Exotic ‘superuniversal’
quantum phase transitions
in two dimensions

Byungmin Kang KI/-'S &=~
Talk @ Frustrated Magnetism



Collaborators

Sid (Oxford) Drew (UT Austin) Romain (Amherst) Snir (Hebrew)

ref.) BK, S.A. Parameswaran, A.C. Potter, R.Vasseur, and S. Gazit,
“*Superuniversal’ infinite-randomness deconfinement transitions in
two dimensions”, in preparation



Main Goal

Our model

Using a) strong disorder RG & b) quantum Monte
Carlo to understand exotic quantum phase
transitions



Introduction
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(Quantum) Phase Transition (T>0)

Phase diagram of |D transverse field Ising model
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Kitaev’s
quantum double model



Toric Code

= spin-1/2
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sum of commuting projectors!



Toric Code - Ground State(s)

o = spin-1/2
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Toric Code = Z; gauge theory

H=-J,» B, with gauge constraints A4, =1

p



Toric Code = Z; gauge theory

H=-J, Y A, with gauge constraints B, =1

via E&M duality®

b Buerschaper, Christandl, Kong, & Aguado, Nucl. Phys. B (201 3)



Toric Code - Excitations

O = electric charge

. = magnetic vortex

Electric charge lives on a vertex (A, = 0)
Magnetic vortex lives on a plaquette (B, =0)

These are created by topological “string operators”



Toric Code - Excitations

® = electric charge = e

. = magnetic vortex = m

Anyonic excitations: 1, e, m, and € = e X m

Fusionrules: e xe=1 e XxXm =c¢€
mxxXm=1exXxe=m
eXe=1 mXxXe=e



Toric Code - Excitations

O = electric charge = e

‘ = magnetic vortex = m
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Quantum Double Model

For any finite group G,
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Hamiltonian: H=-J,» A, - J,» B,
v p

sum of commuting projectors!



Quantum Double Model

We consider |H = —J, » A, with B, =1

In general, the model is different from®
H=-J,» B, with 4, =1
p

Nonetheless, our model realizes non-abelian anyons
(labelled by irreducible representation of G)

b Buerschaper, Christandl, Kong, & Aguado, Nucl. Phys. B (201 3)



(Quantum) Phase Transition

Topological-to-trivial (quantum) phase transition by
adding “transverse-field” term

Gauge constraints
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Quantum) Phase Transition

Introduce disorder in coupling constants
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Strong disorder RG



Strong Disorder RSRG

1) Pick the strongest term in the Hamiltonian

2) Block diagonalize the Hamiltonian (using perturbation
theory) and pick the ground-space block

3) Repeat until the renormalized Hamiltonian becomes trivial
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Dasgupta & Ma, PRB, (1980); DS Fisher, PRB, (1994).




T-field decimation

1) Pick the strongest term in the Hamiltonian

H:...(_‘_;%AW)...

Je ”’

where () <
}I,l

< h/l




Vertex term decimation

1) Pick the strongest term in the Hamiltonian
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Strong Disorder RSRG

Key observations of SD RSRG:

|. Number of states is decreased
2. Resulting Hamiltonian is self-similar

3.“Disorder’ is increased
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Strong Disorder RSRG

3) We can keep iterating the RSRG:

g8




Strong Disorder RSRG

Using Ising-Z, gauge theory duality, RSRG rules are the same

as 2D dlsordered Ising model IS LA e :#
Motrunich, Mau, Huse, DS Fisher, PRB (2000); | 7 Z
# Kovacs & Igloi PRB (2010);

Laumann, Huse, Ludwig, Refael, Trebst, Troyer,  yA8ZZ0# .
PRB (2012) s - ssnaseds - i




Exotic quantum phase transition

Using a tuning parameter s

the QCP satisfies

|.“z=00" critical point: z ~ §~ %
2.“Average” correlation function: [G(r)] ;. ~ —

3.“Typical” correlation function: —log Giyp(r) ~ r*



Strong Disorder RSRG-X

Target eXcited state by choosing an excited subspace block

H = — —> =
_ 1

The whole many-body spectrum can be constructed

SR

| ( Excited eigenstate ~ Pekker, Refael, Altman, Demler,
23 ( 3 — Oganesyan, PRX (2014)
r.;:: ( E - Vasseur, Potter, Parameswaran,
g I PRL (2015)
0 1 2 3 You, Qi, Xu, PRB (2015)

RG depth— BK, Potter, Vasseur, PRB (2016)



Strong Disorder RSRG-X

For abelian topological order,

We can keep iterating the RSRG-X:

RSRG-X is the same as RSRG except for the sign change in
coupling constants



Quantum Monte Carlo



Metropolis Monte Carlo

Want to compute the “ensemble” average via “time”
average:

{Ci} is generated via Markov moves satisfying

|. Ergodicity, i.e., all configuration is generated

2. Detailed balance, i.e., P(C'|C)P(C) = P(C|C")P(C")



What is “quantum”™ MC/

Quantum Monte Carlo is the classical MC in disguise
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Quantum Monte Carlo

QMC on disordered gauge theory is possible, but has
no available cluster update

We simulate dual Potts model instead and use
Swendsen-Wang cluster update

Moreover, we employ stochastic series expansion
(SSE) which is free from Trotter error



Disordered Potts model via QMC

To identify the critical point, we employ the binder
ratio, a dimensionless observable
1l
Bav — 5 3 <M2>2

d dis

which goes to | in ferro-, 0 in para-magnetic phase.

@ceritical point, the binder ratio independent of
system size



Stochastic Series Expansion

Consider 7 = Z W(C) = Tr{e P}
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Since H is a2 sum of Iocal terms, H = ZHI

yyys H | H, o)

{a}n OI

stochastically sample {a,} and {H,}’s via Markov
moves



Difficulties

Disordered systems with random couplings require
large number of disorder averages; we use ~10,000
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Difficulties

Critical point is z=00, i.e., cannot use T as a scaling
variable; we take a reliable T—0 limit for each L
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Scaling analysis (Q=3)

vomec ~1.19

LrsrRG ~ .20




Correlation function @critical pt

Power law decay of average correlation function

Typical correlation function decays faster
x(r)
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Conclusion



Coda

Large class of disordered gauge theories share the
common critical point, an infinite randomness fixed
point

Provide a strong disorder RSRG picture to
understand the infinite randomness fixed point

RSRG results are Independently checked via QMC



