Z₂xZ₂ magnetic domains and magnetic moment disproportionation in the spin-orbit Mott insulator Sr₂IrO₄

B. J. Kim

Pohang University of Science and Technology (POSTECH) Center for Artificial Low-Dimensional Electronic System, Institute for Basic Science (IBS)

> IBS-PCS International Workshop on Frustrated Magnetism 15 Oct 2019

Outline

- A short introduction to Sr_2IrO_4
- Z₂xZ₂ magnetic domain structure

J. W. Kim (APS)

Sunwook Park (POSTECH)

• New magnetic structure from DFT

Alaska Subedi (CNRS)

Representation analysis

Hoon Kim (POSTECH)

J_{eff}=1/2 Kramers doublet

$$\begin{split} |\tilde{\uparrow}\rangle &= +\sin\theta |0,\uparrow\rangle - \cos\theta |+1,\downarrow\rangle, \\ |\tilde{\downarrow}\rangle &= -\sin\theta |0,\downarrow\rangle + \cos\theta |-1,\uparrow\rangle. \end{split}$$

Heisenberg Kitaev

 $|L_z = 0\rangle = |xy\rangle$ and $|Lz = \pm 1\rangle = \pm \frac{1}{\sqrt{2}}(|yz\rangle \pm i|zx\rangle)$,

J_{eff}=1/2 Kramers doublet

New feature of pseudospins: a propensity to spontaneously disproportionate possible new instabilities and new magnetic phases!

•A rare realization of spin-1/2 moments on a square lattice

Neel order

- •A rare realization of spin-1/2 moments on a square lattice
- •Neel order
- •Heisenberg AF

- •A rare realization of spin-1/2 moments on a square lattice
 - Neel order
 - •Heisenberg AF
 - •Reproduces a large part of cuprate phenomenology
 - •Superconductivity remains to be seen.

Lattice structure still not fully known

 Long believed to be I4₁/acd, but recent studies suggest 14₁/a

 Forbidden peaks in ND

F. Ye et al. PRB 2013

- SHG indicate 4/m point group

D. H. Torchinsky et al. PRL 2015

- Is the magnetic structure correct?
- In hindsight, the currently known magnetic structure is allowed but unlikely to be the ground state in I4₁/a.
- But is the deviation large enough to detect?

Magnetic domains

- generated by successive 4₁ screw operations
- •domain 3 & 4 are just A↔ B
 sublattice switching of domain 1 & 2
- different domains have different stacking patterns
- •domain 1: (1 0 4n+2) & (0 1 4n) domain 2: (1 0 4n) & (0 1 4n+2)

Magnetic domains

Magnetic domains fully polarized by ~0.1T applied field

- generated by successive 41 screw operations
- •domain 3 & 4 are just A↔B
 sublattice switching of domain 1 & 2
- different domains have different stacking patterns
- domains can be easily imaged by going to different q's

Magnetic domains

Magnetic Domain Imaging using X-ray Reflection Interference Microscopy (XRIM)

£ 669

644 619

> 380 405 430 455 480 505 Hx (um+1k)

~20 nm Resolution

11.25

15

3.75

7.5

Distance (100 nm)

Domain Imaging

Mostly single domain, but uneven intensity

Domain Imaging

Z₂ x Z₂ Domain Structure

Z₂ x Z₂ Domain Structure

two domains within a domain!

Known magnetic structure cannot explain the domain structure

Resonant x-ray diffraction measures spin component in the scattering plane

$$I \propto |{f k}_f \!\cdot \! {f S}|^2$$

Z₂ x Z₂ Domain Structure

Known magnetic structure cannot explain the domain structure

Resonant x-ray diffraction measures spin component in the scattering plane

$$I \propto |\mathbf{k}_f \cdot \mathbf{S}|^2$$

- Unique solution from representation analysis
- Can be stabilized in DFT calculations and has a lower total energy than the previous magnetic solution
- Can be stabilized even in the I4₁/acd space group (instead of the actual I4₁/a)

Old

Electronic mechanism of symmetry lowering

$I 4_1/a c d$

 D_{4h}^{2v}

 $I 4_1/a 2/c 2/d$

4/*m m m*

Tetragonal

Patterson symmetry I4/mmm

ORIGIN CHOICE 2

No. 142

- a body-centered cell.
- has inversion symmetry
- 4₁ screw axis, and a glide plane perpendicular to it.
- two additional glides.

Origin at $\overline{1}$ at b(c,a)d, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\overline{4}$

Asymmetric unit $0 \le x \le \frac{1}{2}; -\frac{1}{4} \le y \le \frac{1}{4}; 0 \le z \le \frac{1}{8}$

Symmetry operations

For $(0,0,0)$ + set			
(1) 1	(2) $2(0,0,\frac{1}{2}) = \frac{1}{4},0,z$	(3) $4^+(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},z$	(4) $4^{-}(0,0,\frac{3}{4}) \frac{1}{4},0,z$
(5) 2 $\frac{1}{4}$, y, 0	(6) $2 = x,0,\frac{1}{4}$	(7) $2(\frac{1}{2},\frac{1}{2},0) x,x+\frac{1}{4},\frac{3}{8}$	(8) $2 x,\overline{x}+\frac{1}{4},\frac{1}{8}$
(9) 1 0, 0, 0	(10) $a = x,y,\frac{1}{4}$	(11) $\overline{4}^+ -\frac{1}{2},-\frac{1}{4},z; \frac{1}{2},-\frac{1}{4},\frac{3}{8}$	(12) $\overline{4}^{-} 0,\frac{3}{4},z; 0,\frac{3}{4},\frac{1}{8}$
(13) a x, 0, z	(14) $c = 0,y,z$	(15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) x+\frac{1}{2},\overline{x},z$	(16) $d(\frac{3}{4},\frac{3}{4},\frac{3}{4}) x,x,z$
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set			
(1) $t(\frac{1}{2},\frac{1}{2},\frac{1}{2})$	(2) $2 \theta, \frac{1}{4}, z$	(3) $4^+(0,0,\frac{3}{4}) \frac{1}{4},\frac{1}{2},z$	(4) $4^{-}(0,0,\frac{1}{4}) = \frac{3}{4},0,z$
(5) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$	(6) $2(\frac{1}{2}, 0, 0) x, \frac{1}{4}, 0$	(7) $2(\frac{1}{2},\frac{1}{2},0) x,x-\frac{1}{4},\frac{1}{8}$	(8) $2 = x, \bar{x} + \frac{3}{4}, \frac{3}{8}$
(9) $\overline{1}$ $\frac{1}{4},\frac{1}{4},\frac{1}{4}$	(10) $b x, y, 0$	(11) $\overline{4}^+ \frac{1}{2},\frac{1}{4},z; \frac{1}{2},\frac{1}{4},\frac{1}{8}$	(12) $\bar{4}^{-} = 0, \frac{1}{4}, z; 0, \frac{1}{4}, \frac{3}{8}$
(13) c $x,\frac{1}{4},z$	(14) $b \frac{1}{4}, y, z$	(15) $d(-\frac{1}{4},\frac{1}{4},\frac{3}{4}) x+\frac{1}{2},\overline{x},z$	(16) $d(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) = x, x, z$

$1 4_1 / a c a$

 D_{4h}^{20}

 $I 4_1/a 2/c 2/d$

4/*m m m*

Tetragonal

Patterson symmetry I4/mmm

ORIGIN CHOICE 2

No. 142

- a body-centered cell.
- has inversion symmetry
- 4₁ screw axis, and a glide plane perpendicular to it.
- two additional glides.

