion theory
 Subradiant states localized on 2 closely located atoms

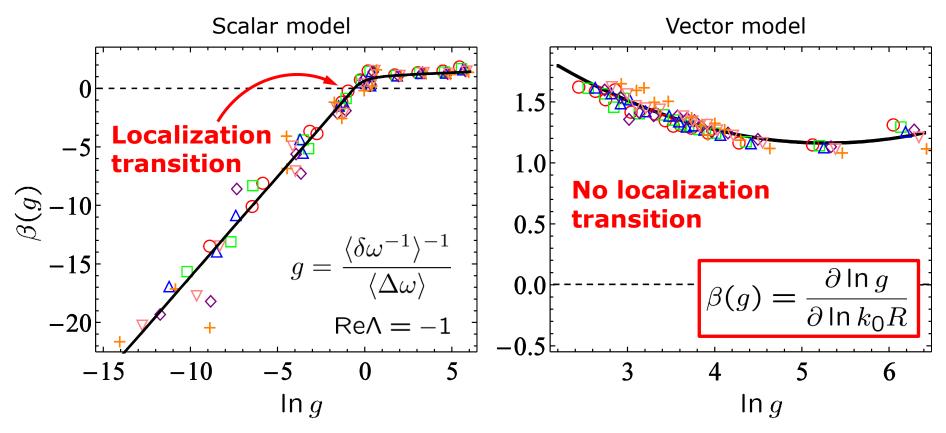
PRL **112**, 023905 (2014)

No Anderson localization for light in 3D



PRL 112, 023905 (2014)

No Anderson localization for light in 3D



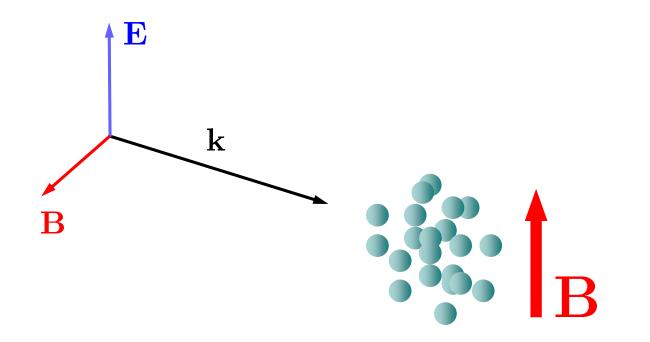
Explanation stems from near-field effects (dipole-dipole coupling):

$$G_{\text{scalar}}(\mathbf{r})|_{r \to 0} \propto \frac{1}{r}$$
 $\widehat{G}_{\text{EM}}(\mathbf{r})|_{r \to 0} \propto \frac{1}{r^3}$

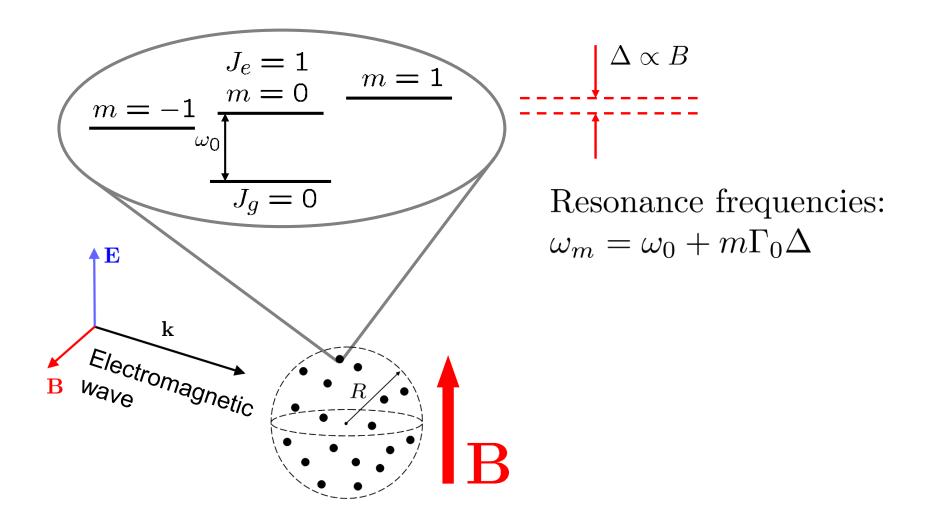
PRL **112**, 023905 (2014)

