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FIG. 3. (Color online) Snapshots of spin configurations above
and below T

c

= 0.0401|�|: (a) T = 0.05 and (b) T = 0.03.
In the low-T phase, spins predominately point toward the six
cubic directions.

the ground-state manifold. Without this feature, di↵er-
ent {⌘

↵

} becomes disjoint from each other. Interestingly,
our MC simulations find a freezing phenomenon of the
vector n̂ at a very low temperature T

c

⇡ 0.04 |�|. This
is illustrated by snapshots of spins above and below this
critical temperature; see Fig. 3. At T > T

c

, the spins and
the directional vector n̂ exhibit an emergent spherical
symmetry even at temperatures well below the exchange
energy scale |�|. This rotational symmetry is lost at
the critical temperature, and spins mainly point toward
the six cubic axes, or equivalently the directional vector
freezes to one of the cubic directions, i.e. n̂ ⇠ (1, 0, 0),
(0, 1, 0), or (0, 0, 1) at T < T

c

. As states parameter-
ized by di↵erent n̂ are degenerate at the mean-field level,
the cubic directions are selected by thermal fluctuations
through the order-by-disorder mechanism. Equivalently,
this can also be viewed as the entropic selection, result-
ing from an e↵ective free energy Fani / �(a4 + b

4 + c

4).
Indeed, simple analysis shows that these cubic directions
allow for the largest number of zero modes at the har-
monic level. We note that similar cubic anisotropy is also
generated by quantum fluctuations [47].

It is crucial to note that although the spin-symmetry is
seemingly reduced from spherical to cubic when crossing
T

c

, this cannot be viewed as a true reduction of sym-
metries as the � model itself is already cubic-symmetric.
The apparent spherical symmetry at T

c

< T < |�| is
an emergent property of the phase, which is due to the
spatial fluctuations of directional vector n̂(r). Another
important observation is that while the degeneracy asso-
ciated with vector n̂ is lifted by thermal fluctuation, a
discrete macroscopic degeneracy persists due to the Ising
gauge symmetry of {⌘

↵

}, especially for classical spins.
Consequently, spins remain disordered at T < T

c

.

To resolve this issue and investigate the nature of the
low-T phase, we first note that the cubic spin-orbital
symmetry of the � model is indeed broken below T

c

, yet
in a complicated pattern: local spins have to pick one of
the six cubic directions in a coordinated way while pre-
serving the gauge symmetry of {⌘

↵

}. A convenient local
quantity to characterize the broken symmetry is the flux
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FIG. 4. (Color online) Plaquette order of hexagonal fluxes
on honeycomb lattice. Shaded hexagons have nonzero flux
W ⇠ 1, while empty hexagons have a vanishing W . Spins are
orthogonal to each other (with left handedness for ⇣ = �1)
on each shaded hexagon; their specific directions depend on
the local ⌘, as specified in the insets. The arrangement of
hexagons with finite W corresponds to the famous

p
3 ⇥

p
3

long-range order. Spins remain disordered due to uncorre-
lated ⌘

↵

on the shaded hexagons.

variable defined on each hexagon [10]:
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where S1,··· ,6 are the six spins around the ↵ hexagon.
These fluxes play an important role in the spin-1/2 Ki-
taev model as they are “integrals of motion” of the Kitaev
Hamiltonian [10]. In our case, the flux W

↵

is similarly a
gauge-invariant variable, that is independent of ⌘

↵

. On
the other hand, it can be used to characterize the order-
ing of n̂. To see this, we note that in the ground state,
they only take on three di↵erent values [47]: WA = ⇣a

6

for hexagons whose ⌘ is associated with component a,
and similarly WB = ⇣b

6 and WC = ⇣c

6 for the other
two sets of hexagons, where ⇣ = �sgn(�) As the vec-
tor n̂ freezes to one of the cubic directions, 2/3 of the
fluxes also vanish. Since hexagons of a given type form
an enlarged triangular lattice, the flux patten of the low-
T phase, e.g. W

A

⇡ 1, and W

B

⇡ W

C

⇡ 0, corresponds
to a broken translation symmetry; see Fig. 4. Impor-
tantly, the uncorrelated ⌘

↵

on hexagons with nonzero W

give rise to a disordered spin configuration. We note in
passing that plaquette orders with similar spatial pattern
also exist as ground state in J1-J2 quantum S = 1/2 and
S = 1 honeycomb Heisenberg model [52–55]. Our find-
ing shows a rare example of plaqutte ordering hidden in
a classical spin liquid on honeycomb lattice.

The
p

3⇥
p

3 arrangement of hexagons with nonzero W

shown in Fig. 4 suggests an order parameter

W̃ (Q) =
1

N

X

↵

W

↵

e

iQ·r↵
, (3)

which is the Fourier transform at wavevector Q =
(4⇡/3, 0), for characterizing the broken translation sym-
metry. We then performed extensive large-scale Monte
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FIG. 2. (Color online) Intensity plots of the momentum and energy dependence of the spectral function A11(q,ω) for (a) S = 1/2 and (b)
S = 3/2 along the high-symmetry paths in the Brillouin zone in Fig. 1(b). The dashed line is the linear SWT spectrum εq.

as shown in Fig. 2(a). The corresponding magnon excitations
acquire a finite lifetime due to three-particle magnon-magnon
interactions.8 The kinematic conditions required for such
processes are discussed in detail elsewhere,11 though we note
that the boundary of the decay region is due to emission of the
acoustic magnon εQ. This is distinct from the case of magnetic-
field-induced decays in the square-lattice antiferromagnet,
where the corresponding decay products are inside the decay
region and thus also unstable.33,36 As a consequence, the
boundaries of the HTAF decay region are sharply defined,
leading to a spectacular and robust quasiparticle “blowout”
when the single-magnon branch enters the decay region and
merges with the two-magnon continuum, as visible along
the MY path in Fig. 2(a). This effect resembles neutron
scattering observations of the so-called termination point for

the excitations of superfluid 4He37 and the triplet excitations
of spin-gap materials.38,39 Similar distortion of the excitation
curve in the vicinity of a continuum boundary was also
observed in other spin systems.40

One can see in Fig. 2(a) that the crossing between one-
particle spectrum and two-magnon continuum is accompanied
by the “edge” singularity, visible as the lowest-energy branch
for the K# line or as a “double-peak” structure for the #M
path if cutting along the ω axis. Such features are the van
Hove singularities11 due to the bottom of the two-magnon
continuum (see also Figs. 3, 4, and 8). Within the SWT, they
should be regularized by the higher order diagrams11 and, in
realistic systems, by a small interlayer coupling.34

While the role of interaction between magnons decreases
for S = 3/2, magnon decays remain highly visible, in
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FIG. 4. First column: dynamical structure factor obtained at the saddle-point level: (a) Szz
sp (q,ω), (b) Sxx

sp (q,ω) = Syy
sp (q, ω), and

(c) Ssp(q,ω) = Sxx
sp (q,ω) + Syy

sp (q,ω) + Szz
sp (q, ω). Second column: dynamical structure factor obtained after including the 1/N correction

(Gaussian fluctuations): (d) Szz(q,ω), (e) Sxx (q, ω) = Syy (q,ω), and (f) S(q, ω) = Sxx (q,ω) + Syy (q,ω) + Szz(q,ω). White dashed lines
indicate the magnon branches. The path within the hexagonal Brillouin zone is indicated in the inset of panel (a). The results correspond to
the triangular lattice size of Ns = 120 × 120 × 3 = 43 200, a value of the magnetic field h = 1/Ns , and analytic continuation iω → ω + iη+

with η+ = 0.01.

moves the spurious modes of the sp solution. This cancellation
does not persist if we include the other 1/N corrections shown
in Figs. 2(c)–2(e). The effects of the 1/N correction can be
better appreciated in the frequency dependence of Szz(q,ω)
for a fixed value of momentum k = (1.139, 0.337)π between
K ′ and M (see Fig. 5). The main contributions of the sp
solution are canceled exactly by the 1/N correction. This
cancellation is accompanied by the emergence of simple
poles associated with the collective modes of the ordered
state. A similar behavior (not shown in Fig. 5) is obtained
for the Sxx (q,ω) and Syy (q,ω) components. The removal
of the spurious modes and the emergence of magnon poles
are the most important qualitative changes relative to the
sp solution.

Closer inspection of the bottom and the top of the TSC
in Figs. 4(d)–4(f) reveals two additional differences. The sp
solution exhibits a large spectral weight at the bottom of the
TSC, which is transferred to the magnon peak after including
the Gaussian correction. In addition, a weak but sharp isolated
pole also appears right above the top edge of the TSC.
This sharp feature is expected to become overdamped upon

inclusion of four and higher spinon excitations resulting from
higher orders in the 1/N expansion.

Figure 6 shows a comparison of the resulting single-
magnon dispersion (white dashed line), coming from the out
of plane Szz(k,ω), with the one obtained from series expan-
sions [18] (white circles). The strong downward renormaliza-
tion with respect to LSWT predicted by SE is reproduced by
the SB theory at the Gaussian level, along with the appearance
of rotonic excitations around the M point. In particular, the
quantitative agreement becomes very good when the magnon
peaks are sharper, i.e., around the momenta K , K ′, and M.
Consistently with the fact that the ground state of the TLHM is
proximate to a quantum melting point, this result supports our
original hypothesis of describing the spin-1 magnon excitation
as a two-spinon bound state.

On the other hand, it is also important to analyze the qual-
itative differences between Figs. 4(d)–4(f) and the S(q,ω)
obtained from a large-S expansion [53]. The first obvious
qualitative difference is the structure of the high-energy con-
tinuum. In semiclassical approaches, this continuum arises
from two or more magnon modes. In large-N expansions, it

184403-13

In Fig. 8, we report the dynamical structure factor
for J2=J1 ¼ 0.125. The spin-liquid state is characterized
by a broad continuum that extends up to relatively large
energies. In particular, around the M points, the magnon
rotonlike minima of the ordered phase fractionalize into
an incoherent set of excitations at low energies. This
feature is compatible with the existence of Dirac points in
the unprojected spectrum of the auxiliary Hamiltonian
H0; see Fig. 8. By contrast, a strong signal in the lowest-
energy part of the spectrum is detected around the K
points, where the unprojected spinon spectrum is instead
gapped. In this respect, the Gutzwiller projection is
fundamental to include interaction among spinons in a
nonperturbative way and give a drastic modification of
the low-energy features. This is a distinctive aspect of
the triangular lattice, since, on the square lattice, all the

low-energy (gapless) points observed in the presence of
the Gutzwiller projector [i.e., q ¼ ð0; 0Þ, ðπ; πÞ, ðπ; 0Þ,
and ð0; πÞ] already exist in the noninteracting picture
[51]; see Fig. 9. We would like to emphasize that, in
contrast to the magnetically ordered phase, where no
visible spectral weight is present right above the magnon
branch (see Fig. 3), in the spin-liquid phase the con-
tinuum is not separated from the lowest-energy excita-
tion. This outcome corroborates the fact of having
deconfined spinons in the magnetically disordered phase.
The intense signal at K points immediately implies
strong (but short-range) antiferromagnetic correlations
in the variational wave function, which are absent in the
unprojected π-flux state (by contrast, on the square
lattice, the π-flux state already has significant antiferro-
magnetic correlations built in it).