Origin at $\overline{1}$ at b(c,a)d, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\overline{4}$

Asymmetric unit $0 \le x \le \frac{1}{2}; -\frac{1}{4} \le y \le \frac{1}{4}; 0 \le z \le \frac{1}{8}$

Symmetry operations

For (0,0,0)+ set

(1) 1 (5) 2 1 0	(2) $2(0,0,\frac{1}{2}) = \frac{1}{4},0,z$	(3) $4^+(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},z$	(4) $4^{-}(0,0,\frac{3}{4}) = \frac{1}{4},0,z$
$\begin{array}{c} (3) & 2 & 4, 9, 0 \\ (9) & \overline{1} & 0, 0, 0 \end{array}$	(10) $a x, y, \frac{1}{4}$	$\begin{array}{c} (7) \underline{2(2,2,0)} \underline{x,x+4,8} \\ (11) \overline{4^+} \underline{1}, -\underline{4}, z; \underline{1}, -\underline{4}, \frac{3}{8} \end{array}$	$\begin{array}{c} (8) & 2 & x, x + 4, \\ (12) & \overline{4}^{-} & 0, \frac{3}{4}, z; & 0, \frac{3}{4}, \frac{1}{8} \end{array}$
(13) a x, 0, z	(14) $c = 0, y, z$	(15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) x + \frac{1}{2},\overline{x},z$	$(16) \ d(\frac{3}{4},\frac{3}{4},\frac{3}{4}) \ x,x,z$
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set			
$(1) t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) (5) 2(0 + 0) 0 y = 1$	$(2) 2^{-}\theta, \frac{1}{4}, z$ $(6) 2(10, 0) r = 10$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} (4) & 4^{-}(0,0,\frac{1}{4}) & \frac{3}{4},0,z \\ (8) & 2 & x & \overline{x} + \frac{3}{4} & \frac{3}{4} \end{array}$
(9) $\overline{1}$ $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	(10) $b x, y, 0$	(11) $\vec{4}^+$ $\frac{1}{2}, \frac{1}{4}, z; \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$	(12) $\overline{4}^{-}$ $0, \frac{1}{4}, z; 0, \frac{1}{4}, \frac{3}{8}$
$(13) c x, \frac{1}{4}, z$	$(14) \ b \ 4, y, z$	$-(15) d(-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}) x + \frac{1}{2}, \overline{x}, z$	$(16) d(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) x, x, z$

Removing these symmetry elements will lower the symmetry from $I4_1/acd$ to $I4_1/a$

$I 4_1/a c d$	D_{4h}^{20}	4/ <i>m m m</i>	Tetragonal
No. 142	$I 4_1/a 2/c 2/d$	Patte	rson symmetry I4/mmm
ORIGIN CHOICE 2			·
$ \begin{array}{c} \frac{3}{4} - \underbrace{0}_{4} & \underbrace{1}{4} + \underbrace{0}_{4} & \underbrace{3}{4} + \\ \underbrace{0}_{-} & \underbrace{1}{2} + \underbrace{0}_{-} & \underbrace{0}_{+} & \underbrace{1}{2} - \underbrace{0}_{-} & \underbrace{0}_{-} & \underbrace{1}{2} + \underbrace{0}_{+} & \underbrace{0}_{+} & \underbrace{0}_{+} & \underbrace{1}{2} + \underbrace{0}_{+} & \underbrace{0}_{+} & \underbrace{0}_{+} & \underbrace{1}{2} + \underbrace{0}_{+} & \underbrace{0}_{$	$\frac{1}{4} \xrightarrow{3}{8} \xrightarrow{1}{8} \xrightarrow{3}{8} \xrightarrow{3} \xrightarrow{3}{8} \xrightarrow{3} \xrightarrow{3}{8} \xrightarrow{3} \xrightarrow{3}{8} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3}{8} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} 3$	$\begin{bmatrix} & & \\ & $	Ir occupies 8a Wyckoff site, nd in-plane O 16f
$\bigcirc 2 \\ \frac{1}{4} - \bigcirc 3 \\ \frac{3}{4} - \bigcirc 3 \\ \frac{3}{4} + \bigcirc 0 \\ \frac{3}{4} - \bigcirc 0 \\ \frac{1}{2} - \bigcirc 0 \\ \frac{1}{2} - \bigcirc 0 \\ \frac{1}{4} + \bigcirc 0 \\ \frac{3}{4} + \bigcirc 0 \\ \frac{3}{4} - \bigcirc 0 \\ \frac{3}{4} - \bigcirc 0 \\ \frac{1}{4} - \bigcirc 0 \\ \frac{3}{4} - \bigcirc 0 \\ \frac{1}{4} - \bigcirc 0 \\ \frac{3}{4} - \bigcirc 0 \\ \frac{1}{4} - \bigcirc 0 \\ \frac{3}{4} - \bigcirc 0 \\ 0 \\ \frac{3}{4} - \bigcirc 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 8 \\ 1 \\ 3 \\ 3 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ \mathbf$	$ \begin{array}{c} \frac{1}{8} \\ \frac{1}{8} $	Glide plane
$\begin{array}{c} \begin{array}{c} 3 & -3 & -3 & -\frac{1}{4} & -\frac{1}{4} & + & -3 & \frac{3}{4} & + \\ \hline 0 & -\frac{1}{2} & + & 0 & -\frac{1}{4} & -\frac{1}{4} & + & -\frac{3}{4} & + \\ \hline 0 & \frac{1}{2} & -\frac{1}{2} & + & 0 & -\frac{1}{2} & + & -\frac{1}{2} & + & -\frac{1}{2} & + & -\frac{1}{4} & + \\ \hline 1 & \frac{1}{4} & - & 0 & \frac{3}{4} & -\frac{3}{4} & + & 0 & -\frac{1}{4} & + \end{array}$	$\frac{3}{8} + \frac{1}{4} = 0$ $\frac{3}{8} + \frac{1}{4} = 0$ $\frac{3}{8} + \frac{1}{8} + \frac{1}{8$	$\frac{1}{8}$ $\frac{3}{8}$ $\frac{1}{4}$	
Origin at $\overline{1}$ at $b(c, a)d$, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\overline{4}$		Ç	glide plane
Asymmetric unit $0 \le x \le \frac{1}{2}$; $-\frac{1}{4} \le y \le \frac{1}{4}$; $0 \le \frac{1}{4}$	$z \leq \frac{1}{8}$		
Symmetry operations For $(0,0,0)$ + set			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 4^{-}(0,0,\frac{3}{4}) & \frac{1}{4},0,z \\ \hline 2 & x,\overline{x}+\frac{1}{4},\frac{1}{8} \\ \hline 4^{-} & 0,\frac{3}{4},z; 0,\frac{3}{4},\frac{1}{8} \\ \hline d(\frac{3}{4},\frac{3}{4},\frac{3}{4}) & x,x,z \end{array} $	lo symmetry relations etween octahedra in the A
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+$ set (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (2) $2^-\theta, \frac{1}{4}, z$ (5) $2(0, \frac{1}{2}, 0)^-\theta, y, \frac{1}{4}$ (6) $2(\frac{1}{2}, 0, 0)^-x, \frac{1}{4}, 0$ (9) $\overline{1} + \frac{1}{4}, \frac{1}{4}$ (10) $b^-x, y, 0$ (13) $c^-x, \frac{1}{4}, z^-$ (14) $b^-\frac{1}{4}, y, z^-$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4^{-}(0,0,\frac{1}{4}) & \frac{3}{4},0,z \\ \hline 2 & x,\overline{x}+\frac{3}{4},\frac{3}{4} \\ \hline 4^{-} & 0,\frac{1}{4},z; 0,\frac{1}{4},\frac{3}{4} \\ \hline d(\frac{1}{4},\frac{1}{4},\frac{1}{4}) & x,x,z \end{array}$	nd B sublattices.

almost unchanged

of the moment size!

Requires two order parameters of different symmetries

Mixing of two IR's gives Z₂xZ₂

their interference manifests as deviation of the azimuth angle from zero

Spontaneous magnetic moment disproportionation

DFT results from I41/acd (Sublattice A and B symmetry-wise equivalent)

Spontanesous disproportionation!