localization

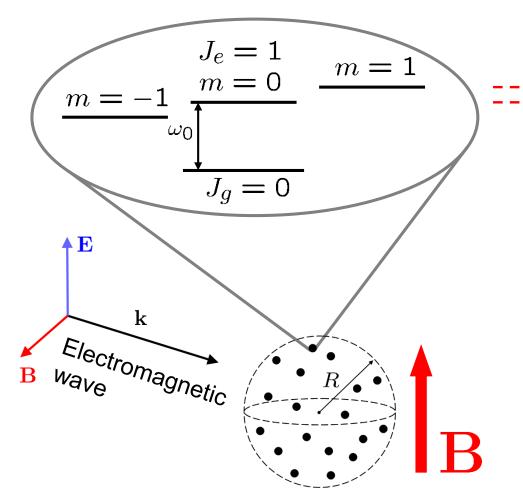
of light in a magnetic field



Atoms in a magnetic field



Atoms in a magnetic field



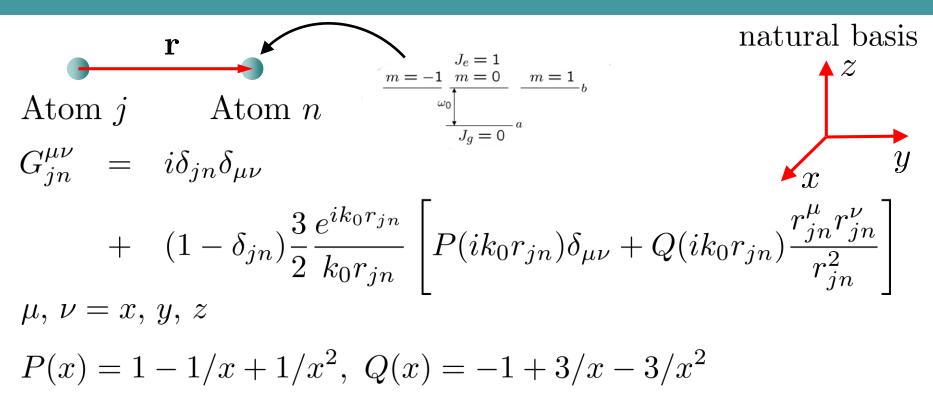
Resonance frequencies: $\omega_m = \omega_0 + m\Gamma_0 \Delta$

 $\Delta \propto B$

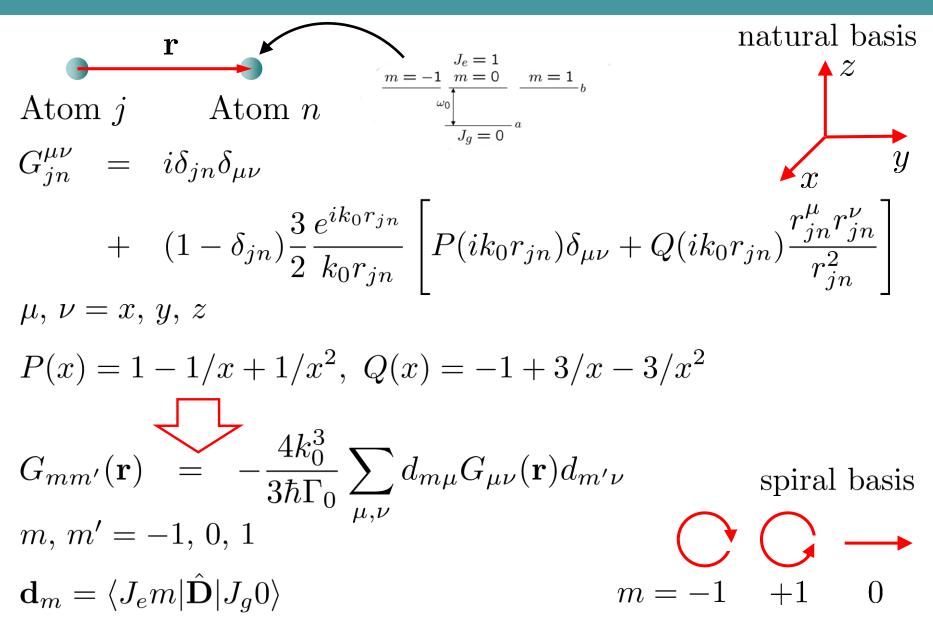
Magnetic field suppresses near-field coupling between atoms by longitudinal fields

Afrousheh et al., PRA 73, 063403 (2006)