FIG. 8. The dynamical structure factor for the J1 − J2 Heisenberg model on the 30 × 30 cluster with J2=J1 ¼ 0.125. The variational
results (left) are compared to the ones obtained from the unprojected Abrikosov fermion Hamiltonian H0 of Eq. (13) with t ¼ 1 and
h ¼ 0 (right). The path along the Brillouin zone is shown in Fig. 1. We applied a Gaussian broadening of σ ¼ 0.02J1 to the variational
results. Notice that, for the unprojected data, the energy scale is given by the hopping amplitude t of the unprojected Hamiltonian
Eq. (13), instead of J1. In addition, the broadening has been rescaled in order to account for the larger bandwidth of the spectrum.

FIG. 9. The dynamical structure factor for the J1 − J2 Heisenberg model on the square lattice (22 × 22) with J2=J1 ¼ 0.55. The
variational results (left) are compared to the ones obtained from the unprojected Abrikosov fermion Hamiltonian H0 (right), which
contains a flux-phase hopping (of strength t) and a dxy pairing (see Ref. [46] for details). We applied a Gaussian broadening of
σ ¼ 0.02J1 to the variational results. Notice that, for the unprojected data, the energy scale is given by the hopping amplitude t of the
unprojected Hamiltonian of Ref. [46], instead of J1. In addition, the broadening has been rescaled in order to account for the larger
bandwidth of the spectrum.
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allows us to have a detailed resolution of the magnon
branch, which closely follows the one obtained by DMRG.
In particular, we can estimate the bottom of the continuum
by evaluating Eq ¼ minfEq−K

0 þ EK
0 ; E

qþK
0 þ E−K

0 g, where
we consider the possible decays involving a magnon at K
and −K. In doing so, we find that the lowest-energy
excitation Eq

0 is always below Eq, indicating that a well-
defined branch exists and magnon decay is avoided. We
finally remark that a roton minimum is detected along
the same path as the one studied by Verresen et al. [32],
strongly suggesting that this is a genuine feature of the
Heisenberg model.

B. J1 − J2 model

We now move to the case where also a next-nearest-
neighbor coupling J2 is present. Within our variational
approach, a gapless spin-liquid phase is stabilized for
0.08≲ J2=J1 ≲ 0.16; here, the fictitious magnetic field
vanishes in the thermodynamic limit and the best wave
function contains only fermionic hopping (with π flux
threading half of the triangular plaquettes) [13]. On a finite
size, a small value of h can be stabilized, as well as a tiny
Jastrow pseudopotential. Still, we verified that these ingre-
dients do not cause significant differences in the dynamical
structure factor. In Fig. 7, we show the results for the
30 × 30 cluster and for two values of J2=J1, which are very
close to the transition point, one still inside the magnetic
phase (J2=J1 ¼ 0.07) and the other one in the spin-liquid
region (J2=J1 ¼ 0.09). By approaching the quantum phase
transition, the major modification of the spectrum comes

from the softening of the magnon excitation at the M
points. This feature closely resembles the case of the
frustrated J1 − J2 model on the square lattice, previously
studied with the same numerical technique [46], where a
softening is clearly detected for q ¼ ðπ; 0Þ [and ð0; πÞ]. In
this latter case, this fact has been connected to the
progressive deconfinement of spinons that have gapless
(Dirac) points at q ¼ ð%π=2;%π=2Þ. We would like to
mention that the possibility to have (gapped) almost-
deconfined spinons in the unfrustrated Heisenberg model
has been suggested by a recent quantum Monte Carlo
calculation [49]; moreover, clear signatures for deconfined
spinons at the transition between an antiferromagnetically
ordered phase and a valence-bond crystal have been
reported in the so-called J −Q model [50]. On the
triangular lattice, the softening of the spectrum at the
M points is a direct consequence of the Dirac points at
q ¼ ð0;%π=

ffiffiffi
3

p
Þ in the spinon band structure. Therefore,

we expect both M and K points to be gapless at the
transition (as well as Y1, which can be obtained by
combining M and K vectors). Indeed, this is necessary
for a continuous phase transition, as the one that appears in
the J1 − J2 Heisenberg model, according to ground-state
calculations [13].

FIG. 6. The dynamical structure factor for the nearest-neighbor
Heisenberg model on a cylindrical geometry (84 × 6), to make a
close comparison with DMRG calculations by Verresen et al.
[32]. We apply a Gaussian broadening to the spectrum, which is
equivalent to the one of the aforementioned DMRG result
(σ ¼ 0.077J1). The path in the Brillouin zone is shown in the
inset and in Fig. 1 [point A lies at 1=4 of the Γ − K00 line, where
K00¼ð−2π=3;2π=

ffiffiffi
3

p
Þ, and point B lies at 1=4 of theK − K0 line].

The dashed line denotes the bottom of the continuum, which is
evaluated by taking Eq ¼ minfEq−K

0 þ EK
0 ; E

qþK
0 þ E−K

0 g, where
Eq
0 is the lowest energy for a given momentum q obtained within

our variational approach and K ¼ ð2π=3; 2π=
ffiffiffi
3

p
Þ.

FIG. 7. The dynamical structure factor for the J1 − J2 Heisen-
berg model on the 30 × 30 cluster with J2=J1 ¼ 0.07 (top) and
J2=J1 ¼ 0.09 (bottom). The path along the Brillouin zone is
shown in Fig. 1, and a Gaussian broadening of the spectrum has
been applied (σ ¼ 0.02J1).
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Classical Spin Liquid / Spin Glass?

!. The equation of motion, describing precession of each
spin around its local exchange field, is

dSi

dt
¼ "JSi #

X

j

Sj; (2)

where sites j are the nearest neighbors of i. The global spin
rotation symmetry of Eq. (1) implies conservation of total
spin in the dynamics.

Before presenting results from a molecular dynamics
study of Eq. (2), we consider an analytically tractable
stochastic model for the dynamic behavior. It is known
that static spin correlators for the classical Heisenberg
model are well described by those for n-component spins
in the large n limit [6,7]. Building on this, we set out to
endow the n ¼ 1 model with appropriate dynamics. First
we recall some details of the static model. Taking the
second form of the Hamiltonian in Eq. (1), a single spin
component in the large n limit has the unnormalized
probability distribution e""E with

"E ¼ 1

2

X

i

#s2i þ
1

2
"J

X

!

l2!; (3)

where now l! ¼ P
i2!si is the sum of ‘‘soft’’ spins ("1<

si <1) on tetrahedron !. The spin length is constrained
by the Lagrange multiplier #. For " ! 1, the second term
in Eq. (3) enforces all the l! to be zero. The interaction
term written directly in terms of the spins is 1

2"J
P

ijðAij þ
2$ijÞsisj, where Aij is the adjacency matrix for the pyro-
chlore lattice. We call the combination Aij þ 2$ij the
interaction matrix. Its eigenvalues v%ðqÞ are labeled by
wave vector q and a band index% 2 f1; 2; 3; 4g. Two bands
are flat [v1;2ðqÞ ¼ 0] and two (% ¼ 3; 4) are dispersive.
Requiring hs2i i ¼ 1=3 to mimic behavior of a single spin
component in the Heisenberg model, # ¼ 3=2þOðT=JÞ
for T ' J. We denote the Fourier transform of the spin
variables si by s

a
q, where a is a sublattice index, and define

the sublattice sum sq ¼ P4
a¼1 s

a
q. Transforming from saq to

the basis (denoted by tildes) that diagonalizes the interac-
tion matrix gives collective spin variables ~s%q . We want to
introduce time dependence and calculate the dynamic cor-
relation function Sðq; tÞ ¼ hsqðtÞs(qð0Þi, and its time
Fourier transform, the dynamic structure factor Sðq; !Þ,
measured using neutron scattering.

There are many choices of dynamics which reproduce
any given equilibrium distribution. To approximate Eq. (2)
we demand a local dynamics that conserves the total spin.
We can ensure this by requiring the spin on each site to
satisfy a local continuity equation. We introduce spin
currents on bonds of the pyrochlore lattice, which have
drift and noise terms. We take the drift current on a bond
linking two sites to be proportional to the difference in the
generalized forces @E=@si at the sites. This favors relaxa-
tion towards a configuration that minimizes E; the thermal
ensemble is maintained by noise which has an independent

Gaussian distribution on each bond. These assumptions
lead to the dynamical equations for the soft spins

dsi
dt

¼ !
X

l

"il
@E

@sl
þ &iðtÞ; (4)

where the matrix " is the lattice Laplacian (for a lattice
with coordination number z, "il ¼ Ail " z$il). The corre-
lator of the noise &iðtÞ at site i, h&iðtÞ&jðt0Þi ¼ 2T!"ij$ðt"
t0Þ, has an amplitude fixed by the requirement of thermal
equilibrium. The only free parameter in the model is the
rate !, which sets a time scale for dynamical processes.
The Langevin equation (4) is straightforward to solve in
the diagonal basis. It gives the correlation function

h~s%q ðtÞ~s'"qð0Þi ¼
$%'T

Jv% þ #T
e"!ð8"v%ÞðJv%þ#TÞt: (5)

The dynamic correlation function is then

Sðq; tÞ ¼
X4

%¼1

g%ðqÞh~s%q ðtÞ~s%"qð0Þi; (6)

where the structure factors g%ðqÞ are formed from the
eigenvectors of the interaction matrix. They satisfy the
sum rule

P4
%¼1 g%ðqÞ ¼ 4.