Actual space group 141/a (glide planes c &d removed)

Magnetism drives lattice symmetry lowering!

Modulation of moment size, a new type of instability from pseudospins!

Origin at $\overline{1}$ at b(c,a)d, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\overline{4}$ Asymmetric unit $0 \le x \le \frac{1}{2}$; $-\frac{1}{4} \le y \le \frac{1}{4}$; $0 \le z \le \frac{1}{4}$ Symmetry operations For (0,0,0) + set (4) $4^{-}(0,0,\frac{3}{4}) = \frac{1}{4},0,z$ (1) 1 (2) $2(0,0,\frac{1}{2}) = \frac{1}{4},0,z$ (3) $4^+(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) \quad x,x+\frac{1}{4},\frac{3}{8}$ (11) $\overline{4}^{+} \quad \frac{1}{2},-\frac{1}{4},z; \ \frac{1}{2},-\frac{1}{4},\frac{3}{8}$ (5) 2 $\frac{1}{4}$, y, 0 (9) $\overline{1}$ 0, 0, 0 (6) 2 $x, 0, \frac{1}{4}$ (8) 2 $x, \bar{x} + \frac{1}{4}, \frac{1}{4}$ (10) $a x, y, \frac{1}{4}$ (12) $\bar{4}^{-}$ 0, $\frac{3}{4}$, z; 0, $\frac{3}{4}$, $\frac{1}{4}$ (15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) \quad x+\frac{1}{2},\overline{x},z$ (14) c = 0, y, z(13) a x, 0, z(16) $d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) \quad x, x, z$ For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set (3) $4^+(0,0,\frac{3}{4}) = \frac{1}{4}, \frac{1}{2}, z$ (7) $2(\frac{1}{2},\frac{1}{2},0) = x, x-\frac{1}{4}, \frac{1}{4}$ (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (2) $2^{-}\theta, \frac{1}{4}, z$ (4) $4^{-}(0,0,\frac{1}{4}) = \frac{3}{4},0,z$ (5) $\underline{2}(0, \frac{1}{2}, 0) \quad 0, y, \frac{1}{4}$ (6) $2(\frac{1}{2},0,0) \quad x,\frac{1}{4},0$ (8) 2 $x, \bar{x} + \frac{3}{4}, \frac{3}{8}$ (10) b x, y, 0(11) $\bar{4}^+$ $\frac{1}{2}, \frac{1}{4}, z; \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ (12) $\bar{4}^{-}$ 0, $\frac{1}{4}$, z; 0, $\frac{1}{4}$, $\frac{3}{8}$ (9) $\bar{1}$ $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ (14) $b = \frac{1}{4}, y, z$ (15) $d(-\frac{1}{4},\frac{1}{4},\frac{3}{4}) x + \frac{1}{2}, \bar{x}, z$ (13) $c x, \frac{1}{4}, z$ (16) $d(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \quad x, x, z$

• 8 distinct Ir sites generated by symmetry operations

- $(1) \{0, 1/4, 3/8\} \\ (2) \{1/2, 3/4, 7/8\} \\ (3) \{0, 3/4, 5/8\} \\ (4) \{1/2, 1/4, 1/8\} \\ (5) \{1/2, 1/4, 5/8\} \\ (6$
- $(5) \quad \{1/2, 1/4, 5/8\}$
- $(6) \quad \{0, 3/4, 1/8\}$
- (7) $\{1/2, 3/4, 3/8\}$
- $(8) \quad \{0, 1/4, 7/8\}$

Origin at $\overline{1}$ at $b(c,a)d$, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\overline{4}$							
Asymmetric unit 0	$\leq x \leq \frac{1}{2}; -\frac{1}{4} \leq y \leq \frac{1}{4}; 0 \leq z \leq \frac{1}{4}$						
Symmetry operations							
For $(0,0,0)$ + set							
(1) 1 (5) 2 $\frac{1}{4}, y, 0$ (9) 1 0,0,0 (13) $a x, 0, z$	(2) $2(0,0,\frac{1}{2}) = \frac{1}{4},0,z$ (6) $2 = x,0,\frac{1}{4}$ (10) $a = x,y,\frac{1}{4}$ (14) $c = 0,y,z$	(3) $4^{+}(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) x,x+\frac{1}{4},\frac{3}{8}$ (11) $\overline{4}^{+} -\frac{1}{2},-\frac{1}{4},z; \frac{1}{2},-\frac{1}{4},\frac{3}{8}$ (15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) x+\frac{1}{2},\overline{x},z$	(4) $4^{-}(0,0,\frac{3}{4}) \frac{1}{4},0,z$ (8) $2 x, \overline{x} + \frac{1}{4}, \frac{1}{8}$ (12) $\overline{4}^{-} 0, \frac{3}{4}, z; 0, \frac{3}{4}, \frac{1}{8}$ (16) $d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) x,x,z$				
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+$ set (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+$ (5) $2(0, \frac{1}{2}, 0) 0, y, \frac{1}{4}$ (9) $\overline{1} \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ (13) $c x \stackrel{1}{2} z$	(2) $2 \theta, \frac{1}{4}, z$ (6) $2(\frac{1}{2}, 0, 0) x, \frac{1}{4}, 0$ (10) $b x, y, 0$ (14) $b \frac{1}{4}, y, z$	(3) $4^+(0,0,\frac{3}{4}) = \frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) = x,x-\frac{1}{4},\frac{1}{4}$ (11) $4^+ = \frac{1}{2},\frac{1}{4},z; = \frac{1}{2},\frac{1}{4},\frac{1}{4}$ (15) $d(-\frac{1}{4},\frac{1}{4},\frac{3}{4}) = x+\frac{1}{4},\overline{x},z$	(4) $4^{-}(0,0,\frac{1}{4}) = \frac{3}{4},0,z$ (8) $2 = x, \overline{x} + \frac{3}{4}, \frac{3}{4}$ (12) $\overline{4}^{-} = 0, \frac{1}{4}, z; 0, \frac{1}{4}, \frac{3}{4}$ (16) $d(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) = x, x, z$				

• 8 distinct Ir sites generated by symmetry operations

 (1) (2) (3) (4) (5) (6) (7) 	{0, 1/4, 3/8} {1/2, 3/4, 7/8} {0, 3/4, 5/8} {1/2, 1/4, 1/8} {1/2, 1/4, 5/8} {0, 3/4, 1/8}
(6)	{0, 3/4, 1/8}
(7)	{1/2, 3/4, 3/8}
(8)	{0, 1/4, 7/8}

• symmetry operations shuffle ir sites

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	8	7	5	6
4	4	3	1	2	7	8	6	5
5	5	6	7	8	1	2	3	4
6	6	5	8	7	2	1	4	3
7	7	8	6	5	4	3	1	2
8	8	7	5	6	3	4	2	1
9	3	4	1	2	7	8	5	6
10	4	3	2	1	8	7	6	5
11	1	2	4	3	6	5	7	8
12	2	1	3	4	5	6	8	7
13	7	8	5	6	3	4	1	2
14	8	7	6	5	4	3	2	1
15	5	6	8	7	2	1	3	4
16	6	5	7	8	1	2	4	3
17	2	1	4	3	6	5	8	7
18	1	2	3	4	5	6	7	8
19	4	3	1	2	7	8	6	5
20	3	4	2	1	8	7	5	6
21	6	5	8	7	2	1	4	3
22	5	6	7	8	1	2	3	4
23	8	7	5	6	3	4	2	1
24	7	8	6	5	4	3	1	2
25	4	3	2	1	8	7	6	5
26	3	4	1	2	7	8	5	6
27	2	1	3	4	5	6	8	7
28	1	2	4	3	6	5	7	8
29	8	7	6	5	4	3	2	1
30	7	8	5	6	3	4	1	2
31	6	5	7	8	1	2	4	3
32	5	6	8	7	2	1	3	4