From natural to spiral basis



From natural to spiral basis



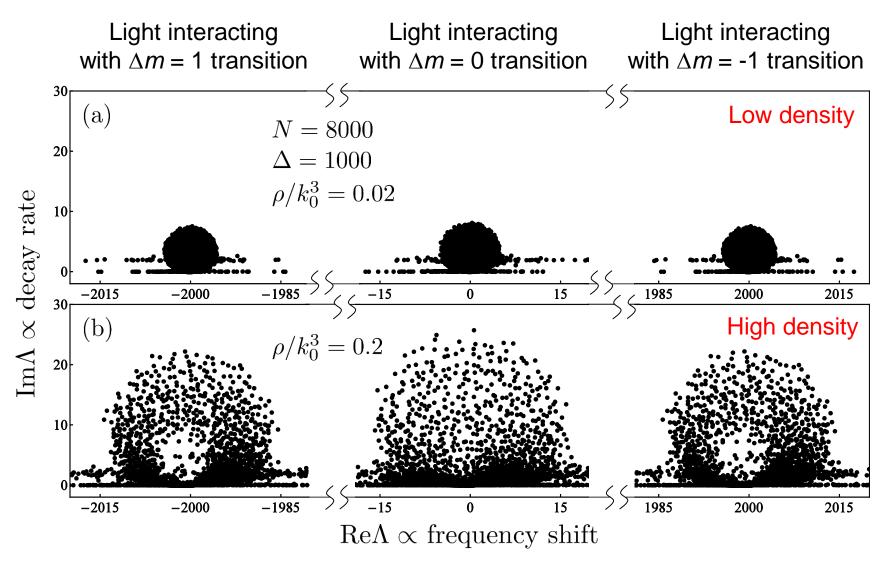
Green's matrix in a magnetic field

 $\Delta = g_e \mu_B B / \hbar \Gamma_0$

 $\mathbf{d}_{e_{jm}g_j} = \langle J_e m | \hat{\mathbf{D}}_j | J_g 0 \rangle$

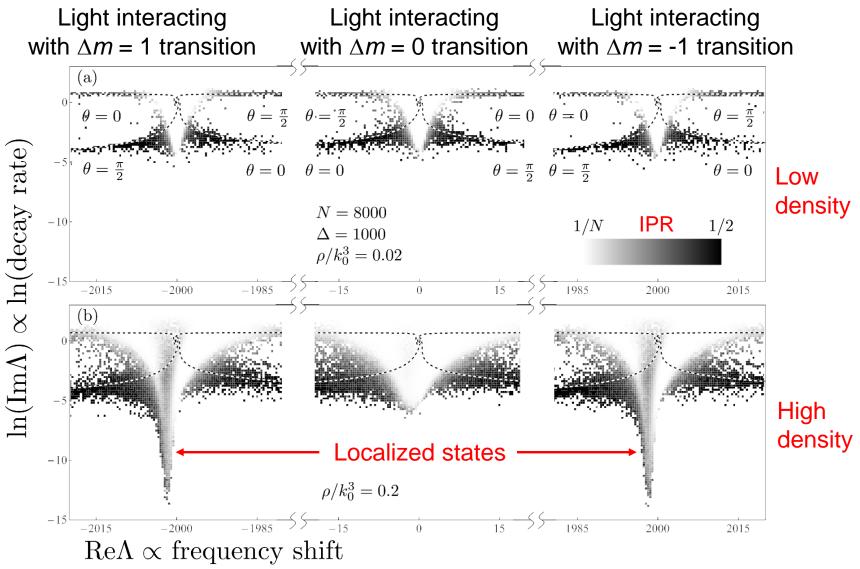
see also Pinheiro et al., Acta. Phys. Pol. A 105, 339 (2004)

Eigenvalues in a strong magnetic field

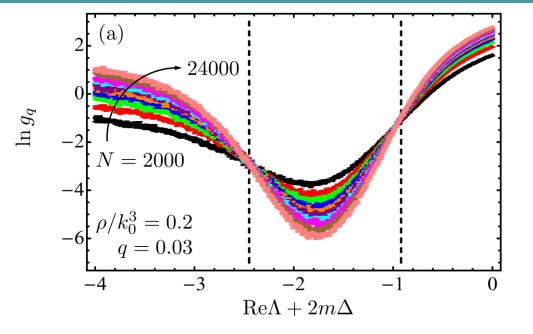


PRL **114**, 053902 (2015)

Average inverse participation ratio

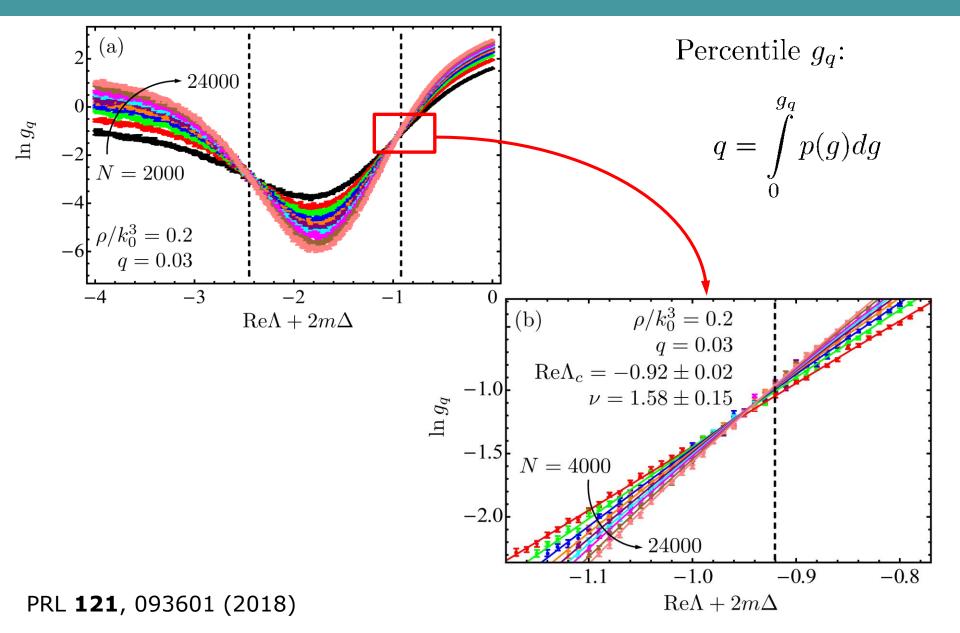


PRL **114**, 053902 (2015)