For completeness we present their explicit forms here. In
the notation of [7], where cab ¼ cosðqaþqb

4 Þ and cab ¼
cosðqa"qb

4 Þ with Q ¼ c2xy þ c2xy þ c2yz þ c2yz þ c2xz þ c2xz "
3 and defining P ) ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ
p

, the eigenvalues of the inter-
action matrix are v1;2 ¼ 0 and v3;4 ¼ 4* 2P. Further
defining s2a ) sin2ðqa4 Þ and cðabÞ ) cab þ cab, the g%ðqÞ
are for the degenerate flat bands

g ) g1 þ g2 ¼ 2" 4

3"Q
½cðxyÞs2z þ cðyzÞs

2
x þ cðzxÞs

2
y,

and for the dispersive bands

g3;4 ¼ 2" 1

2
gð1- 2P"1Þ - P"1ð2" cðyzÞ " cðxzÞ " cðxyÞÞ

which indeed satisfy g1 þ g2 þ g3 þ g4 ¼ 4.
We now examine the implications of this model for T '

J, emphasizing the features (i)–(iii) mentioned in our in-
troduction. From the exponent in Eq. (5) we obtain a
characteristic time for decay of correlations. (i) In the
vicinity of q ¼ 0 only the coefficient g4ðqÞ is nonzero
and so behavior is controlled by the fourth band whose
decay rate is ("1 ¼ 8!Ja2q2 þOðq4Þ, where a is the
pyrochlore site spacing; from this we identify the spin
diffusion constant in this model as D ¼ 8!Ja2, indepen-
dent of T. (ii) At a generic wave vector where g1 and g2 are
nonzero, most of the spectral weight is in the flat bands,
with decay rate ("1 ¼ 8!#T, independent of q; in an
approximation where only the flat bands contribute, this
implies the dynamic structure factor factorizes as
Sðq; !Þ ¼ SðqÞfð!Þ, a possibility noted in [6]. (iii) On
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• Landau-Lifshitz equation:

• Monte Carlo simulations

The stochastic model is microscopic and its main ingre-
dients are a conservation law and the pyrochlore lattice
structure. A long wavelength description is provided by the
mapping to flux fields [7,8] and it is interesting to see how
the dynamics translates under this mapping. Taking the low
temperature, small q limit, the correlators for the contin-
uum flux fields Bðq; tÞ implied by the stochastic model are

hBiðq; tÞBjð#q;0Þi /
!
!ij #

qiqj
q2

"
e#8!"Tt

þ
!
qiqj
q2

# qiqj
q2 þ##2

"
e#8!ðJa2q2þ"TÞt:

This result can be derived from a Langevin equation for the
continuum flux fields in which the ‘‘monopole density’’
$ ¼ r &B obeys a continuity equation @t$þr & j ¼ 0,
with monopole current density

j ¼ 8!"TB# 8!Ja2r$þ %ðtÞ: (8)

Here, the second term is the usual diffusion current arising
from a density gradient, while the first describes response
to an entropic force. This response involves a drift current
of the magnetic charge density $ in the field B that mimics
electrical conduction in electrodynamics and is responsible
for the flat relaxation rate. Related results have been ob-
tained recently in a study of dynamics in spin ice, repre-
sented by the Ising antiferromagnet [15]. In this case
monopoles are discrete and it has been argued that purely
diffusive dynamics are insufficient to explain observations
and a full description must include the network of Dirac
strings between monopoles, which are essentially entropic,
as well as dipolar interactions [15]. In spin ice, dipolar
interactions lead to Coulomb-law forces between mono-
poles. By contrast, in Eq. (8) Coulombic forces appear
purely entropically.

In summary, we have considered wave vector and fre-
quency resolved dynamics of the classical pyrochlore anti-
ferromagnet. The relaxational behavior is well captured by
a stochastic model that conserves total spin. Spin diffuses
with a diffusion constant independent of temperature, and
entropic forces drive currents to relax configurations with a
rate independent of wave vector and inversely proportional
to temperature.
This work was supported in part by EPSRC Grant

No. EP/D050952/1.
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FIG. 3 (color online). Intensity map of &Sðq; !Þ in the
ðqx; qx; qzÞ plane at &J ¼ 500. (a) Lower panel: Zero frequency
(data divided by 1:25' 105); white line is path P . Upper
panel: ! ¼ 2:5J; black circle is centered on a pinch point.
(b) Section along path segment P 1 (see text).
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The stochastic model is microscopic and its main ingre-
dients are a conservation law and the pyrochlore lattice
structure. A long wavelength description is provided by the
mapping to flux fields [7,8] and it is interesting to see how
the dynamics translates under this mapping. Taking the low
temperature, small q limit, the correlators for the contin-
uum flux fields Bðq; tÞ implied by the stochastic model are

hBiðq; tÞBjð#q;0Þi /
!
!ij #

qiqj
q2

"
e#8!"Tt

þ
!
qiqj
q2

# qiqj
q2 þ##2

"
e#8!ðJa2q2þ"TÞt:

This result can be derived from a Langevin equation for the
continuum flux fields in which the ‘‘monopole density’’
$ ¼ r &B obeys a continuity equation @t$þr & j ¼ 0,
with monopole current density

j ¼ 8!"TB# 8!Ja2r$þ %ðtÞ: (8)

Here, the second term is the usual diffusion current arising
from a density gradient, while the first describes response
to an entropic force. This response involves a drift current
of the magnetic charge density $ in the field B that mimics
electrical conduction in electrodynamics and is responsible
for the flat relaxation rate. Related results have been ob-
tained recently in a study of dynamics in spin ice, repre-
sented by the Ising antiferromagnet [15]. In this case
monopoles are discrete and it has been argued that purely
diffusive dynamics are insufficient to explain observations
and a full description must include the network of Dirac
strings between monopoles, which are essentially entropic,
as well as dipolar interactions [15]. In spin ice, dipolar
interactions lead to Coulomb-law forces between mono-
poles. By contrast, in Eq. (8) Coulombic forces appear
purely entropically.

In summary, we have considered wave vector and fre-
quency resolved dynamics of the classical pyrochlore anti-
ferromagnet. The relaxational behavior is well captured by
a stochastic model that conserves total spin. Spin diffuses
with a diffusion constant independent of temperature, and
entropic forces drive currents to relax configurations with a
rate independent of wave vector and inversely proportional
to temperature.
This work was supported in part by EPSRC Grant

No. EP/D050952/1.
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unclear and of ongoing interest [9]. More pressingly, there
appear to be proximate spin liquids [10,11], such as, possibly,
the currentlymuch-studied α-RuCl3 [2,5,11–19], whose low-
energy physics is consistent with spin waves on an ordered
background, but whose broad high-energy features resemble
those of a KSL. Specifically, for intermediate energy scales,
there are starlike features [2] apparently arising from a
combination of spin-wave and QSL physics.
In this Letter, we first revisit the ground state phase

diagram and confirm the previously found phases. The
infinite cylinder geometry allows us to numerically confirm
that the gaplessness of the KSL is robust throughout the
entire phase. Second, we use a recently introduced MPS
based time evolution algorithm [20] to obtain the dynami-
cal spin structure factor. We benchmark our method by
comparing it to exact results for the Kitaev model and find
good agreement. We calculate the spectra of different
(nonsoluble) phases of the KHM.Most notably, we identify
broad high-energy continua even in ordered phases, which
are, moreover, similar to the high-energy features in the
nearby spin liquid phase. This provides a concrete reali-
zation of the concept of a proximate spin liquid, which was
recently invoked in the context of neutron scattering
experiments on α-RuCl3.
Ground state phase diagram.—We use the infinite size

variant of the DMRG (iDMRG) algorithm on the KHM on
infinite cylinders to map out the phase diagram. We choose
cylinder geometries such that the corresponding momen-
tum cuts contain the gapless Majorana modes of the Kitaev
spin liquid. For the pure isotropic Kitaev model, there are
gapless Majorana cones on the corners of the first Brilluoin
zone, Fig. 1(b). The full KHM has a C6 symmetry, which
means that in the 2D limit these cones cannot shift. The
iDMRG method determines the ground state of systems of
size L1 × L2, where L1 is in the thermodynamic limit and
L2 a finite circumference of up to 12 sites, being well
beyond what is achievable in exact diagonalization. While,
traditionally, iDMRG is used for finding the ground state of
one-dimensional systems, it has become a fairly unbiased
method for studying two-dimensional frustrated systems.
The resulting phase diagram for L2 ¼ 12 is shown in

Fig. 2 (for the iDMRG simulations, we keep χ ¼ 1200
states), which agrees with previous studies [4,21–25]. For
this L2, the system is compatible with the sublattice trans-
formation that maps zigzag to antiferromagnetic (AFM) and
stripy to ferromagnetic (FM) [22]. Plotted are the ground
state energy and the entanglement or von Neumann entropy
S ¼ −Trρred log ρred of the reduced density matrix ρred for a
bipartitioning of the cylinder by cutting along a ring. Both
the cusps in the energy density and the discontinuities of the
entanglement entropy indicate first order transitions. A
careful finite size scaling is difficult because of the large
bond dimension needed, and thus it is not possible to make
definite statements about whether the transitions remain first
order in the limit L2 → ∞. The symmetry broken phases can

be identified by measuring the local magnetization. We
identify a Néel phase (−0.185 < α=π < 0.487) that extends
around the pure antiferromagnetic Heisenberg [26] point,
the corresponding zigzag phase (0.513 < α=π < 0.894),
a ferromagnetic phase around the pure FM Heisenberg
point (0.894 < α=π < 1.427), and its stripy phase (1.559 <
α=π < 1.815). The two KSLs between Néel and zigzag as
well as between FMand stripy are confirmed to be gapless, as
expected for theB phase. For example, ifL2 is amultiple of 6,
we use the finite-entanglement scaling approach [29–31] and
extract the expected chiral central chargec ¼ 1 for bothKSLs
[28], with each of the two Majorana cones contributing
c ¼ 1=2. Note that when a gapless spin liquid is placed on a
cylinder, the gauge field generically adjusts to open a gap
[34]. In order to see gapless behavior, we have to initiate
the iDMRG simulations in the gapless sector to access a
metastable state [28]. The gapped ground state having a
nonzero flux through the cylinder overestimates the stability
of theQSLphases. It is notable howwell thephaseboundaries
agree with those from the infinite projected entangled pair
state (iPEPS) simulations [21].
Dynamical spin structure factor Sðk;ωÞ.—Starting from

a ground state obtained using iDMRG, we calculate
Sðk;ωÞ by Fourier transforming the dynamical correlation
function Cγγðr; tÞ ¼ hSγrðtÞSγ0ð0Þi. The real-time correla-
tions can be efficiently obtained using a recently introduced
matrix-product operator based time evolution method [20].
This allows for long-range interactions resulting from
unraveling the cylinder to a one-dimensional system which
render standard methods like the time-evolving block
decimation inefficient. Following the general strategy laid
out in Refs. [35–37], we perform the simulations for an
infinite cylinder with a fixed circumference. Note that
the entanglement growth and the resulting growth of the

FIG. 2. Phase diagram for an infinite cylinder with circum-
ference L2 ¼ 12 obtained using iDMRG. The black line corre-
sponds to the ground state energy density, and the blue line to the
entanglement entropy for a bipartition of the cylinder into a left
and right half. (Insets) The ordering pattern of the magnetic
phases. Two spin liquid phases exist around the pure Kitaev
model (α ¼ 0.5π and 1.5π). The results of exact diagonalization
(ED) [4] and infinite PEPS [21] are illustrated at the top.
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required number of states is generically slow, as the ground
state is only locally perturbed, and thus long times can be
reached even in the cylinder geometry. We show results
obtained for 0 ≤ t ≤ T and, to avoid Gibbs oscillations, we
multiply our real-time data by a Gaussian (σt ≈ 0.43T).
This corresponds to a broadening in ω space (σω ≈
ð2.3=TÞ). We use linear prediction to allow room for the
tail of the Gaussian in real time, but we confirm that the
final results do not depend on its details [38]. Thence,