Origin at $\overline{1}$ at $b(c,a)d$, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\overline{4}$					
Asymmetric unit ($0 \le x \le \frac{1}{2}; -\frac{1}{4} \le y \le \frac{1}{4}; 0 \le z \le \frac{1}{2}$				
Symmetry operations For $(0,0,0)$ + set (1) 1 (5) 2 $\frac{1}{4}$, y, 0 (9) 1 0, 0, 0 (13) a x, 0, z	(2) $2(0,0,\frac{1}{2})$ $\frac{1}{4},0,z$ (6) $2 x,0,\frac{1}{4}$ (10) $a x,y,\frac{1}{4}$ (14) $c 0,y,z$	(3) $4^+(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) x,x+\frac{1}{4},\frac{3}{8}$ (11) $\overline{4}^+ -\frac{1}{2},-\frac{1}{4},z; \frac{1}{2},-\frac{1}{4},\frac{3}{8}$ (15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) x+\frac{1}{2},\overline{x},z$	(4) $4^{-}(0,0,\frac{3}{4}) + 0,z$ (8) $2 + x, \overline{x} + \frac{1}{4}, \frac{1}{8}$ (12) $4^{-} + 0, \frac{3}{4}, z; 0, \frac{3}{4}, \frac{1}{8}$ (16) $d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) + x, x, z$		
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (5) $2(0, \frac{1}{2}, 0)$ $0, y, \frac{1}{4}$ (9) $\overline{1}$ $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ (13) c $x, \frac{1}{4}, z$	(2) $2 0, \frac{1}{4}, z$ (6) $2(\frac{1}{2}, 0, 0) x, \frac{1}{4}, 0$ (10) $b x, y, 0$ (14) $b \frac{1}{4}, y, z$	(3) $4^+(0,0,\frac{3}{4}) \frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) x,x-\frac{1}{4},\frac{1}{8}$ (11) $\overline{4}^+ \frac{1}{2},\frac{1}{4},z;\frac{1}{2},\frac{1}{4},\frac{1}{8}$ (15) $d(-\frac{1}{4},\frac{1}{4},\frac{3}{4}) x+\frac{1}{2},\overline{x},z$	(4) $4^{-}(0,0,\frac{1}{4}) \frac{3}{4},0,z$ (8) $2 x,\bar{x}+\frac{3}{4},\frac{3}{4}$ (12) $\bar{4}^{-} 0,\frac{1}{4},z; 0,\frac{1}{4},\frac{3}{4}$ (16) $d(\frac{1}{4},\frac{1}{4},\frac{1}{4}) x,x,z$		

• magnetic moments are rotated under symmetry operations

symmetry operations shuffle ir sites

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	8	7	5	6
4	4	3	1	2	7	8	6	5
5	5	6	7	8	1	2	3	4
6	6	5	8	7	2	1	4	3
7	7	8	6	5	4	3	1	2
8	8	7	5	6	3	4	2	1
9	3	4	1	2	7	8	5	6
10	4	3	2	1	8	7	6	5
11	1	2	4	3	6	5	7	8
12	2	1	3	4	5	6	8	7
13	7	8	5	6	3	4	1	2
14	8	7	6	5	4	3	2	1
15	5	6	8	7	2	1	3	4
16	6	5	7	8	1	2	4	3
17	2	1	4	3	6	5	8	7
18	1	2	3	4	5	6	7	8
19	4	3	1	2	7	8	6	5
20	3	4	2	1	8	7	5	6
21	6	5	8	7	2	1	4	3
22	5	6	7	8	1	2	3	4
23	8	7	5	6	3	4	2	1
24	7	8	6	5	4	3	1	2
25	4	3	2	1	8	7	6	5
26	3	4	1	2	7	8	5	6
27	2	1	3	4	5	6	8	7
28	1	2	4	3	6	5	7	8
29	8	7	6	5	4	3	2	1
30	7	8	5	6	3	4	1	2
31	6	5	7	8	1	2	4	3
32	5	6	8	7	2	1	3	4

Origin at $\overline{1}$ at $b(c,a)d$, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\overline{4}$						
Asymmetric unit 0	$\leq x \leq \frac{1}{2}; -\frac{1}{4} \leq y \leq \frac{1}{4}; 0 \leq z \leq \frac{1}{4}$					
Symmetry operations						
For $(0,0,0)$ + set						
(1) 1 (5) 2 $\frac{1}{4}$, y, 0 (9) $\overline{1}$ 0, 0, 0 (13) a x, 0, z	(2) $2(0,0,\frac{1}{2}) = \frac{1}{4},0,z$ (6) $2 = x,0,\frac{1}{4}$ (10) $a = x,y,\frac{1}{4}$ (14) $c = 0,y,z$	(3) $4^+(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) x,x+\frac{1}{4},\frac{3}{8}$ (11) $\overline{4}^+ -\frac{1}{2},-\frac{1}{4},z; \frac{1}{2},-\frac{1}{4},\frac{3}{8}$ (15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) x+\frac{1}{2},\overline{x},z$	$(4) \ 4^{-}(0,0,\frac{3}{4}) \ \frac{1}{4},0,z$ $(8) \ 2 \ x,\overline{x}+\frac{1}{4},\frac{1}{8}$ $(12) \ \overline{4}^{-} \ 0,\frac{3}{4},z; \ 0,\frac{3}{4},\frac{1}{8}$ $(16) \ d(\frac{3}{4},\frac{3}{4},\frac{3}{4}) \ x,x,z$			
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+$ set (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (5) $2(0, \frac{1}{2}, 0) 0, y, \frac{1}{4}$ (9) $\overline{1} \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ (13) $c x, \frac{1}{4}, z$	(2) $2 0, \frac{1}{4}, z$ (6) $2(\frac{1}{2}, 0, 0) x, \frac{1}{4}, 0$ (10) $b x, y, 0$ (14) $b \frac{1}{4}, y, z$	(3) $4^+(0,0,\frac{3}{4}) \frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) x,x-\frac{1}{4},\frac{1}{8}$ (11) $\overline{4}^+ \frac{1}{2},\frac{1}{4},z; \frac{1}{2},\frac{1}{4},\frac{1}{8}$ (15) $d(-\frac{1}{4},\frac{1}{4},\frac{3}{4}) x+\frac{1}{2},\overline{x},z$	(4) $4^{-}(0,0,\frac{1}{4}) = \frac{3}{4},0,z$ (8) $2 = x, \bar{x} + \frac{3}{4}, \frac{3}{8}$ (12) $\bar{4}^{-} = 0, \frac{1}{4}, z; 0, \frac{1}{4}, \frac{3}{8}$ (16) $d(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) = x, x, z$			

magnetic moments are rotated under symmetry operations
 (M_x,M_y,M_z) -> (-M_y,M_x,M_z)

 symmetry operations shuffle ir sites

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	8	7	5	6
4	4	3	1	2	7	8	6	5
5	5	6	7	8	1	2	3	4
6	6	5	8	7	2	1	4	3
7	7	8	6	5	4	3	1	2
8	8	7	5	6	3	4	2	1
9	3	4	1	2	7	8	5	6
10	4	3	2	1	8	7	6	5
11	1	2	4	3	6	5	7	8
12	2	1	3	4	5	6	8	7
13	7	8	5	6	3	4	1	2
14	8	7	6	5	4	3	2	1
15	5	6	8	7	2	1	3	4
16	6	5	7	8	1	2	4	3
17	2	1	4	3	6	5	8	7
18	1	2	3	4	5	6	7	8
19	4	3	1	2	7	8	6	5
20	3	4	2	1	8	7	5	6
21	6	5	8	7	2	1	4	3
22	5	6	7	8	1	2	3	4
23	8	7	5	6	3	4	2	1
24	7	8	6	5	4	3	1	2
25	4	3	2	1	8	7	6	5
26	3	4	1	2	7	8	5	6
27	2	1	3	4	5	6	8	7
28	1	2	4	3	6	5	7	8
29	8	7	6	5	4	3	2	1
30	7	8	5	6	3	4	1	2
31	6	5	7	8	1	2	4	3
32	5	6	8	7	2	1	3	4