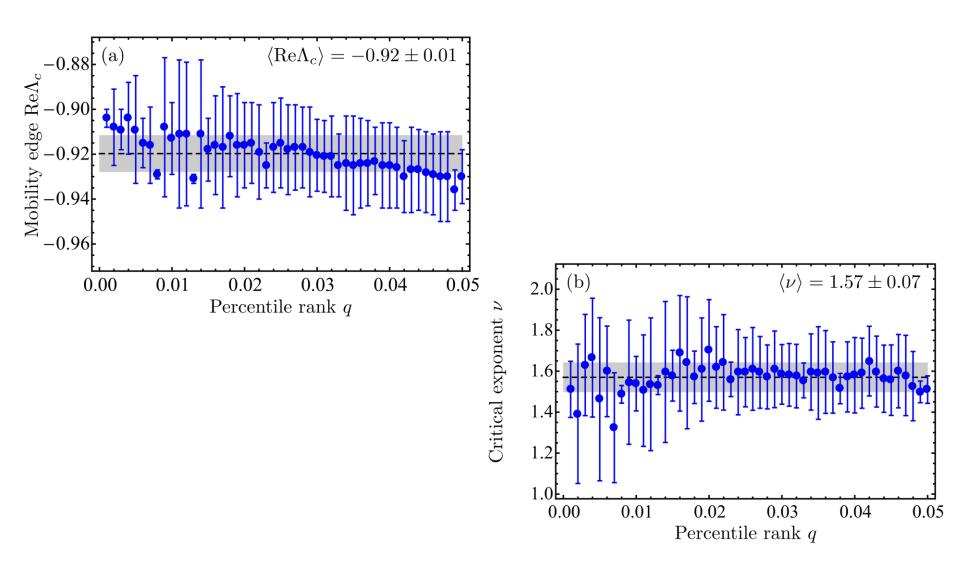


Percentile g_q :

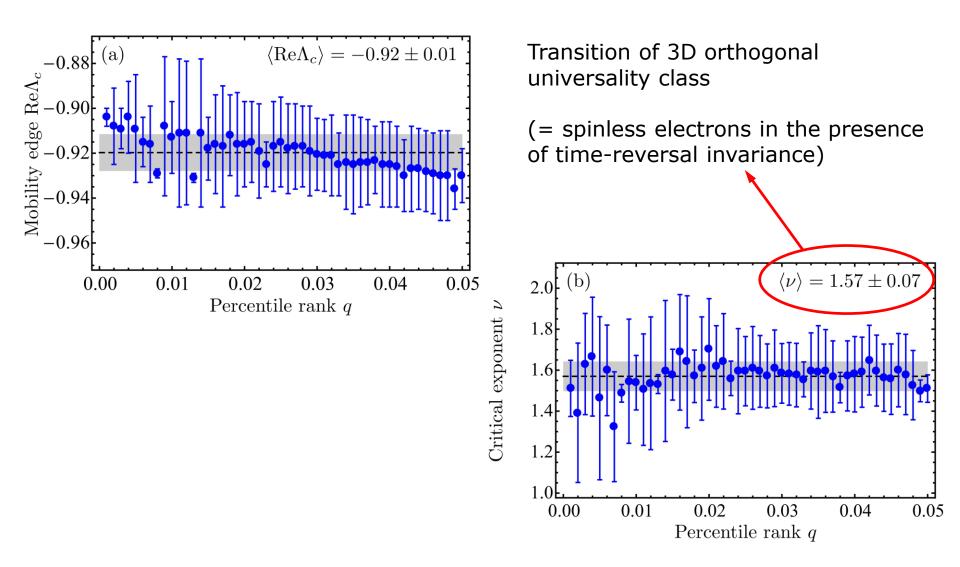
$$q = \int_{0}^{g_q} p(g) dg$$



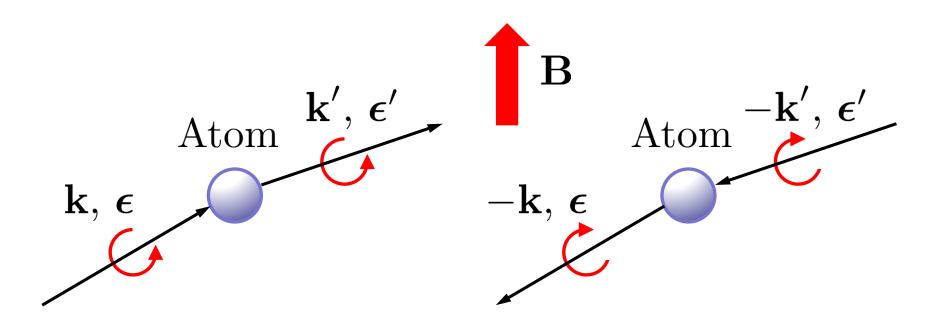
Critical parameters



Critical parameters



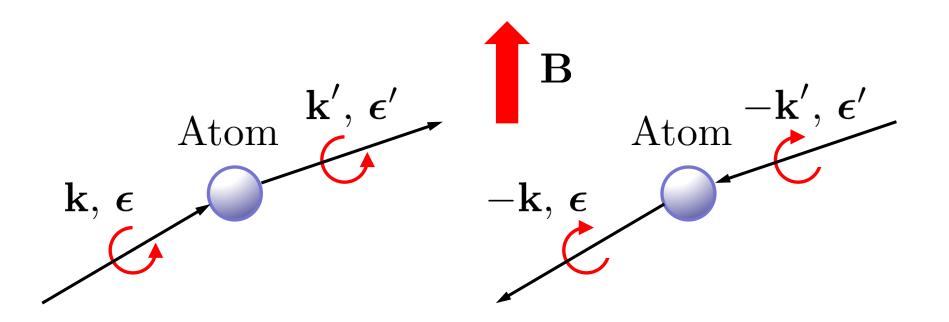
Breakdown of time-reversal invariance



$t_{\omega,\mathbf{B}}(\mathbf{k},\boldsymbol{\epsilon}\to\mathbf{k}',\boldsymbol{\epsilon}')\neq t_{\omega,\mathbf{B}}(-\mathbf{k}',\boldsymbol{\epsilon}'\to-\mathbf{k},\boldsymbol{\epsilon})$