Sγγðk;ωÞ ¼ 1

2π

X

r

Z
∞

−∞
eiðωt−k·rÞCγγðr; tÞdt;

which is normalized as
R
Sγγðk;ωÞdkdω ¼

R
dk. Unless

stated otherwise, we present results for Sðk;ωÞ ¼P
γS

γγðk;ωÞ.
We benchmark the method by comparing our numerical

approach to exact results for the pure Kitaev model.
Figure 3(a) shows a comparison for the gapped Kitaev
model in the A phase with Kx=Ky;z ¼ 6, with the exact
solution for Szzðk ¼ 0;ωÞ shown in black. Our numerics
(with resolution σω ≈ 0.06 in the units shown) for an
infinite cylinder with L2 ¼ 10 (red) agrees well with such
features as gap, bandwidth, and total spectral weight. In the
real-time data (inset), while the numerics agrees with the
exact solution for the cylinder geometry, it overlaps with
the 2D result only until a characteristic time scale corre-
sponding to the perturbation traveling around the cylinder
and then feeling the static fluxes inserted by the spin flip.
More generally, we expect such time scales (after which 2D
physics becomes 1D) to be particularly significant for
systems with fractionalization. For Fig. 3(b), we take Kx ¼
Ky ¼ Kz ¼ −2 to be in the gapless KSL phase, the B
phase, at α ¼ ð3π=2Þ. Comparing the exact 2D result
(black) to our numerics for a cylinder of circumference
L2 ¼ 6 (red), we see qualitative similarities, such as a
spectral gap (the dashed lines; slightly obscured by our
finite-time window), a dip where the fluxes suppress the
van Hove singularity of the Majorana spectrum [6],
comparable bandwidth, and strong low-energy weight.
To better resolve the spectral gap, we rely slightly on
linear prediction [38] by using a real-time Gaussian
envelope with σt ¼ 0.56T, corresponding to σω ≈ 0.045.
Two striking quantitative differences are (i) the spectral gap
which for this circumference is approximately half that of
the 2D limit, and (ii) the presence of a delta peak on this gap
(≈4% of total spectral weight). The latter, present for any
cylinder, vanishes as L2 → ∞ [39]. The inset compares
exact real-time results for the cylinder [40] with our
numerics. Despite approximating the ground state of the
gapless sector using MPS, we find good agreement for
appreciable times.
After this benchmarking, we explore Sðk;ωÞ in different

phases of the KHM shown in Fig. 4, all with σω ≈ 0.06. The
pure Heisenberg FM (α ¼ π) can be solved in terms of

linear spin-wave theory (LSWT) and numerically captured
with bond dimension χ ¼ 2. Instead of this special point, in
Fig. 4(a) we show results for α ¼ 1.1π (corresponding to
K ¼ 0.65J), where we still find excellent agreement with
LSWT. Note that there is a small gap (≈0.05jJj) which is
absent in LSWT despite the presence of SUð2Þ-breaking
Kitaev coupling [4]. We do not observe any strong cylinder
effects on the dynamics, which is presumably related to
the short correlation length and the absence of fractional
excitations. The pure Heisenberg AFM (with small XXZ
anisotropy) in Fig. 4(b) shows appreciable deviations from
LSWT, with second order SWT [41] giving better agree-
ment. Moreover, the weight in the spin waves is approx-
imately halved, indicating the importance of higher order
magnon contributions. Staying within the Néel phase but
approaching the QSL, LSWT cannot even qualitatively
describe Fig. 4(c), with much weight in very broad high-
energy features unaccounted for.
Lastly, we focus on a parameter regime producing zigzag

ordering like that found in α-RuCl3 [2,11,12]. Figure 5
shows Sðk;ωÞ for four different choices of α: the first row
contains the exact solution for the pure AFMKitaev model,
and the subsequent rows are all numerical results within
the zigzag phase with increasing α. For each α, we show
Sðk;ωÞ at a fixed ω: the columns display representative

(a)

(b)

FIG. 3. Dynamical spin structure factor Szzðk ¼ 0;ωÞ from our
numerical approach compared with the exact result (the insets
show real-time data). Exact results were obtained following
Ref. [6], except for the blue curve in (b) [40]. (a) Gapped
KSL, A phase, on a cylinder with L2 ¼ 10 and anisotropic
couplings Kx ¼ −2 and Ky ¼ Kz ¼ −ð1=3Þ. (b) Gapless iso-
tropic KSL, B phase, with L2 ¼ 6 and α ¼ ð3π=2Þ.
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Anomalous Spin Diffusion in Classical Heisenberg Magnets

Gerhard Miiller
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Time-dependent spin-autocorrelation functions at T for classical Heisenberg magnets in dimen-
sionalities d 1, 2, and 3 are investigated by means of a computer simulation. These functions are
shown to exhibit power-law long-time tails of form t with characteristic exponents aq which differ
significantly from the values adam d/2 predicted by the phenomenological spin-diffusion theory:
al 0.609+0.005, a2 1.050~0.025, a3=1.6. The method to employ computer simulations for this
problem differs from methods previously employed. Anomalous spin diffusion is confirmed by existing
proton spin-lattice relaxation data for the quasi-1D s —, Heisenberg antiferromagnet (CH3)4NMnC13.

PACS numbers: 75.10.Hk, 05.40.+j, 05.60.+w, 75.40.Mg

The question as to what extent the transport of spin
excitations in isotropic Heisenberg magnets at high tem-
peratures can be described in terms of the phenomeno-
logical concept of spin diffusion is an old one, but there
exists no microscopic theory which confirms with some
rigor the predictions of spin-diffusion theory. Neverthe-
less, s~~in diffusion has played an important role in the
analysis and interpretation of dynamical experiments
(NMR spin-lattice relaxation, 4 electron-spin reso-
nances) on insulating magnetic compounds, particularly
on quasi few-dimensional systems where the effects are
most pronounced.
Consider the Heisenberg model

8S(,t) —Dq S(q, t) (2)

in the hydrodynamic regime, i.e., for sufficiently long
wavelengths. The diffusion constant D is expected to de-
pend on temperature and, for T (~, on whether the ex-
change coupling in (1) is ferromagnetic (J& 0) or anti-

for a magnetic insulator with nearest-neighbor interac-
tion between localized magnetic moments on a d-
dimensional hypercubic lattice with periodic boundary
conditions. The variable SJ represents the effective spin
of the unpaired electrons on the magnetic ion. In the
context of the theoretical model (1), the SJ can be re-
garded as spin operators or as classical three-component
unit vectors. The spin dynamics is well defined in both
cases. The occurrence of spin diffusion in the Heisen-
berg model hinges on the fact that the total spin
ST g;S; is a constant of the motion and on the postu-
late (which relies on that conversation law) that at
sufficiently high temperatures the time evolution of fluc-
tuations of the total spin,

S(q, t ) =g, exp(iq r, )S,(t),
is governed by a diffusion equation

ferromagnetic (J(0). Whereas this phenomenological
concept is clearly classical in spirit, its implications for
the time-dependent correlation functions are expected to
hold for both the classical and the quantum Heisenberg
models alike. The time evolution according to (2)
implies that the correlation function C(q, t)=(S(q, t)
S(—q,0)& decays exponentially in time as

C(q, t) -e (3)

asymptotically for small q and large t. An important
consequence of this characteristic diffusive behavior is
that the autocorrelation function Cp(t) —=(SJ(t) SJ(0))
exhibits a distinctive power-law long-time tail,

Cp«) -t
with a characteristic exponent aPD) d/2, which
strongly depends on the dimensionality of the diffusion
process. In 1D and 2D systems, this long-time tail, if
indeed present, is in turn responsible for infrared diver-
gences of the type -rp '/2 (1D) and -ln(1/ro) (2D)
in the frequency-dependent autocor relation function
@p(co)=fdt e ' 'Cp(t), which are directly amenable to
experimental investigation, e.g., by measurement of the
magnetic field dependence of NMR spin-lattice relaxa-
tion rates. 2 Since the important question of whether
the T ~ spin-autocorrelation function does in fact
show the characteristic diffusive long-time tail (4) has
never been established beyond ambiguity in spite of
efforts to that end, further theoretical investigations
are called for. However, a recent study of the 1D s = —,

'

Heisenberg model by Roldan, McCoy, and Perk has
shed interesting new light onto the problem (which I
shall discuss later on) and arrived at the conclusion that
a diffusive t '/2 tail is at least compatible with rigorous
bounds derived from a moment expansion of Cp(t).
This Letter reports a novel approach to the perfor-

mance of computer simulations for the calculation of
time-dependent correlation functions of classical spin
systems (the focus here is on autocorrelation functions at
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We investigate the classical spin dynamics of the kagome antiferromagnet by combining Monte Carlo

and spin dynamics simulations. We show that this model has two distinct low temperature dynamical

regimes, both sustaining propagative modes. The expected gauge invariance type of the low energy, low

temperature, out-of-plane excitations is also evidenced in the nonlinear regime. A detailed analysis of the

excitations allows us to identify ghosts in the dynamical structure factor, i.e., propagating excitations with

a strongly reduced spectral weight. We argue that these dynamical extinction rules are of geometrical

origin.
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Geometrical frustrated magnets are currently a source of
high interest for the exotic phases and unexpected dynam-
ics that they are liable to generate. Full insight into their
behavior is still far from being acquired, especially at the
lowest temperatures.

A prototype is the classical Heisenberg kagome antifer-
romagnet [1]. As a basic distinctive feature of the geomet-
rical frustration, its ground state consists of a continuous
connected manifold of spin configurations. At high tem-
peratures (T=J * 0:1, with J the first neighbor exchange),
the system is paramagnetic. It enters what we shall call
from now on a cooperative paramagnetic phase in the range
5! 10"3 & T=J & 0:1 where short range correlations are
enhanced. At the lowest temperatures (T=J & 5! 10"3),
thermal fluctuations above each of the spin configurations
of the ground state manifold are not equivalent and drive an
entropic based order out of disorder mechanism [2], even-
tually selecting a spin plane [3] and developing an octu-
polar order [4]. We shall call this phase coplanar to
distinguish it from the former. While in both low tempera-
ture regimes it was shown that spin-pair correlations re-
main short ranged [5], it is only in the coplanar phase that
the continuous degeneracy of the manifold was argued to
be reduced to a discrete one, described by the three color-
ings of the lattice [6]. Altogether, these results provide a
rather clear picture of the thermodynamics of the classical
kagome antiferromagnet, which should apply to experi-
mental compounds with large magnetic moments but also
be of some relevance for low spin systems, since quantum
fluctuations often play a significant role at very low tem-
peratures only.