Origin at $\overline{1}$ at $b(c,a)d$, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\overline{4}$						
Asymmetric unit 0 ≤	$\leq x \leq \frac{1}{2}; -\frac{1}{4} \leq y \leq \frac{1}{4}; 0 \leq z \leq \frac{1}{4}$					
Symmetry operations						
For $(0,0,0)$ + set						
(1) 1 (5) 2 $\frac{1}{4}$, y, 0 (9) $\overline{1}$ 0, 0, 0 (13) a x, 0, z	(2) $2(0,0,\frac{1}{2})$ $\frac{1}{4},0,z$ (6) $2 x,0,\frac{1}{4}$ (10) $a x,y,\frac{1}{4}$ (14) $c 0,y,z$	(3) $4^+(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) x,x+\frac{1}{4},\frac{3}{8}$ (11) $\overline{4}^+ -\frac{1}{2},-\frac{1}{4},z; \frac{1}{2},-\frac{1}{4},\frac{3}{8}$ (15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) x+\frac{1}{2},\overline{x},z$	$(4) \ 4^{-}(0,0,\frac{3}{4}) \ \frac{1}{4},0,z$ $(8) \ 2 \ x,\overline{x}+\frac{1}{4},\frac{1}{8}$ $(12) \ \overline{4}^{-} \ 0,\frac{3}{4},z; \ 0,\frac{3}{4},\frac{1}{8}$ $(16) \ d(\frac{3}{4},\frac{3}{4},\frac{3}{4}) \ x,x,z$			
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+$ set (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+$ (5) $2(0, \frac{1}{2}, 0) 0, y, \frac{1}{4}$ (9) $\overline{1} \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ (13) $c x, \frac{1}{4}, z$	(2) $2 \stackrel{0}{\rightarrow} 0, \frac{1}{4}, z$ (6) $2(\frac{1}{2}, 0, 0) x, \frac{1}{4}, 0$ (10) $b x, y, 0$ (14) $b \frac{1}{4}, y, z$	(3) $4^+(0,0,\frac{3}{4})$ $\frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0)$ $x,x-\frac{1}{4},\frac{1}{4}$ (11) $\overline{4}^+$ $\frac{1}{2},\frac{1}{4},z;$ $\frac{1}{2},\frac{1}{4},\frac{1}{4}$ (15) $d(-\frac{1}{4},\frac{1}{4},\frac{3}{4})$ $x+\frac{1}{2},\overline{x},z$	(4) $4^{-}(0,0,\frac{1}{4}) \frac{3}{4},0,z$ (8) $2 x, \overline{x} + \frac{3}{4}, \frac{3}{4}$ (12) $\overline{4}^{-} 0, \frac{1}{4}, z; 0, \frac{1}{4}, \frac{3}{8}$ (16) $d(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) x, x, z$			

 magnetic moments are rotated under symmetry operations (M_x,M_y,M_z) -> (-M_y,M_x,M_z)

• combining site shuffling and moment rotation

 0
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Assumption: magnetic order does not enlarge the unit cell

1 1 2 3 4 5 6 7 8 2 2 1 4 3 6 5 8 7 3 3 4 2 1 8 7 5 6 4 4 3 1 2 7 8 6 9 5 5 6 7 8 1 2 3 4 7 7 8 6 5 4 3 1 2 6 6 5 8 7 2 1 4 3 1 2 6 6 5 8 7 2 1 4 3 1 2 8 7 5 6 3 4 2 2 3 10 4 3 2 1 8 7 6 8 7 1 11 1 2 4 3 6 5 7 8 1 2 1 </th <th></th>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 5 4 3 2 L
3 3 4 2 1 8 7 5 6 4 4 3 1 2 7 8 6 9 5 5 6 7 8 1 2 3 4 6 6 5 8 7 2 1 4 3 7 7 8 6 5 4 3 1 2 3 8 8 7 5 6 3 4 2 3 9 3 4 1 2 7 8 5 6 10 4 3 2 1 8 7 6 5 11 1 2 4 3 6 5 7 8 12 2 1 3 4 5 6 8 7 2 1 3 4 1 2 4 3 1 2 4 3 1 2 4 3 1 2 <td>6 5 4 3 2 1</td>	6 5 4 3 2 1
4 4 3 1 2 7 8 6 9 5 5 6 7 8 1 2 3 4 7 7 8 6 5 4 3 1 2 7 7 8 6 5 4 3 1 2 9 3 4 1 2 7 8 5 6 10 4 3 2 1 8 7 6 5 10 4 3 2 1 8 7 6 5 11 1 2 4 3 6 5 7 8 12 2 1 3 4 5 6 8 7 2 1 3 14 8 7 6 5 4 3 2 2 3 15 5 6 8 7 2 1 3 6 5 8 7 5 <td< td=""><td>5 4 3 2 1</td></td<>	5 4 3 2 1
5 5 6 7 8 1 2 3 4 6 6 5 8 7 2 1 4 3 7 7 8 6 5 4 3 1 2 9 3 4 1 2 7 8 5 6 10 4 3 2 1 8 7 6 5 10 4 3 2 1 8 7 6 5 11 1 2 4 3 6 5 7 8 12 2 1 3 4 5 6 8 7 2 13 7 8 5 6 3 4 1 2 14 8 7 6 5 4 3 2 3 15 5 6 8 7 2 1 3 6 5 18 1 2 3 4	4 3 2 1
6 6 5 8 7 2 1 4 3 7 7 8 6 5 4 3 1 2 9 3 4 1 2 7 8 5 6 10 4 3 2 1 8 7 6 5 10 4 3 2 1 8 7 6 5 11 1 2 4 3 6 5 7 8 12 2 1 3 4 5 6 8 7 12 2 1 3 4 5 6 8 7 12 2 1 3 4 5 6 8 7 13 7 8 5 6 3 4 1 2 14 8 7 6 5 4 3 2 2 14 8 7 6 5 8 7 2 1 14 8 7 6 5 8 7 2 1 4 16 6 5 7 8 1 2 7 8 6 5 18 1 2 3 4 2 1 8 7 5 6 20 3 4 2 1 8 7 2 1 4 3 19 4 3 1 2 <td< td=""><td>3 2 1</td></td<>	3 2 1
7 7 8 6 5 4 3 1 2 8 8 7 5 6 3 4 2 2 9 3 4 1 2 7 8 5 6 10 4 3 2 1 8 7 6 2 11 1 2 4 3 6 5 7 8 12 2 1 3 4 5 6 8 7 13 7 8 5 6 3 4 1 2 14 8 7 6 5 4 3 2 2 15 5 6 8 7 2 1 3 4 5 16 6 5 7 8 1 2 4 3 6 5 18 1 2 3 4 5 6 7 8 20 3 4 2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
9 3 4 1 2 7 8 5 6 10 4 3 2 1 8 7 6 9 11 1 2 4 3 6 5 7 8 12 2 1 3 4 5 6 8 7 12 2 1 3 4 5 6 8 7 12 2 1 3 4 5 6 8 7 13 7 8 5 6 3 4 1 2 14 8 7 6 5 4 3 2 3 15 5 6 8 7 2 1 3 4 3 16 6 5 7 8 1 2 4 3 6 5 8 7 2 1 4 3 6 5 8 7 5 6 9 9 9 <td< td=""><td>~</td></td<>	~
10 4 3 2 1 8 7 6 8 11 1 2 4 3 6 5 7 8 12 2 1 3 4 5 6 8 7 13 7 8 5 6 3 4 1 2 14 8 7 6 5 4 3 2 2 14 8 7 6 5 4 3 2 2 15 5 6 8 7 2 1 3 4 16 6 5 7 8 1 2 4 3 17 2 1 4 3 6 5 8 7 2 18 1 2 3 4 2 1 8 7 5 6 20 3 4 2 1 8 7 5 6 21 6 5 8	С
11 1 2 4 3 6 5 7 8 12 2 1 3 4 5 6 8 7 13 7 8 5 6 3 4 1 2 14 8 7 6 5 4 3 2 2 14 8 7 6 5 4 3 2 2 15 5 6 8 7 2 1 3 4 16 6 5 7 8 1 2 4 3 17 2 1 4 3 6 5 8 7 18 1 2 3 4 5 6 7 8 19 4 3 1 2 7 8 6 9 20 3 4 2 1 8 7 5 6 21 6 5 8 7 2 1	5
12 2 1 3 4 5 6 8 7 13 7 8 5 6 3 4 1 2 14 8 7 6 5 4 3 2 2 15 5 6 8 7 2 1 3 4 16 6 5 7 8 1 2 4 3 16 6 5 7 8 1 2 4 3 17 2 1 4 3 6 5 8 7 2 18 1 2 3 4 5 6 7 8 19 4 3 1 2 7 8 6 9 20 3 4 2 1 8 7 5 6 21 6 5 8 7 2 1 4 3 3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7
14 8 7 6 5 4 3 2 1 15 5 6 8 7 2 1 3 4 16 6 5 7 8 1 2 4 3 17 2 1 4 3 6 5 8 7 18 1 2 3 4 5 6 7 8 19 4 3 1 2 7 8 6 5 20 3 4 2 1 8 7 5 6 21 6 5 8 7 2 1 4 3	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
16 6 5 7 8 1 2 4 3 17 2 1 4 3 6 5 8 7 18 1 2 3 4 5 6 7 8 19 4 3 1 2 7 8 6 5 20 3 4 2 1 8 7 5 6 21 6 5 8 7 2 1 4 3	4
17 2 1 4 3 6 5 8 7 18 1 2 3 4 5 6 7 8 19 4 3 1 2 7 8 6 5 20 3 4 2 1 8 7 5 6 21 6 5 8 7 2 1 4 3	3
18 1 2 3 4 5 6 7 8 19 4 3 1 2 7 8 6 5 20 3 4 2 1 8 7 5 6 21 6 5 8 7 2 1 4 3	7
19 4 3 1 2 7 8 6 9 20 3 4 2 1 8 7 5 6 21 6 5 8 7 2 1 4 3	3
20 3 4 2 1 8 7 5 6 21 6 5 8 7 2 1 4 3	5
21 6 5 8 7 2 1 4 3	5
	3
22 5 6 7 8 1 2 3 4	4
23 8 7 5 6 3 4 2 2	1
24 7 8 6 5 4 3 1 2	2
25 4 3 2 1 8 7 6 5	5
26 3 4 1 2 7 8 5 6	6
27 2 1 3 4 5 6 8	7
28 1 2 4 3 6 5 7 8	3
29 8 7 6 5 4 3 2 2	1
30 7 8 5 6 3 4 1 2	2
31 6 5 7 8 1 2 4 3	3
32 5 6 8 7 2 1 3 4	4