Van Tiggelen & Maynard (1998)

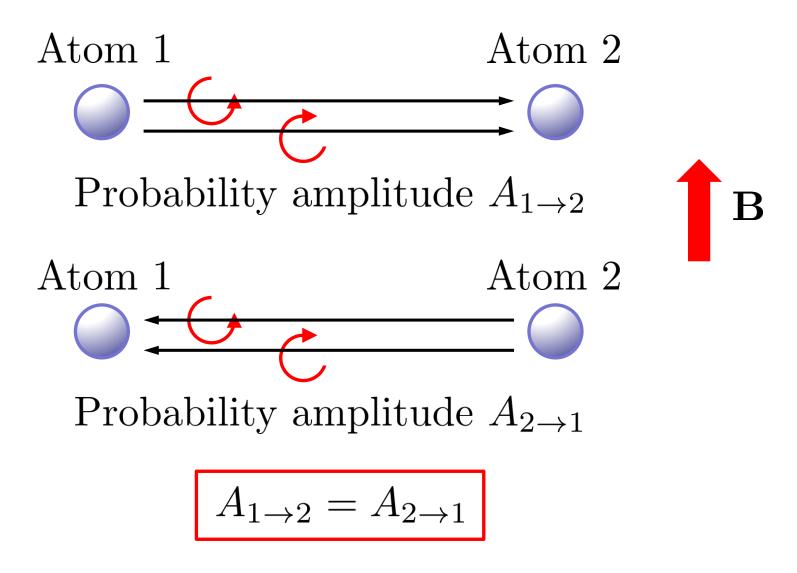
Breakdown of time-reversal invariance



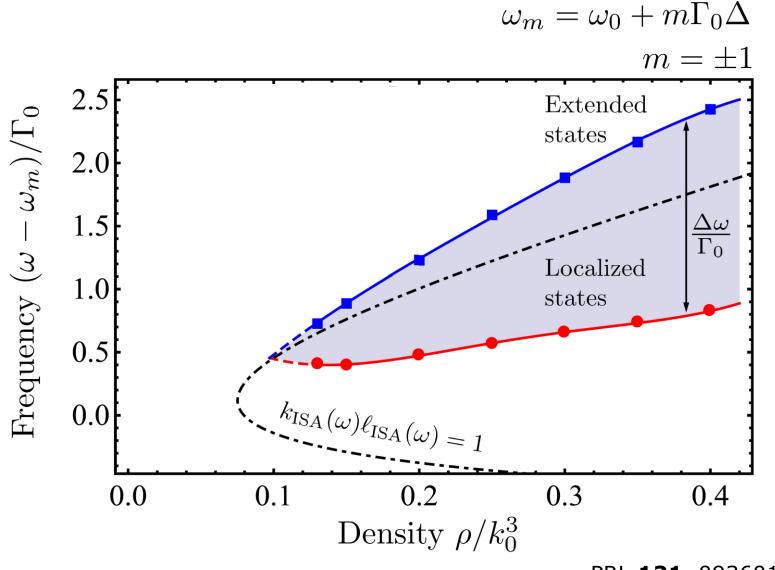
$$t_{\omega,\mathbf{B}}(\mathbf{k},\boldsymbol{\epsilon}\to\mathbf{k}',\boldsymbol{\epsilon}')\neq t_{\omega,\mathbf{B}}(-\mathbf{k}',\boldsymbol{\epsilon}'\to-\mathbf{k},\boldsymbol{\epsilon})$$
$$t_{\omega,\mathbf{B}}(\mathbf{k},\boldsymbol{\epsilon}\to\mathbf{k}',\boldsymbol{\epsilon}')=t_{\omega,-\mathbf{B}}(-\mathbf{k}',\boldsymbol{\epsilon}'\to-\mathbf{k},\boldsymbol{\epsilon})$$

Van Tiggelen & Maynard (1998)