A much poorer understanding of the spin dynamics is in
contrast available. To our knowledge, only one numerical
investigation has so far been conducted [7], which further-
more was not resolved in momentum vectors Q, thus
ignoring any diffusive or propagating aspects of the ex-
citations. In this Letter, we analyze the temperature depen-
dent dynamics of the classical kagome antiferromagnet

from two points of views. We first show that at low
temperatures, spin waves (SW) do propagate and are sen-
sitive to the underlying spin texture, either cooperative
paramagnetic or coplanar. Quantitative analysis of the
dynamical structure factor is performed and provides the
characteristic time scales. Additionally, the invariance of
the linear SW spectra with respect to the ground state spin
configurations on which they are built is evidenced in a
wide range of temperatures, including those where non-
linear effects are at play. We next put forward that peculiar
excitations develop that would be almost invisible to dy-
namical spin-pair correlations sensitive probes, such as
inelastic neutron scattering.
The numerical method used in this Letter is a combina-

tion of a hybrid Monte Carlo (MC) method, which allows
generating samples of spin arrays at a given temperature,
and an integration of the nonlinear coupled equations of
motion for spin dynamics (SD):

dSi

dt
¼ J

!X

j

Sj

"
! Si; (1)

where j is a first neighbor of i and J > 0 is the antiferro-
magnetic exchange [8]. The numerical integration has been
performed up to t ¼ 1000J"1 using an 8th-order Runge-
Kutta (RK) method with an adaptative step-size control.
The RK error parameter as well as the RK order have been
fixed in order to preserve the Euclidean distance with a
test-full diffusion of Eq. (1) performed with the more
robust but time consuming Burlisch-Stoer algorithm. As
a result, trivial constants of motion, such as the total energy
Etot and magnetization Mtot, are conserved with a relative
error smaller than 10"6. As for the spin arrays samplings
by the MC method, a first run has been performed in order
to find an optimal set of temperatures for a parallel temper-
ing scheme [9], which minimizes the ergodic time [10]. A
reduction of the solid angle for each spin flip trial together
with rotations around the local molecular fields ensure a
rate acceptance above 40%. The numerical simulations
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Spin Dynamics in Pyrochlore Heisenberg Antiferromagnets
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We study the low temperature dynamics of the classical Heisenberg antiferromagnet with nearest

neighbor interaction on the frustrated pyrochlore lattice. We present extensive results for the wave vector

and frequency dependence of the dynamical structure factor, obtained from simulations of the preces-

sional dynamics. We also construct a solvable stochastic model for dynamics with conserved magneti-

zation, which accurately reproduces most features of the precessional results. Spin correlations relax at a

rate independent of the wave vector and proportional to the temperature.

DOI: 10.1103/PhysRevLett.102.237206 PACS numbers: 75.40.Gb, 75.10.Hk, 75.40.Mg

Geometrical frustration in magnets inhibits ordering.
Simple, classical models for these systems have very de-
generate ground states [1,2]. Reflecting this degeneracy,
highly frustrated magnetic materials characteristically re-
main in the paramagnetic phase even at temperatures low
compared to the scale set by exchange interactions. The
behavior in this cooperative paramagnetic regime has been
the focus of much recent research [3,4].

Nearest neighbor antiferromagnets on the pyrochlore
lattice with classical n-component spins are representative
of a large class of models [5,6]. They have remarkable
correlations at low temperature, which are intermediate
between those of conventionally ordered and completely
disordered systems. These can be understood by mapping
spin states onto configurations of a vector field, or flux field,
which is solenoidal for ground states [7–9]. Gaussian
fluctuations of this flux field provide a coarse-grained
description of the cooperative paramagnet. Static spin
correlations have a power-law dependence on separation,
inside a correlation length ! that diverges as temperature T
approaches zero. These correlations result in sharp fea-
tures, termed pinch points, in diffuse scattering as a func-
tion of wave vector.

The dynamics of cooperative paramagnets has not been
studied as extensively as the statics, but some ingredients
are clear. In a Heisenberg model with precessional dynam-
ics, the short-time behavior can be viewed in terms of
harmonic spin wave fluctuations in the vicinity of a specific
ground state, while over longer times the system wanders
around the ground-state manifold. This second component
to the motion results in decay of the spin autocorrelation
function at long times, with a decay rate shown to be linear
in T using simulations and phenomenological arguments
[5]. These theoretical ideas are supported by inelastic
neutron scattering measurements on pyrochlore antiferro-
magnets: an early study of CsNiCrF6 revealed strong tem-
perature dependence to the width in energy of quasielastic
scattering for T < j!CWj [10], while recent work on
Y2Ru2O7 shows a width linear in T as predicted [11].

Our aim in this Letter is to establish a much more
comprehensive description of cooperative paramagnets

with precessional dynamics than has been available so
far. The topic is interesting from several perspectives.
First, in view of the pinch points in static correlations, it
is natural to ask about the wave vector dependence of the
dynamical structure factor, accessible in single-crystal
measurements. Little is currently known about this: the
autocorrelation function of Ref. [5] is expressed as an
integral over all wave vectors, while the measurements of
Ref. [11] used a powder sample. Second, dynamics in the
paramagnetic phase of unfrustrated antiferromagnets is
dominated by spin diffusion [12–14], and one would like
to know whether this extends to the cooperative paramag-
net. Third, behavior in the Heisenberg model should be
compared to that in spin ice, which is represented by the
Ising pyrochlore antiferromagnet with dynamics controlled
by the motion of monopole excitations [15].
In outline, our results are as follows. We find at low

temperature three types of behavior in different regions of
reciprocal space. (i) Close to reciprocal lattice points,
correlations are dominated by spin diffusion with a
temperature-independent diffusion constant. (ii) At a ge-
neric wave vector [not included in (i) or (iii)] correlations
are Lorentzian in frequency with a width linear in T and
independent of wave vector. (iii) Close to nodal lines in
reciprocal space on which the static, ground-state structure
factor vanishes [8], dynamical correlations are dominated
by finite-frequency spin wave contributions. This picture is
hence very different from that for the kagome Heisenberg
antiferromagnet, which shows order-by-disorder and
propagating modes [16].
We consider the classical Heisenberg antiferromagnet

with nearest neighbor interactions on the pyrochlore lat-
tice. Lattice sites (labeled i; j) form corner-sharing tetrahe-
dra (labeled ";#). Spins Si are unit vectors and
L" ¼ P

i2"Si is the total spin of tetrahedron ". The
Hamiltonian is

H ¼ J
X

hiji
Si " Sj #

1

2
J
X

"

L2
" þ c; (1)

where c is a constant. Ground states satisfy L" ¼ 0 for all
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Comprehensive study of the dynamics of a classical Kitaev spin liquid
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We study the spin-S Kitaev model in the classical (S → ∞) limit using Monte Carlo simulations combined
with semiclassical spin dynamics. We discuss differences and similarities in the dynamical structure factors of
the spin-1/2 and the classical Kitaev liquids. The quantum behavior is restricted to low temperatures where
a gap protects visons from decohering the system. Once this quantum gap is breached, at low temperatures
compared to the coupling constant, significant entropic disorder decoheres the Majorana fermions and the system
is described quantitatively by classical dynamics. The low-temperature and low-energy spectrum of the classical
model exhibits a finite-energy peak, which is the precursor of the one produced by the Majorana modes of the
S = 1/2 model. The classical peak is spectrally narrowed compared to the quantum result and can be explained by
magnon excitations within fluctuating one-dimensional manifolds (loops). Hence the difference from the classical
limit to the quantum limit can be understood by the fractionalization of magnons propagating in one-dimensional
manifolds. Moreover, we show that the momentum-space distribution of the low-energy spectral weight of the
S = 1/2 model follows the momentum-space distribution of zero modes of the classical model.

DOI: 10.1103/PhysRevB.96.134408

I. INTRODUCTION

Quantum spin liquids (QSLs) have attracted great inter-
est in both theoretical and experimental condensed-matter
physics due to their remarkable topological properties. Among
many different proposals, the Kitaev model [1] defined on
the honeycomb lattice is a prototypical two-dimensional
(2D) QSL, which can be experimentally studied in iridium
or ruthenium-based materials [2]. However, the lack of a
symmetry-breaking order parameter poses a challenge for the
experimental characterization of QSLs. In the absence of a
smoking-gun experiment, it is important to characterize the
dynamical response of QSLs in order to identify signatures,
which can guide the experimental search of these exotic states
of matter [3]. The computation of dynamical correlators of
interacting quantum spin systems in dimension higher than
one is very challenging for state-of-the-art techniques. For
instance, the study of dynamics in the Kitaev-Heisenberg
model, which is not integrable due to the additional Heisenberg
interaction, was recently initiated by using a matrix-product
state-based T = 0 method [4] and exact diagonalization [5].
These T = 0 techniques can only applied to relatively small
clusters or quasi-one-dimensional lattice geometry. Fortu-
nately, the integrability of the pure Kitaev model allows for
an exact calculation of the magnetic structure factor, S(Q,ω),
at T = 0 [6,7] and for a controlled numerical calculation at
any finite temperature T [8–10]. This remarkable property is
being used to identify proximates to Kitaev liquids [3,11,12].

*ams4ux@virginia.edu

However, the actual model Hamiltonians of these materials are
not integrable, so it is more challenging to assess the effect of
the additional Hamiltonian terms on S(Q,ω,T ).

Given the above considerations, it is relevant to ask if a
semiclassical treatment can shed light on the dynamics of
the Kitaev QSLs. Semiclassical treatments are very useful
for describing the low-temperature properties of unfrustrated
magnets, whose low-energy modes are quantized spin waves
or magnons. For instance, semiclassical dynamics simulations
using an appropriate quantum-classical correspondence were
found to produce a good description of the intermediate- and
high-temperature regimes of the 2D S = 5/2 antiferromagnet
Rb2MnF4, over all wave vector and energy scales, with a
crossover temperature ∼θCW/S (θCW is the Curie-Weiss tem-
perature) [13]. It is clear, however, that the semiclassical treat-
ment cannot capture the intrinsically quantum mechanical
nature of the low-energy excitations of quantum liquids. At
first sight, this observation seems to render semiclassical
approaches completely inadequate. Nevertheless, we will
demonstrate that a semiclassical treatment of the Kitaev model
can capture several properties of the dynamical structure factor
of the S = 1/2 model, including a quite remarkable agreement
above the quantum-to-classical (QC) crossover temperature
TQC [14,15].

The spin-S Kitaev model with S > 1/2 was introduced by
Baskaran et al. [16,17] and it was subsequently studied by
different groups [18–22]. This model is not exactly solvable,
but it preserves the Z2 gauge structure of the S = 1/2 model.
The set of commuting operators,

Wp = −σ
y
1 σ z

2 σ x
3 σ

y
4 σ z

5 σ x
6 , (1)

2469-9950/2017/96(13)/134408(12) 134408-1 ©2017 American Physical Society
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We study the dynamical structure factor of the spin-1 pyrochlore material NaCaNi2F7, which is well
described by a weakly perturbed nearest-neighbour Heisenberg Hamiltonian, Our three approaches—
molecular dynamics simulations, stochastic dynamical theory, and linear spin wave theory—reproduce
remarkably well the momentum dependence of the experimental inelastic neutron scattering intensity as
well as its energy dependence with the exception of the lowest energies. We discuss two surprising aspects
and their implications for quantum spin liquids in general: the complete lack of sharp quasiparticle
excitations in momentum space and the success of the linear spin wave theory in a regimewhere it would be
expected to fail for several reasons.