Origin at $\overline{1}$ at $b(c, a)$) <i>d</i> , at $0, -\frac{1}{4}, \frac{1}{8}$ from $\frac{1}{4}$		
Asymmetric unit 0	$\leq x \leq \frac{1}{2}; -\frac{1}{4} \leq y \leq \frac{1}{4}; 0 \leq z \leq \frac{1}{2}$		
Symmetry operations			
For $(0,0,0)$ + set			
(1) 1 (5) 2 $\frac{1}{4}$, y, 0 (9) 1 0, 0, 0 (13) a x, 0, z	(2) $2(0,0,\frac{1}{2}) = \frac{1}{4},0,z$ (6) $2 = x,0,\frac{1}{4}$ (10) $a = x,y,\frac{1}{4}$ (14) $c = 0,y,z$	(3) $4^+(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) x,x+\frac{1}{4},\frac{3}{8}$ (11) $\overline{4}^+ -\frac{1}{2},-\frac{1}{4},z; \frac{1}{2},-\frac{1}{4},\frac{3}{8}$ (15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) x+\frac{1}{2},\overline{x},z$	$(4) \ 4^{-}(0,0,\frac{3}{4}) \ \frac{1}{4},0,z$ $(8) \ 2 \ x,\overline{x}+\frac{1}{4},\frac{1}{8}$ $(12) \ \overline{4}^{-} \ 0,\frac{3}{4},z; \ 0,\frac{3}{4},\frac{1}{8}$ $(16) \ d(\frac{3}{4},\frac{3}{4},\frac{3}{4}) \ x,x,z$
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+$ set (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+$ (5) $2(0, \frac{1}{2}, 0) 0, y, \frac{1}{4}$ (9) $\overline{1} \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ (13) $c x, \frac{1}{4}, z$	(2) $2 \stackrel{0}{\rightarrow} 0, \frac{1}{4}, z$ (6) $2(\frac{1}{2}, 0, 0) x, \frac{1}{4}, 0$ (10) $b x, y, 0$ (14) $b \frac{1}{4}, y, z$	(3) $4^+(0,0,\frac{3}{4}) \frac{1}{4},\frac{1}{2},z$ (7) $2(\frac{1}{2},\frac{1}{2},0) x,x-\frac{1}{4},\frac{1}{4}$ (11) $\overline{4}^+ \frac{1}{2},\frac{1}{4},z;\frac{1}{2},\frac{1}{4},\frac{1}{4}$ (15) $d(-\frac{1}{4},\frac{1}{4},\frac{3}{4}) x+\frac{1}{2},\overline{x},z$	(4) $4^{-}(0,0,\frac{1}{4}) \frac{3}{4},0,z$ (8) $2 x, \overline{x} + \frac{3}{4}, \frac{3}{8}$ (12) $\overline{4}^{-} 0, \frac{1}{4}, z; 0, \frac{1}{4}, \frac{3}{8}$ (16) $d(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) x, x, z$

 magnetic moments are rotated under symmetry operations (M_x,M_y,M_z) -> (-M_y,M_x,M_z)

- combining site shuffling and moment rotation
- propagation vector k=(0,0,0) or k=(1,0,0)

Assumption: magnetic order does not enlarge the unit cell

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	8	7	5	6
4	4	3	1	2	7	8	6	5
5	5	6	7	8	1	2	3	4
6	6	5	8	7	2	1	4	3
7	7	8	6	5	4	3	1	2
8	8	7	5	6	3	4	2	1
9	3	4	1	2	7	8	5	6
10	4	3	2	1	8	7	6	5
11	1	2	4	3	6	5	7	8
12	2	1	3	4	5	6	8	7
13	7	8	5	6	3	4	1	2
14	8	7	6	5	4	3	2	1
15	5	6	8	7	2	1	3	4
16	6	5	7	8	1	2	4	3
17	2	1	4	3	6	5	8	7
18	1	2	3	4	5	6	7	8
19	4	3	1	2	7	8	6	5
20	3	4	2	1	8	7	5	6
21	6	5	8	7	2	1	4	3
22	5	6	7	8	1	2	3	4
23	8	7	5	6	3	4	2	1
24	7	8	6	5	4	3	1	2
25	4	3	2	1	8	7	6	5
26	3	4	1	2	7	8	5	6
27	2	1	3	4	5	6	8	7
28	1	2	4	3	6	5	7	8
29	8	7	6	5	4	3	2	1
30	7	8	5	6	3	4	1	2
31	6	5	7	8	1	2	4	3
32	5	6	8	7	2	1	3	4