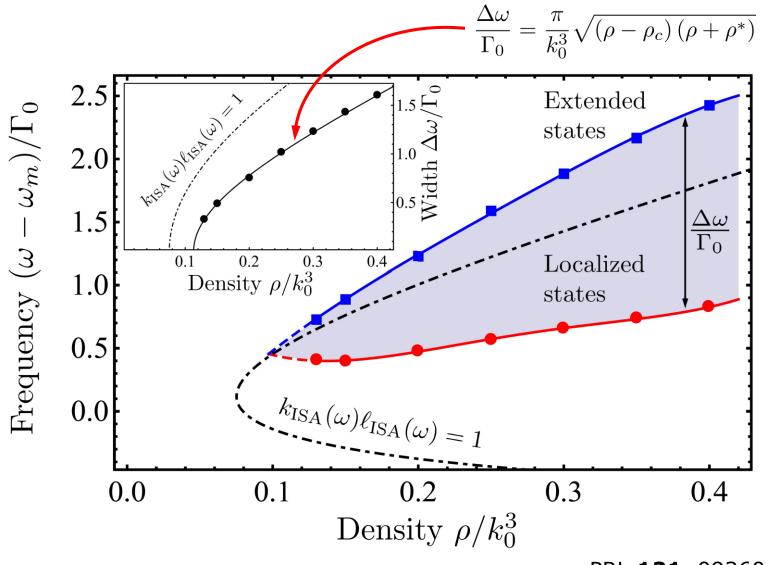
Breakdown of time-reversal invariance



Phase diagram for light in magnetic field



Phase diagram for light in magnetic field



Anderson localization of elastic waves

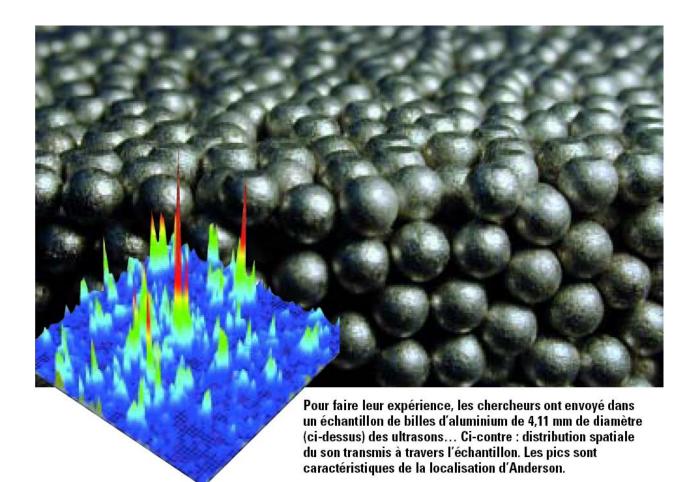
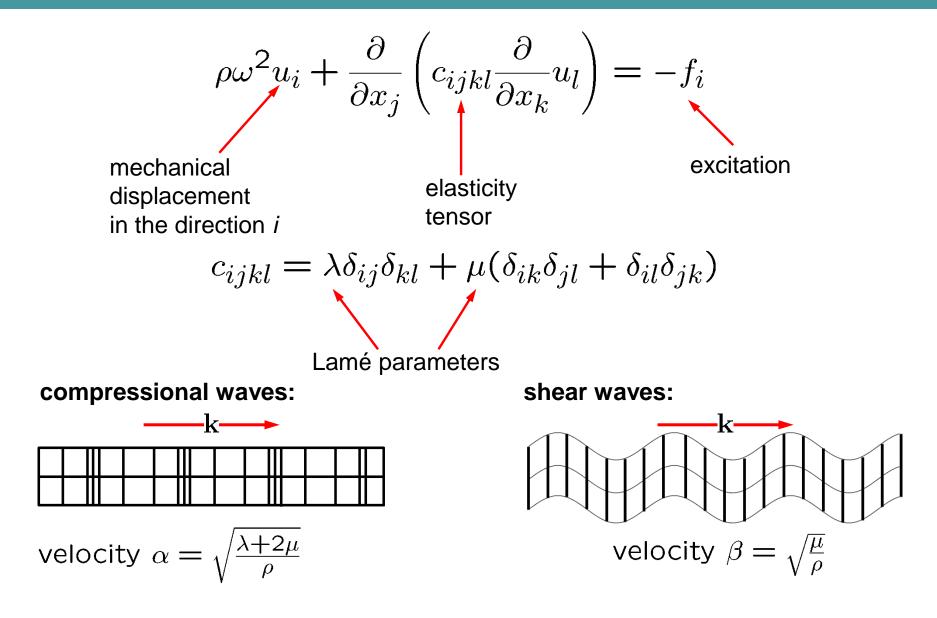


Image from Le Journal du CNRS (December 2008)

Elastic wave equation



Point-scatterer model

Real sample



Hu et al., Nature Physics **4**, 945 (2008)

Identical aluminum beads with many resonances

Identical point scatterers with a single resonance

Model

Elastic Green's function

$$\widehat{G}(\mathbf{r}) = \frac{k_{\alpha}}{4\pi(\lambda+2\mu)} \times \left\{ \frac{e^{ik_{\alpha}r}}{3k_{\alpha}r} \left[\mathbb{1} + (\mathbb{1} - 3\widehat{r} \otimes \widehat{r}) \right] \left(-1 - \frac{3i}{k_{\alpha}r} + \frac{3}{(k_{\alpha}r)^2} \right) - \left(\frac{\alpha}{\beta} \right)^3 \frac{e^{ik_{\beta}r}}{3k_{\beta}r} \left[-2\mathbb{1} + (\mathbb{1} - 3\widehat{r} \otimes \widehat{r}) \right] \left(-1 - \frac{3i}{k_{\beta}r} + \frac{3}{(k_{\beta}r)^2} \right) \right\}$$

$$k_{\alpha} = \frac{\omega}{\alpha}, \ k_{\beta} = \frac{\omega}{\beta}, \ \hat{r} = \frac{\mathbf{r}}{r}$$

Typically, $\alpha > \beta$ ($\alpha/\beta \simeq 2$ for aluminium)

Equipartition principle:

$$\frac{\langle \text{Energy of shear waves} \rangle}{\langle \text{Enerfy of compressional waves} \rangle} = 2 \left(\frac{\alpha}{\beta}\right)^3 > 1$$