DOI: 10.1103/PhysRevLett.122.167203

Quantum spin liquids (QSLs) [1] are enigmatic phases of
matter characterized by the absence of symmetry breaking
and conventional quasiparticles (magnons). The search for
QSLs in actual magnetic materials has targeted materials
with low spin and geometric frustration [2]. Indeed, while
there have been significant efforts to synthesize quantum
spin liquid materials in spin-1=2 systems in two dimen-
sions, fewer efforts have been devoted to three dimensions,
for a review, see Ref. [3]. This strategic choice is not
without reason: higher spin and number of dimensions
typically suppress quantum fluctuations and favor mag-
netically ordered states over QSLs. However, it is now clear
that this perspective is too pessimistic: we know that certain
types of spin liquid can exist in d ¼ 3 but not in d ¼ 2
[4,5]. Therefore QSLs need not be restricted to d ¼ 2 and
S ¼ 1=2 exclusively [6–8].
Despite some recent advances, our understanding of low-

spin Heisenberg QSLs in three dimensions is limited as they
are often beyond the scope of exact or controlled approxi-
mate theoretical schemes. We are at a loss to describe either
their ground states or excitation spectra, unlike Ising models
like spin ice, where the simplest quantum versions [4,5]
are amenable to quantum Monte Carlo (QMC) simulations
[9,10]. Experiments are therefore an indispensable guide for
our understanding of these magnets [11].
The quest for QSLs relies heavily on characteristic

signatures in the excitation spectra: while QSL ground
states are often largely featureless, their excitations can be
quite unusual, including in particular fractionalized [12,13]
quasiparticles such as spinons in the spin-1=2 Heisenberg

antiferromagnetic chain [14–16], Majorana fermions in the
Kitaev honeycomb model [17–19], and photons in the U(1)
spin liquid [4,5,10].
The dual challenge is thus to identify novel phenomena

in experimental data and to devise a theoretical framework
for understanding the underlying behavior. Here we report
progress for the fluoride pyrochlore NaCaNi2F7 [20]. Its
magnetic Ni2þ ions have spin S ¼ 1 and reside on the three-
dimensional pyrochlore lattice (Fig. 1). Strong geometrical
frustration and short spin length may produce a QSL [7,21].
We analyze the magnetic excitation spectrum [22],

including new, hitherto unpublished data. Our three
complementary theoretical approaches reproduce the
dynamical structure factor Sðq;ωÞ for all momenta q
and for a broad range of energies ω; the quality of the
agreement differs between methods at the highest energies.
At low energies, we find the well-known pinch-point
motifs; at intermediate energies, characteristic structures

FIG. 1. (a). Pyrochlore lattice in one cubic unit cell. (b).
Nearest-neighbor and next-nearest-neighbor interactions.
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Spin dynamics of the antiferromagnetic Heisenberg model on a kagome bilayer
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We study the spin dynamics of classical Heisenberg antiferromagnet with nearest neighbor inter-
actions on a quasi-two-dimensional kagome bilayer. This geometrically frustrated lattice consists of
two kagome layers connected by a triangular-lattice linking layer. By combining Monte Carlo with
precessional spin dynamics simulations, we compute the dynamical structure factor of the classi-
cal spin liquid in kagome bilayer and investigate the thermal and dilution e↵ects. While the low
frequency and long wavelength dynamics of the cooperative paramagnetic phase is dominated by
spin di↵usion, weak magnon excitations persist at higher energies, giving rise the half moon pattern
in the dynamical structure factor. In the presence of spin vacancies, the dynamical properties of
the diluted system can be understood within the two population picture. The spin di↵usion of the
“correlated” spin clusters is mainly driven by the zero-energy weather-van modes, giving rise to
an autocorrelation function that decays exponentially with time. On the other hand, the di↵usive
dynamics of the quasi-free “orphan” spins leads to a distinctive longer time power-law tail in the
autocorrelation function. We discuss the implications of our work for the glassy behaviors observed
in the archetypal frustrated magnet SrCr9pGa12�9pO19 (SCGO).

I. INTRODUCTION

The SCGO is one of the most intensely studied frus-
trated magnets [1–14]. Thermodynamically, SCGO does
not exhibit any signs of magnetic ordering down to tem-
peratures Tg = 3.5–7 K, depending weakly on the va-
cancy concentration x = 1 � p. Below Tg, the magnet
enters an unconventional spin-glass phase. A coopera-
tive paramagnetic regime, also known as a classical spin
liquid, emerges at temperatures below the Curie-Weiss
constant ⇥CW ⇡ 500 K. Geometrically, SCGO belongs to
a class of frustrated Heisenberg antiferromagnets on the
so-called bi-simplex lattices [15–18]. These are networks
of corner-sharing simplexes such as triangles and tetrahe-
dra. Canonical examples include the pyrochlore [15, 16]
and kagome [19–22] antiferromagnets. In SCGO, the
Cr3+ ions with spin S = 3/2 reside on a two-dimensional
lattice consisting of corner-sharing tetrahedra and trian-
gles, known as the kagome bilayer or pyrochlore slab, as
shown in Fig. 1. The strong short-range spin correla-
tions in the low-temperature liquid phase result from the
constraints of zero total spin in every simplex, a condi-
tion that minimizes the nearest-neighbor exchange inter-
actions on such unit.

Considerable experimental e↵orts have been devoted to
understanding the unusual spin glass phase in SCGO [2–
6, 11–14]. Despite the characteristic field-cooled and
zero-field-cooled hysteresis in the bulk susceptibility, sev-
eral dynamical properties of its glassy phase are dis-
tinctly di↵erent from those of conventional spin glasses.
These include the quadratic T

2 behavior of the specific
heat [2, 3], the linear !-dependent dynamical susceptibil-
ity �

00 [6], and a significantly weaker memory e↵ect [23].
Taken together, these features suggest that SCGO be-
longs to a new state of glassy magnets, dubbed the spin
jam [14, 23], that include several other magnetic com-
pounds [24, 25]. The source of this unusual dynamical
phase in SCGO, however, remains to be clarified. One

plausible scenario is that quantum fluctuations transform
the macroscopic degeneracy associated with the classical
spin liquid of the kagome bilayer into the rugged energy
landscape of spin jam [14, 26]. It remains to be shown
how the unusual glassy behaviors of the spin jam evolve
from the spin dynamics of the cooperative paramagnet.

Toward this goal, we present in this paper the first sys-
tematic study of the dynamical properties of the bilayer-
kagome classical spin liquid. By combining Monte Carlo
simulations with energy-conserving Landau-Lifshitz dy-
namics, we compute the dynamical structure factor of
the liquid regime. At the energy scales of the exchange
interaction, we find signals of spin-wave excitations in the
form of half moon pattern, replacing the pinch-point sin-
gularity of the static structure factor. On the other hand,
the low-energy dynamics is dominated by spin-di↵usion
driven mostly by the zero-energy modes. The di↵usion
constant is found to depend weakly on temperature, but
decrease significantly with increasing vacancy densities.

Our results will also serve as an important bench-
mark against which dynamical behaviors induced by
other perturbations can be compared. Of particular in-
terest are those perturbations, such as quantum order-
by-disorder, that give rise to glassy dynamics character-
istic of either the conventional spin-glass or the exotic
spin-jam states. It is also worth noting that the dynam-
ical properties of classical spin liquid has been exten-
sively studied for Heisenberg antiferromagnets on both
pyrochlore [15, 16, 27] and kagome lattices [28–31]. An-

Highly frustrated (corner-sharing) lattices

Tutorial on frustrated magnetism

FIG. 1: Lattice structure of kagome bilayer.
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Spin dynamics of the antiferromagnetic Heisenberg model on a kagome bilayer
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We study the spin dynamics of classical Heisenberg antiferromagnet with nearest neighbor inter-
actions on a quasi-two-dimensional kagome bilayer. This geometrically frustrated lattice consists of
two kagome layers connected by a triangular-lattice linking layer. By combining Monte Carlo with
precessional spin dynamics simulations, we compute the dynamical structure factor of the classi-
cal spin liquid in kagome bilayer and investigate the thermal and dilution e↵ects. While the low
frequency and long wavelength dynamics of the cooperative paramagnetic phase is dominated by
spin di↵usion, weak magnon excitations persist at higher energies, giving rise the half moon pattern
in the dynamical structure factor. In the presence of spin vacancies, the dynamical properties of
the diluted system can be understood within the two population picture. The spin di↵usion of the
“correlated” spin clusters is mainly driven by the zero-energy weather-van modes, giving rise to
an autocorrelation function that decays exponentially with time. On the other hand, the di↵usive
dynamics of the quasi-free “orphan” spins leads to a distinctive longer time power-law tail in the
autocorrelation function. We discuss the implications of our work for the glassy behaviors observed
in the archetypal frustrated magnet SrCr9pGa12�9pO19 (SCGO).

I. INTRODUCTION

The SCGO is one of the most intensely studied frus-
trated magnets [1–14]. Thermodynamically, SCGO does
not exhibit any signs of magnetic ordering down to tem-
peratures Tg = 3.5–7 K, depending weakly on the va-
cancy concentration x = 1 � p. Below Tg, the magnet
enters an unconventional spin-glass phase. A coopera-
tive paramagnetic regime, also known as a classical spin
liquid, emerges at temperatures below the Curie-Weiss
constant ⇥CW ⇡ 500 K. Geometrically, SCGO belongs to
a class of frustrated Heisenberg antiferromagnets on the
so-called bi-simplex lattices [15–18]. These are networks
of corner-sharing simplexes such as triangles and tetrahe-
dra. Canonical examples include the pyrochlore [15, 16]
and kagome [19–22] antiferromagnets. In SCGO, the
Cr3+ ions with spin S = 3/2 reside on a two-dimensional
lattice consisting of corner-sharing tetrahedra and trian-
gles, known as the kagome bilayer or pyrochlore slab, as
shown in Fig. 1. The strong short-range spin correla-
tions in the low-temperature liquid phase result from the
constraints of zero total spin in every simplex, a condi-
tion that minimizes the nearest-neighbor exchange inter-
actions on such unit.

Considerable experimental e↵orts have been devoted to
understanding the unusual spin glass phase in SCGO [2–
6, 11–14]. Despite the characteristic field-cooled and
zero-field-cooled hysteresis in the bulk susceptibility, sev-
eral dynamical properties of its glassy phase are dis-
tinctly di↵erent from those of conventional spin glasses.
These include the quadratic T

2 behavior of the specific
heat [2, 3], the linear !-dependent dynamical susceptibil-
ity �

00 [6], and a significantly weaker memory e↵ect [23].
Taken together, these features suggest that SCGO be-
longs to a new state of glassy magnets, dubbed the spin
jam [14, 23], that include several other magnetic com-
pounds [24, 25]. The source of this unusual dynamical
phase in SCGO, however, remains to be clarified. One

plausible scenario is that quantum fluctuations transform
the macroscopic degeneracy associated with the classical
spin liquid of the kagome bilayer into the rugged energy
landscape of spin jam [14, 26]. It remains to be shown
how the unusual glassy behaviors of the spin jam evolve
from the spin dynamics of the cooperative paramagnet.

Toward this goal, we present in this paper the first sys-
tematic study of the dynamical properties of the bilayer-
kagome classical spin liquid. By combining Monte Carlo
simulations with energy-conserving Landau-Lifshitz dy-
namics, we compute the dynamical structure factor of
the liquid regime. At the energy scales of the exchange
interaction, we find signals of spin-wave excitations in the
form of half moon pattern, replacing the pinch-point sin-
gularity of the static structure factor. On the other hand,
the low-energy dynamics is dominated by spin-di↵usion
driven mostly by the zero-energy modes. The di↵usion
constant is found to depend weakly on temperature, but
decrease significantly with increasing vacancy densities.