Origin at $\overline{1}$ at $b(c, a)$)d, at $0, -\frac{1}{4}, \frac{1}{8}$ from $\frac{1}{4}$		
Asymmetric unit ($0 \le x \le \frac{1}{2}; -\frac{1}{4} \le y \le \frac{1}{4}; 0 \le z \le \frac{1}{2}$		
Symmetry operations			
For $(0,0,0)$ + set	(2) $2(0,0,\frac{1}{2}) = \frac{1}{4},0,7$	(3) $4^+(0,0,\frac{1}{4}) -\frac{1}{4},\frac{1}{2},7$	$(4) 4^{-}(0,0,\frac{3}{2}) \frac{1}{2},0,7$
(5) 2 $\frac{1}{2}$ $\frac{1}{2}$, y, 0 (9) $\overline{1}$ 0.0.0	(6) $2^{-} x, 0, \frac{1}{4}$ (10) $a^{-} x, y, \frac{1}{4}$	(7) $2(\frac{1}{2},\frac{1}{2},0)$ $x,x+\frac{1}{4},\frac{3}{8}$ (11) 4^{+} $\frac{1}{2},-\frac{1}{4},7,\frac{1}{2},-\frac{1}{4},\frac{3}{8}$	$(12) \ \overline{4}^{-} \ 0 \ \overline{3} \ 7^{-} \ 0 \ \overline{3} \ \overline{4}^{-} \ 0 \ \overline{3}^{-} \ \overline{4}^{-} \ 0 \ $
(13) $a x, 0, z$	(14) c 0, y, z	(15) $d(\frac{1}{4},-\frac{1}{4},\frac{1}{4}) x+\frac{1}{2},\bar{x},z$	(16) $d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) x, x, z$
For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set	(2) $2 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$	(3) $4^+(0,0,\frac{3}{2}) + \frac{1}{2} \frac{1}{2}$	$(4) 4^{-}(0 0 4) 3 0 7$
(1) $2(0, 1, 2)$ (5) $2(0, \frac{1}{2}, 0)$ $0, y, \frac{1}{4}$ (9) $\overline{1}$ 1 1 1 1	$\begin{array}{c} (2) & 2 & (3,4,2) \\ (6) & 2(\frac{1}{2},0,0) & x,\frac{1}{4},0 \\ (10) & b & x & y,0 \end{array}$	$\begin{array}{c} (3) & 1 & (3,3,4) & 4,2,2 \\ (7) & 2(\frac{1}{2},\frac{1}{2},0) & x,x-\frac{1}{4},\frac{1}{4} \\ (11) & \overline{A}^{+} & 1 & 1 & 7 & 1 & 1 \end{array}$	$(4) = (0, 0, 4) + 4, 0, 2$ $(8) = 2 + x, \bar{x} + \frac{3}{4}, \frac{3}{4}$ $(12) = \bar{4} - 0 + z; 0 + \frac{3}{4}$
(13) $c x, \frac{1}{4}, z$	(14) $b = \frac{1}{4}, y, z$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(12) 4^{-} $0, \overline{4}, \overline{2}, \overline{0}, \overline{4}, \overline{8}$ (16) $d(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) x, x, z$

• magnetic moments are rotated under symmetry operations $(M_x, M_y, M_z) \rightarrow (-M_y, M_x, M_z)$

• combining site shuffling and moment rotation

 Find a basis that brings all 32 24x24 matrices to a smallest block-diagonal form

 A second order phase transition involves an order parameter belonging to a single irreducible representation

(Θ	0	0	Θ	0	0	Θ	1	0	Θ	0	0	Θ	0	0	Θ	0	0	Θ	0	0	0	0	0
	Θ	0	0	Θ	0	0	-1	0	0	Θ	0	0	Θ	0	0	Θ	0	0	Θ	0	0	0	0	0
	Θ	0	0	Θ	0	0	0	0	1	Θ	0	0	Θ	0	0	Θ	0	0	0	0	0	0	0	0
	Θ	0	0	Θ	0	0	0	0	0	0	1	0	Θ	0	0	0	0	0	0	0	0	0	0	0
	Θ	0	0	Θ	0	0	0	0	0	-1	0	0	Θ	0	0	Θ	0	0	0	0	0	0	0	0
	Θ	0	Θ	Θ	0	0	0	0	0	0	Θ	1	Θ	0	0	0	0	0	0	0	0	0	0	0
	Θ	Θ	0	Θ	1	0	0	0	0	0	0	0	Θ	0	0	Θ	0	0	0	0	0	0	0	0
	Θ	0	0	-1	0	0	0	0	0	0	0	0	Θ	0	0	Θ	0	0	0	0	0	0	0	0
	Θ	0	0	Θ	0	1	0	0	0	Θ	0	0	Θ	0	0	Θ	0	0	Θ	0	0	0	0	0
	Θ	1	0	Θ	0	0	0	0	0	0	0	0	Θ	0	0	0	0	0	0	0	0	0	0	0
	-1	0	0	Θ	0	0	Θ	0	0	Θ	0	0	Θ	0	0	Θ	0	0	0	0	0	0	0	0
	Θ	0	1	Θ	0	0	0	0	0	0	0	0	Θ	0	0	Θ	0	0	0	0	0	0	0	0
	Θ	0	0	Θ	0	0	0	0	0	Θ	0	0	Θ	0	0	Θ	0	0	0	0	0	0	1	0
	Θ	0	0	Θ	0	0	0	0	0	0	0	0	Θ	0	0	0	0	0	0	0	0	-1	0	0
r	Θ	0	0	Θ	0	0	0	0	0	0	0	0	Θ	0	0	0	0	0	0	0	0	0	0	1
	Θ	0	0	Θ	0	0	0	0	0	0	0	0	Θ	0	0	0	0	0	0	1	0	0	0	0
	Θ	0	0	Θ	0	0	0	0	0	0	Θ	0	Θ	0	0	Θ	0	0	-1	0	0	0	0	0
	Θ	0	0	Θ	0	0	0	0	0	0	0	0	Θ	0	0	0	0	0	0	0	1	0	0	0
	Θ	0	0	Θ	0	0	0	0	0	0	0	0	Θ	1	0	0	0	0	0	0	0	0	0	0
	Θ	0	0	Θ	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0
	Θ	0	0	0	0	0	0	0	0	0	0	0	Θ	0	1	0	0	0	0	0	0	0	0	0
	Θ	0	0	Θ	0	0	0	0	0	0	0	0	Θ	0	0	0	1	0	0	0	0	0	0	0
	Θ	0	0	0	0	0	0	0	0	0	0	0	Θ	0	0	-1	0	0	0	0	0	0	0	0
	Θ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

Assumption: magnetic order does not enlarge the unit cell

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	2	1	8	7	5	6
4	4	3	1	2	7	8	6	5
5	5	6	7	8	1	2	3	4
6	6	5	8	7	2	1	4	3
7	7	8	6	5	4	3	1	2
8	8	7	5	6	3	4	2	1
9	3	4	1	2	7	8	5	6
10	4	3	2	1	8	7	6	5
11	1	2	4	3	6	5	7	8
12	2	1	3	4	5	6	8	7
13	7	8	5	6	3	4	1	2
14	8	7	6	5	4	3	2	1
15	5	6	8	7	2	1	3	4
16	6	5	7	8	1	2	4	3
17	2	1	4	3	6	5	8	7
18	1	2	3	4	5	6	7	8
19	4	3	1	2	7	8	6	5
20	3	4	2	1	8	7	5	6
21	6	5	8	7	2	1	4	3
22	5	6	7	8	1	2	3	4
23	8	7	5	6	3	4	2	1
24	7	8	6	5	4	3	1	2
25	4	3	2	1	8	7	6	5
26	3	4	1	2	7	8	5	6
27	2	1	3	4	5	6	8	7
28	1	2	4	3	6	5	7	8
29	8	7	6	5	4	3	2	1
30	7	8	5	6	3	4	1	2
31	6	5	7	8	1	2	4	3
32	5	6	8	7	2	1	3	4