Elastic Green's function in the near field

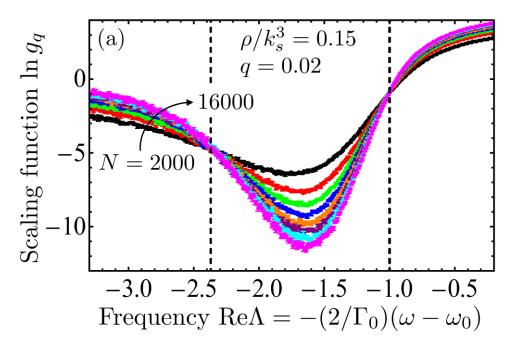
$$\widehat{G}(\mathbf{r}) = \frac{k_{\alpha}}{4\pi(\lambda+2\mu)} \times \left\{ \frac{e^{ik_{\alpha}r}}{3k_{\alpha}r} \left[\mathbb{1} + (\mathbb{1} - 3\widehat{r} \otimes \widehat{r}) \right] \left(-1 - \frac{3i}{k_{\alpha}r} + \frac{3}{(k_{\alpha}r)^2} \right) - \left(\frac{\alpha}{\beta} \right)^3 \frac{e^{ik_{\beta}r}}{3k_{\beta}r} \left[-2\mathbb{1} + (\mathbb{1} - 3\widehat{r} \otimes \widehat{r}) \right] \left(-1 - \frac{3i}{k_{\beta}r} + \frac{3}{(k_{\beta}r)^2} \right) \right\}$$

Near-field behavior:

$$\widehat{G}(\mathbf{r})\Big|_{r\to 0} = \frac{1}{8\pi\rho_0\beta^2 r} \left\{ \left[1 + \left(\frac{\beta}{\alpha}\right)^2 \right] \mathbb{1} + \left[1 - \left(\frac{\beta}{\alpha}\right)^2 \right] \widehat{r} \otimes \widehat{r} \right\} \propto \frac{1}{r}$$

Similar to the scalar case and different from the electromagnetic one:

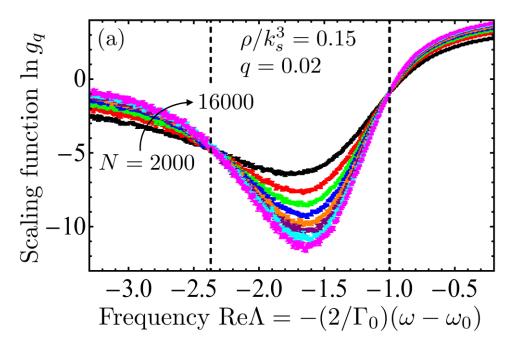
$$\widehat{G}_{\mathsf{EM}}(\mathbf{r})\Big|_{r\to 0} \propto \frac{1}{r^3}$$



Percentile g_q :

$$q = \int_{0}^{g_q} p(g) dg$$

 $\begin{array}{l} \rho/k_0^3=0.15\\ \alpha/\beta=2 \end{array}$

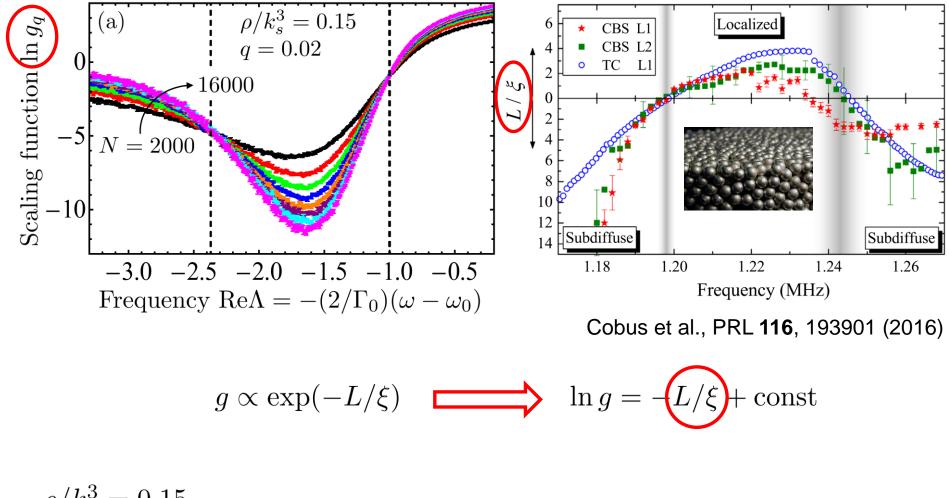


Percentile g_q :