Our results will also serve as an important bench-
mark against which dynamical behaviors induced by
other perturbations can be compared. Of particular in-
terest are those perturbations, such as quantum order-
by-disorder, that give rise to glassy dynamics character-
istic of either the conventional spin-glass or the exotic
spin-jam states. It is also worth noting that the dynam-
ical properties of classical spin liquid has been exten-
sively studied for Heisenberg antiferromagnets on both
pyrochlore [15, 16, 27] and kagome lattices [28–31]. An-

Highly frustrated (corner-sharing) lattices
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FIG. 1: Lattice structure of kagome bilayer.
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other aim of this paper is thus to compare the spin dy-
namics of bilayer kagome against these two well studied
bi-simplex frustrated magnets.

II. MODEL AND METHOD

We consider the classical Heisenberg model with near-
est neighbor interactions on the kagome bilayer

H = J

X

hiji

Si · Sj =
J

2

X

↵

L2
↵ + const. (1)

Here J > 0 is the antiferromagnetic exchange, hiji de-
notes nearest-neighbor pairs, and the classical spins Si

are unit vectors. The kagome bilayer has a Bravais tri-
angular lattice with a unit cell consisting of two corner
sharing tetrahedra of opposite orientation. The bases of
the tetrahedra in the two kagome layers are connected by
triangle units; see Fig. 1. Because of this corner-sharing
simplex structure, the exchange interaction can also be
expressed as a sum of the squared total spin of simplexes,
L↵ =

P
i2↵ Si; here ↵ includes both the tetrahedron and

triangle. The exchange energy is minimized by the con-
dition that total spin of every simplexes is zero: L↵ = 0,
which is confirmed by our Monte Carlo simulations. The
fact that a macroscopic number of spin configurations
satisfy the minimum energy condition leads to a classical
spin liquid regime at temperatures T . J . Indeed, our
Monte Carlo simulations show no signs of phase transi-
tion down to temperatures T ⇡ 0.001J , consistent with
previous studies [32–35]. Instead, a spin-disordered phase
with strong short-range correlation is obtained at low
temperatures.

In general, there are two types of spin dynamics in the
liquid regime. At short time scales, or high frequencies
(! ⇠ J), there are spin-wave excitations corresponding to
small amplitude deviations from the ground-state mani-
fold. These excitations are similar to the magnons in un-
frustrated magnets. On the other hand, the macroscopic
number of zero modes, or the weather-vane modes, that
connect di↵erent ground states dominate the long-time
dynamical behaviors of the frustrated bi-simplex antifer-
romagnet. The resultant drifting of the system in the
ground-state manifold gives rise to spin-di↵usion behav-
iors and an exponential decaying spin autocorrelation.
In the following, we discuss our simulation results within
this general picture.

The equation of motion for classical spins is given by
the Landau-Lifshitz equation

dSi

dt

= �Si ⇥ @H
@Si

= �J

X

j

0 Si ⇥ Sj , (2)

where the prime indicates summation is restricted to the
nearest neighbors of the i-th spin. Here we numerically
integrate the Landau-Lifshitz equation to compute the
dynamical structure factor of the classical spin liquid.
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FIG. 2: Temperature-scaled dynamical structure factor
� S(q,!) of the classical spin liquid in the bilayer kagome an-
tiferromagnet at four di↵erent temperatures: (a) T/J = 0.01,
(b) 0.05, (c) 0.1, and (d) 0.6; here � = 1/T . The linear
size of the simulated lattice is L = 30, with number of spins
N = 7⇥ L

2.

Low temperature Monte Carlo simulations are first used
to obtain spin configurations in equilibrium of a specified
temperature. These are then used as the initial states for
the energy-conserving precession dynamics simulations.
An e�cient semi-implicit integration algorithm [36] is
employed to integrate the above Landau-Lifshitz equa-
tion. The high e�ciency of the algorithm comes from fact
that it preserves the spin length at every time step and
the energy values are well conserved with time irrespec-
tive of the step size or the time span of the simulation.
From the numerically obtained spin trajectories Si(t), we
compute the dynamical correlation function S(q, t)

S(q, t) = hSq(t) · S⇤
q(0)i, (3)

where Sq(t) ⌘ P
i Si(t) exp(iq · ri)/

p
N is the spatial

Fourier transform of the instantaneous spin configura-
tion, and h· · · i denotes the ensemble average over inde-
pendent initial states of a given temperature. The dy-
namical structure factor is then given by

S(q, !) =

Z
S(q, t)e�i!t

dt

=
1

N

X

ij

Z
dthSi(t) · Sj(0)ie�i!t

dt, (4)

which is essentially the space-time Fourier transform of
the spin-spin correlator Cij(t) ⌘ hSi(t) · Sj(0)i.

III. MAGNONS AND HALF MOON PATTERNS

The intensity plot of the scaled dynamical structure
factor � S(q, !), where � = 1/T , is shown in Fig. 2
for four di↵erent temperatures. The spin excitations are
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(a) (b)S(q, t)

FIG. 5: (a) Time dependence of the normalized dynamical
correlation function S(q, t)/S(q, 0) at T = 0.5J for various
wave vectors close to the zone center. The simulated system
size is L = 60. (b) The inverse relaxation time ⌧

�1
d

extracted
from panel (a) as a function of |q|. For each wave vector the
data is fitted to an exponentially decaying function.

the spin-di↵usion is shown to produce a power-law tail
in the autocorrelation function [42–44].

While the microscopic mechanisms of spin-di↵usion
could be thermal or quantum fluctuations, or the large
number of zero modes in frustrated systems, fundamen-
tally the di↵usive spin dynamics is related to the fact that
the total spin density m =

P
i Si/N is a constant of the

equation of motion. By combining the continuity equa-
tion @m/@t + r · j = 0 with a phenomenological Fick’s
law for local spin current j = �Drm, one arrives at the
familiar di↵usion equation for the magnetization density.
In the hydrodynamic regime, this introduces a di↵usion
timescale ⌧d = 1/Dq

2 for perturbations characterized by
wave vector q. This is indeed confirmed by our dynamical
simulations. Fig. 5(a) shows the time dependence of the
dynamical correlation function S(q, t) for various wave
vectors. Each curve is obtained after averaging over 500
independent initial states from Monte Carlo simulations.
The correlation function is found to decay exponentially
with time: S(q, t) ⇠ exp(�t/⌧d), where the numerically
extracted relaxation time, shown in Fig. 5(b), is isotropic
in the reciprocal space and follows nicely the expected be-
havior ⌧

�1
d = Dq

2 for wave vectors close to the Brillouin
zone center.

More generally, here we try to understand our re-
sults using the hydrodynamic theory of the paramag-
netic state, which suggests a generalized dynamical sus-
ceptibility: �(q, !) = ��(q) Dq

2
/(Dq

2 � i!) [41, 45],
where �(q) is the static susceptibility at wave vector
q and D is the spin di↵usion coe�cient. The dynami-
cal structural factor is obtained through the fluctuation-
dissipation theorem: S(q, !) ⇡ 2[nB(!) + 1] Im�(q, !),
where nB(!) = 1/(e�! � 1). In the ! ⌧ T regime, as-
suming �(q) ⇡ � is a constant for small q, the dynamical
structure factor can be expressed in a scaling form

�q

2S(q, !) = �

2D

(!/q

2)2 + D

2
, (6)

A similar result can be obtained from the Langevin soft-
spin model [27]. By plotting �q

2S versus !/q

2, we find
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FIG. 6: (a) S(q,!) as a function of ! at varying wave vec-
tors q at a temperature T = 0.01J . (b) Scaling collapse ac-
cording to Eq. (6) for data points from di↵erent wave vectors
shown in panel (a). These curves are well approximated by a
Lorentzian centered on ! = 0. By fitting the collapsed data-
points to the scaling function, the numerically extracted spin
di↵usion coe�cient D and static susceptibility � (normalized
to the value at T = 0.01) are shown in panels (c) and (d),
respectively, as functions of temperature.

nice data collapsing from curves of di↵erent wave vec-
tors, as shown in Fig. 6 (a) and (b), indicating a static
susceptibility that indeed weakly depends on q for wave
vectors close to zone center. On the other hand, we find
that the collapsing of data points from di↵erent tempera-
tures is not very satisfactory. Instead, we fit the collapsed
data points from each temperature with the Lorentzian
scaling function in Eq. (6) and extract both the spin dif-
fusion coe�cient D and static susceptibility �. The tem-
perature dependence of these two quantities are shown in
Fig. 6(c) and (d). The spin-di↵usion coe�cient decreases
quite appreciably with temperature, while the suscepti-
bility remains roughly the same within the error bars.

V. DILUTION EFFECTS

We next investigate the e↵ect of dilution on the spin
dynamics of the liquid phase. Previous studies have in-
dicated that dilution with non-magnetic vacancies does
not induce the spin-glass behavior of SCGO [17, 46]. In
fact, the condition L↵ = 0 is satisfied for every simplex,
including those with spin vacancies, in the ground states
even for strong dilution [17]. Consequently, a macro-
scopic degeneracy remains and the low-T phase seems
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exponentially, which indicates that N does not scale with the
volume (area in this quasi-two-dimensional case) of the system.
Surprisingly, as shown in the inset, N seems to scale with the
number of bipyramids on the boundary, that is, the perimeter of
the system. This scaling starkly contrasts with the volume scaling
of N of the kagome and pyrochlore systems in which local zero-
energy modes exist. This nonextensive scaling may be viewed as a
consequence of the absence of local zero-energy modes. Instead,
the smallest unit of zero-energy modes scales with the linear

dimension of the system, as it involves bipyramids along a line, as
shown in Fig. 3a and Supplementary Figs 7 and 8.