• 24x24 matrices split into:

4 x 2D 4 x 4D

• In general, any physical quantity can be expressed in terms of

8 x 1D 6 x 2D

for the factor group G(k)/T(k) under consideration (32 symmetry operations, 14 classes)

• 24x24 matrices split into:

4 x 2D 4 x 4D

• In general, any physical quantities can be expressed in terms of

8 x 1D 6 x 2D (Gamma1-Gamma6)

for the factor group G(k)/T(k) under consideration (32 symmetry operations, 14 classes)

Gamma2

-	lx	1y	1z	2x	2у	2z	3x	Зу	3z	4x	4y	4z	5x	5y	5z	6x	6у	6z	7x	7у	7z	8x	8y	8z
1	-1	0	0	-1	0	0	-1	0	0	-1	0	0	0	1	0	0	1	0	0	1	0	0	1	0
2	Θ	-1	Θ	Θ	-1	Θ	0	-1	0	0	-1	Θ	1	Θ	Θ	1	0	Θ	1	Θ	Θ	1	0	0
3	Θ	1	Θ	Θ	1	Θ	Θ	1	Θ	Θ	1	Θ	1	Θ	Θ	1	Θ	Θ	1	Θ	Θ	1	Θ	0
4	1	Θ	0	1	Θ	Θ	1	Θ	0	1	Θ	0	0	1	Θ	0	1	0	0	1	0	Θ	1	0

Gamma3

	lx	1y	1z	2x	2у	2z	3x	Зу	3z	4x	4y	4z	5x	5y	5z	6x	6y	6z	7x	7у	7z	8x	8y	8z
1	-1	0	0	1	0	0	0	0	0	0	0	0	-1	0	Θ	1	0	Θ	0	0	0	0	0	0
2	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	-1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	-1	Θ	Θ	1	0
3	Θ	- 1	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	-1	Θ	Θ	Θ	Θ	Θ	Θ	0
4	0	0	0	Θ	0	0	1	0	0	-1	0	0	Θ	0	0	0	0	0	1	Θ	0	-1	Θ	0

Gamma4

	1x	1y	1z	2x	2у	2z	3x	Зу	3z	4x	4y	4z	5x	5y	5z	6x	6y	6z	7x	7y	7z	8x	8y	8z
1	-1	0	0	1	0	0	0	-1	0	0	1	0	1	0	0	-1	0	0	0	-1	Θ	0	1	0
2	-1	Θ	Θ	1	Θ	Θ	Θ	1	Θ	Θ	-1	Θ	1	Θ	Θ	-1	Θ	Θ	Θ	1	Θ	Θ	-1	0
3	Θ	-1	0	0	1	Θ	-1	Θ	Θ	1	Θ	Θ	Θ	-1	0	0	1	Θ	1	0	0	- 1	Θ	0
4	0	-1	Θ	0	1	Θ	1	Θ	Θ	-1	Θ	Θ	Θ	-1	Θ	Θ	1	Θ	-1	Θ	Θ	1	Θ	Θ

Gamma5

	lx	1y	1z	2x	2у	2z	3x	Зу	3z	4x	4y	4z	5x	5y	5z	6x	6y	6z	7x	7у	7z	8x	8y	8z
1	-1	0	0	-1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	1	Θ	Θ	-1	Θ	Θ	-1	0
3	Θ	-1	Θ	Θ	-1	Θ	Θ	1	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
4	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	1	Θ	Θ	-1	Θ	Θ	-1	Θ	Θ

	1x	1y	1z	2x	2у	2z	Зx	Зу	3z	4x	4y	4z	5x	5y	5z	6x	6у	6z	7x	7у	7z	8x	8y	8z
1	-1	0	0	-1	O	0	-1	0 <mark>_</mark>	Θ	-1	0	O	0	1	0	0	1	0	0	1	0	0	1	0
2	0	-1	0	Θ	1	0	20	C-IC	70	2P1		/9	h		ro	1	00	0	1	0	0	1	0	0
3	Θ	1	Θ	Θ				212		9		Val	1	\sim		y 1			1	Θ	Θ	1	Θ	0
4	1	Θ	Θ	1	Θ	Θ	1	0	0	1	0	Θ	0	1	0	0	1	Θ	0	1	Θ	Θ	1	0

Gamma3

	lx	1y	1z	2x	2у	2z	3x	Зу	3z	4x	4y	4z	5x	5y	5z	6x	6y	6z	7x	7у	7z	8x	8y	8z
1	-1	0	0	1	0	0	0	0	0	0	0	0	-1	0	0	1	0	0	0	0	0	0	0	0
2	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	-1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	-1	Θ	Θ	1	0
3	Θ	- 1	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	-1	Θ	Θ	Θ	Θ	Θ	Θ	0
4	Θ	0	Θ	Θ	0	Θ	1	Θ	Θ	-1	0	Θ	Θ	Θ	0	0	Θ	0	1	Θ	0	-1	Θ	0

Gamma4

	lx	1y	1z	2x	2у	2z	3x	3у	3z	4x	4y	4z	5x	5y	5z	6x	6у	6z	7x	7у	7z	8x	8y	8z
1	-1	0	0	1	0	0	0	-1	0	0	1	0	1	0	0	-1	0	0	0	-1	0	0	1	0
2	-1	Θ	Θ	1	Θ	Θ	Θ	1	Θ	Θ	-1	Θ	1	Θ	Θ	-1	Θ	Θ	Θ	1	Θ	Θ	-1	0
3	0	-1	Θ	Θ	1	0	-1	0	Θ	1	0	Θ	Θ	-1	0	Θ	1	0	1	Θ	Θ	-1	0	0
4	Θ	-1	Θ	Θ	1	Θ	1	Θ	Θ	-1	Θ	Θ	Θ	-1	Θ	Θ	1	Θ	-1	0	Θ	1	Θ	Θ

Gamma5

	1x	ly	1z	2x	2у	2z	3x	Зу	3z	4x	4y	4z	5x	5y	5z	6x	6у	6z	7x	7y	7z	8x	8y	8z
1	-1	0	0	-1	0	0	1	Q	0	1	0	0	0	0	0	0	0	0	0	0	Θ	0	0	0
2	Θ	Θ	Θ	Θ	Ð	00	P C	CIC		Ø	0	19+	h		r g	0	ND	6	0	-1	Θ	0	- 1	Θ
3	Θ	-1	Θ	Θ			9	212		0		V I C	6	∕₀		0	U a		0	Θ	Θ	Θ	0	Θ
4	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	1	Θ	Θ	-1	Θ	Θ	-1	Θ	Θ

Requires two order parameters of different symmetries in 141/acd

Symmetry of the magnetic order

Gamma3

Gamma4

invariant under

1,2,9,10,21,22,29,30

1,2,5,6,9,10,13,14

Symmetry of the lattice

invariant under with timer reversal 5,6,13,14,17,18,25,26

17,18,21,22,25,26,29,30

Symmetry of the lattice

Gamma3

Separately, Gamma3 and Gamma4 both leads to lattice symmetry of lbca, but...

when simultaneously present, the lattice will be I2/a (C2/c)

Gamma4

invariant under invariant under with timer reversal 1,2,9,10 17,18,25,26

Summary

DFT results from I41/acd (Sublattice A and B symmetrywise equivalent)

Spontanesous disproportionation!

Actual space group 141/a (glide planes c &d removed)

Magnetism drives lattice symmetry lowering!

Modulation of moment size, a new type of instability from pseudospins!