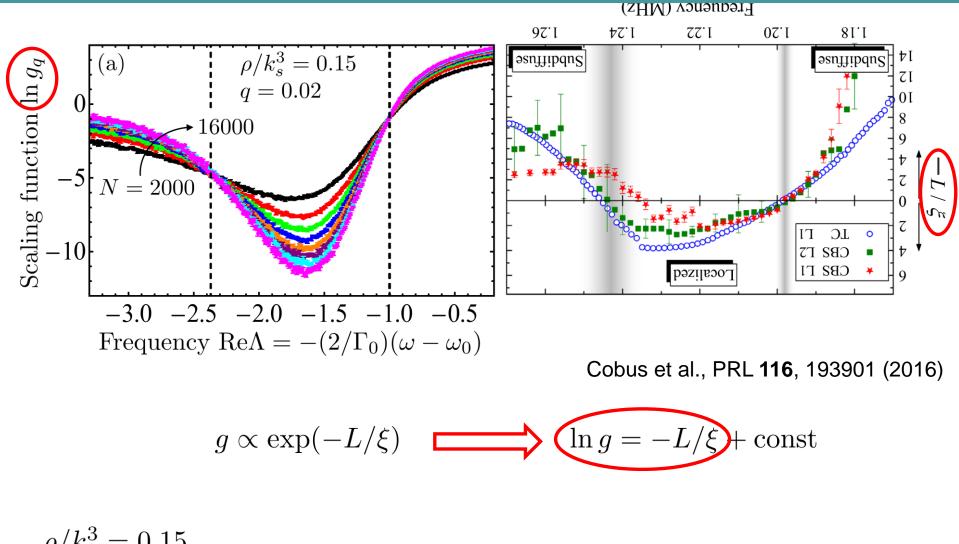
$$q = \int_{0}^{g_q} p(g) dg$$

$$g \propto \exp(-L/\xi)$$
 $\ln g = -L/\xi + \text{const}$

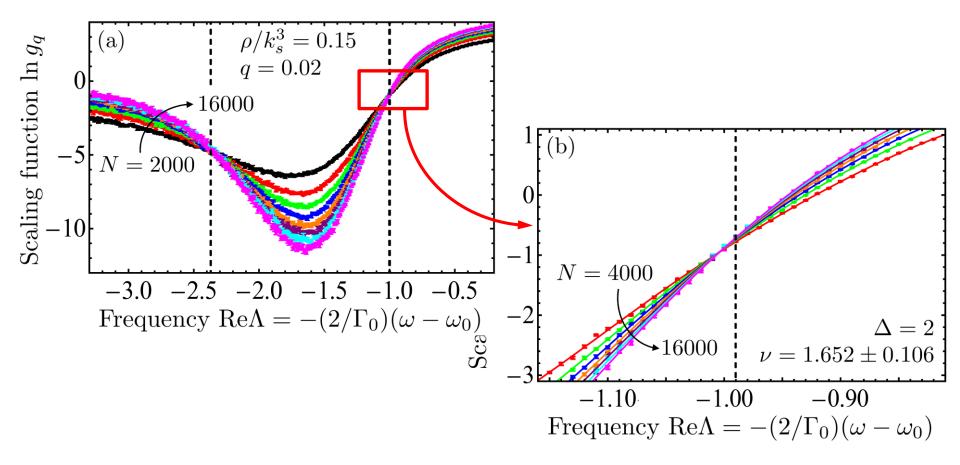
 $\begin{array}{l} \rho/k_0^3=0.15\\ \alpha/\beta=2 \end{array}$



 $\rho/k_0^3 = 0.15$ $\alpha/\beta = 2$

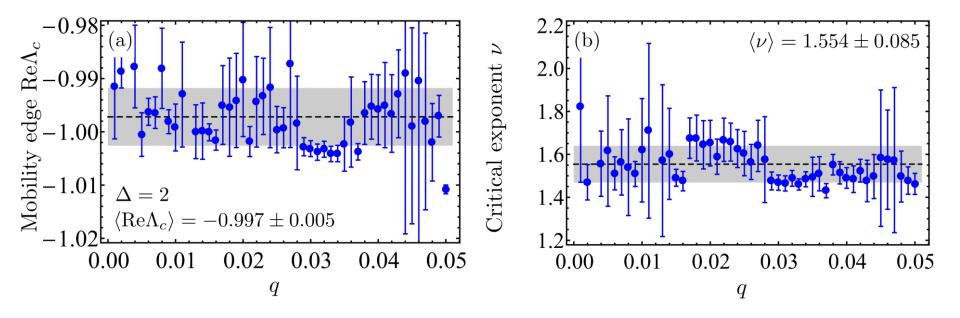


 $\frac{\rho/k_0^3 = 0.15}{\alpha/\beta = 2}$



 $\begin{array}{l} \rho/k_0^3 = 0.15\\ \alpha/\beta = 2 \end{array}$

Mobility edge and critical exponent



$$\rho/k_0^3 = 0.15$$
$$\alpha/\beta = 2$$

Anderson transition for vector waves in 3D

	Scalar waves ^[2]	Light $\mathbf{B} = 0^{[1]}$	$\begin{array}{c} \text{Light} \\ \text{large } \mathbf{B}^{[4]} \end{array}$	Elastic waves ^[3]	
Critical exponent	$\nu \approx 1.6$	No	$\nu \approx 1.6$	$\nu \approx 1.6$	
Universality class	orthogonal	localization	orthogonal despite broken TR invariance	orthogonal	

- 1. PRL **112**, 023905 (2014)
- 2. PRB **94**, 064202 (2016)
- 3. PRB **98**, 064206 (2018)
- 4. PRL **121**, 093601 (2018)

Conclusions

Vector nature of wave excitations turns out to be important for the Anderson localization problem

In a strongly scattering medium, **different vector waves can behave in qualitatively different ways**

Anderson localization of light should be observable for light scattering by atoms in a strong magnetic field

Anderson localization of elastic waves is similar to that of scalar waves

Thank you for your attention 관심을 가져 주셔서 감사합니다.