Transfer matrix estimates. The nonextensive entropy of the
allowed LC states can be examined by using transfer matrix
methods. Let us describe the problem as follows. We consider
an array of the bipyramids. It may be viewed as alternating two
zig-zag columns, which are shifted with respect to each other
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Figure 1 | The triangular network of bipyramids and its classical ground states. (a) The kagome-triangular-kagome tri-layer, forming the triangular
network of bipyramids. Each bipyramid is composed of two corner-sharing tetrahedra. The blue and red spheres represent kagome and triangular sites,
respectively. (b) The internally collinear states for each bipyramid are categorised by assigning for each spin a binary sign (representing a parallel
(þ ) or antiparallel (" ) direction relative to the colour). These states may be viewed as the 18 elements of Z2#Z3#Z3 by first specifying the sign of the
central spin, and specifying one spin in the upper and the lower layers of the bipyramid with the same sign. For visualisation, we simply label the first nine
states numerically 1..9, and the counterpart (associated with flipping all the signs) as 10..18. (c) The hexagon tiles. The six corners of the hexagon tile
represent the six spins forming the upper and the lower triangles of the bipyramid. The black and blue colours on the boundary represent (þ ) and
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collinear bipyramid spin state constructed from the combination of the

ffiffiffi
3

p
#

ffiffiffi
3

p
long-range

ordered 1-6-8 sign state and a
ffiffiffi
3

p
#

ffiffiffi
3

p
order of the tri-colour (the red, blue, green represent the three spin directions of a 120o configuration). The unfilled

arrows in the middle represent the spins in motion, and the colour-shadowed circles represent the affected bipyramids. Such spaghetti excitations
can act as domain boundaries. (e) The 1-6-8 state as in d, but shown as a periodic tiling in the hexagon representation.
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Figure 2 | Counting the possible collinear bipyramid spin states (sign states). (a) One of the possible sign states constructed numerically for the
3# lx bipyramids where lx is the number of rows. Each circle with a number represents one bipyramid with the sign state assigned by the number. (b) The
number of all possible sign states, N, was obtained numerically for different sizes of the system, and plotted in a logarithmic scale as a function of lx.
In the inset, N is plotted as a function of the number of bipyramids on the boundary. The straight line is a guide to eye.
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vertically. We enumerate the possible signs along the zig-zag
columns as follows. We consider adding another column in two
steps: we first add sites at even levels and then the sites at odd
levels as depicted in the Fig. 4. In this procedure, all the sites in
the first stage can be added independently of each other, and after
it is completed the second stage shares the same property.

We are now left with the task of transferring this into a
formula. For the bipyramids in the first move, we note that the
signs s1,s2,s5,s6,y and in general s4nþ 1, s4nþ 2, where n is an
integer, remain unchanged. The sites that might change after the
move are of the form s4n" 1, s4n. Each such pair only depends on
the states of s4n" 2,.., s4nþ 1. Let us denote by m the number of
possible sign states with the signs on the left s4n" 2,.., s4nþ 1 and
sites on the right s04n" 1, s04n, as described in Fig. 4. We can view
this as a linear transformation M with matrix elements:

os4n" 2; s04n" 1; s
0
4n; s4nþ 1 Mj js4n" 2; s4nþ 1; s4nþ 1; s4nþ 1;4¼m;

ð1Þ
(in particular, m¼ 0 if no move of this type is allowed). For a
column of Ny bipyramids, there are 2Nyþ 1 signs on the border
that participate in the counting. In the first stage, we can combine
all the moves into a larger matrix:

T1¼I & M & M::: & M & I & I ð2Þ
Next, we note that the transformation governing the added
bipyramids in step 2 is described in the same way, albeit shifted
by two sites. In addition, it involves adding boundary bipyramids,
which require special counting. We can summarise this as:

T2¼M3 & M::: & M & M0
3 ð3Þ

For Nx columns, the number of states may now be computed as
N ¼ Rh jðT2T1ÞNx Lj i, where Lj i; Rj i specify boundary conditions
on the left and on the right, respectively. The number of states in

a large strip, with Nx-N scales as lmax (Ny)Nx, where lmax (Ny)
is the largest eigenvalue of the matrix T2T1.

Next, we consider the eigenvalues of T2 and T1 separately.
These are determined by M. The matrix M is special, and its
eigenvalues can be determined analytically. To do so, we first
determine the invariant subspaces of this matrix. M is a 16 by 16
matrix, acting on four Ising spins. It turns out more convenient to
write it using two double spins, in basis four by assigning:

fa1;a2;a3;a4;g ! fa1 þ 2a2 þ 1; a3 þ 2a4 þ 1g; ai¼ 0; 1 ð4Þ
We now find the cycles of the matrix (involving closed
subspaces). Explicitly, these consist of the moves (written in
basis four) summarised in Table 1. Interestingly, the six largest
eigenvalues are j;

ffiffiffi
2

p
; 1, each doubly degenerate. Here the largest

eigenvalue j ¼ 1
2ð1þ

ffiffiffi
5

p
Þ is the golden ratio. As we can bound

the norm T2T1k k by T2k k T1k k, we immediately conclude that the

largest eigenvalue of T1 and of T2 scale as lmaxðNyÞ ' j
1
2Ny .

From this, we have a rough estimate that the number of states
scales at most as jNxNy .

The two largest eigenvalues of the transfer matrix T1 T2 up to
11 rows are summarised in Table 2. The numerical results show
that, at least up to 11 rows, the largest eigenvalue goes down. This
means, that for a long enough strip, the number of LC states of 11
rows, will be smaller than, say the number of states of three rows.
This behaviour of l1 reflects the highly constrained nature of the
system, which is consistent with our numerical counting of the
allowed LC states shown in Fig. 2. In the next section, we will put
analytical bounds for the entropy of the LC states.

Proving the perimeter scaling of entropy. The hexagon
representation for the sign state of each bipyramid allows us to
establish bounds on the number of LC states, N(L, V), for a

ba

Figure 3 | An arbitrary collinear bipyramid spin state or a random hexagon tiling. (a) An LC state is shown. At the mean field level, the spins on the black
line can rotate collectively without costing any energy, realizing an one-dimensional zero-energy mode. (b) The same state as in a, but shown as a random
tiling in the hexagon representation. We have marked to elbows by red to show how lines always switch between thin and thick when changing direction, as
long as no junction is involved. A couple of junctions are marked by the green arrows.
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Figure 4 | Construction of a transfer matrix. Counting of allowed LC configurations can be systematically done using a two step transfer matrix as
described above. Given the signs on the right of the first zig-zag column (blue bipyramids on the left), we add an additional column (red), satisfying
the ferro-sign constraint in the linking triangles. In the first step, the signs s1, s2, s5, s6,.. s4nþ 1, s4nþ 2, where n is an integer, remain unchanged.
The sites that might change after the move are of the form s4n" 1, s4n. A similar addition of a column can then be applied, and the process repeated to cover
the lattice.
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long-range order. It is worth noting that for a material like SCGO,
the spin-freezing phenomena occurs at temperatures of a few
Kelvin, which are smaller by two orders of magnitude than the
typical Heisenberg exchange coupling J, which sets the energy
scale for the spin waves. In this regime, thermal fluctuations are
negligible.

An illustrative example of the procedure is shown in Fig. 5 for
6! 6 bipyramids with several different LC states as local minima.
As the long-range ordered sign state is special, we considered the
LC states near the

ffiffiffi
3

p
!

ffiffiffi
3

p
1-6-8 state that are connected with

each other through coplanar states. Figure 5 shows the results; the
degeneracy between the collinear and the coplanar states is lifted,

making the LC states local minima and creating energy barriers
by the coplanar states. The degeneracy among LC states is also
lifted; the

ffiffiffi
3

p
!

ffiffiffi
3

p
sign state has a lower energy than the other

sign states, making the
ffiffiffi
3

p
!

ffiffiffi
3

p
long-range ordered state a global

minimum and the other LC states local minima. Explicit
enumeration shows that there are six possible

ffiffiffi
3

p
!

ffiffiffi
3

p
sign

states, giving 36 possible
ffiffiffi
3

p
!

ffiffiffi
3

p
spin states when combined

with the six possible colour configurations. Thus, quantum
fluctuations lift the mean field ground state degeneracy to form 36
global minima of the long-range ordered LC states and numerous
local minima of other LC states, the number of which scales with
the perimeter of the system. Note that, as explained above, the
selection of the

ffiffiffi
3

p
!

ffiffiffi
3

p
sign states as global minima is an

example of a common feature of the order-by-disorder mechan-
ism: that is, the preference of states with the highest symmetry,
that is, the smallest magnetic unit cell.

As there are no local spin reorientations that connect between
the mean field minima, the dynamical energetic barriers between
different states are huge. As a result, on cooling, the system gets
trapped in one of the local minima of collinear bipyramids
without a long-range order. The spin-freezing explicitly breaks
the O(3) invariance of our Heisenberg Hamiltonian. As a result of
this symmetry breaking, and the finite spin stiffness for
deforming the aperiodic static antiferromagnetic spin texture,
its thermodynamics at low temperatures will be governed by low-
energy hydrodynamic Halperin–Saslow modes25,30,31 (see
Supplementary Note 2 for a discussion). Such modes are
linearly dispersive and lead to a Cv / T2 behaviour for a quasi-
two-dimensional system such as ours. Here we make the point
that the Halperin–Saslow scenario still holds for the spin jam
state, and moreover, is more effective without doping disorder. In
conventional spin glasses, where dilute magnetic ions are
embedded in a nonmagnetic metal, there is also a linear in T
contribution to the specific heat owing to localised two-level

Table 3 | Connections among the sign states though the
global spin rotations.

Initial sign state Rotation angles Final sign state

(1-6-8) (90,"90," 90) (3-5-7)
(1-6-8) (90,"90,90) (1-6-8)
(1-6-8) (90,90,90) (4-9-2)
(1-6-8) (90,90," 90) (1-6-8)
(2-4-9) (90,"90," 90) (1-6-8)
(2-4-9) (90,"90,90) (2-4-9)
(2-4-9) (90,90,90) (3-5-7)
(2-4-9) (90,90," 90) (2-4-9)
(3-5-7) (90,"90," 90) (3-5-7)
(3-5-7) (90,"90,90) (2-4-9)
(3-5-7) (90,90,90) (3-5-7)
(3-5-7) (90,90," 90) (1-6-8)

The global collective spin rotations, described in Supplementary Fig. 9, starting from an initial
collinear bipyramid (LC or sign) state generate coplanar bipyramid states. When the rotation
continues to 90 degrees, then the spin structure becomes the same that is shifted in space or a
different LC state. The connections between the different LC states are listed here.
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Figure 5 | Rugged energy landscape induced by quantum fluctuations. The magnetic energy of the quantum fluctuations was calculated for several LC
(sign) states near one global minimum. The energy barriers between the minima are composed of the coplanar bipyramid spin states that connect
the sign states.
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We present extensive large-scale dynamical simulations of phase-separated states in the double
exchange model. These inhomogeneous electronic states that play a crucial role in the colossal
magnetoresistance phenomenon are composed of ferromagnetic metallic clusters embedded in an
antiferromagnetic insulating matrix. We compute the dynamical structure factor of these nanoscale
textures using an e�cient real-space formulation of coupled spin and electron dynamics. Dynamical
signatures of the various underlying magnetic structures are identified. At small hole doping, the
structure factor exhibits a dominating signal of magnons from the background Néel order and local-
ized modes from magnetic polarons. A low-energy continuum due to large-size ferromagnetic clusters
emerges at higher doping levels. Implications for experiments on magnetoresistive manganites are
discussed.

Phase separation is ubiquitous in systems dominated
by nonlinear and nonequilibrium processes [1, 2]. In par-
ticular, it has been observed in the intermediate state
of numerous first-order phase transitions [3]. Nanoscale
phase separation also underpins many of the intrigu-
ing functionalities of strongly correlated electron materi-
als [4–9]. A prominent example is the colossal magnetore-
sistance (CMR) observed in several manganese oxides [7–
11], in which a small change in magnetic field induces an
enormous variation of resistance. Detailed microscopic
studies have revealed complex nano-scale textures con-
sisting of metallic ferromagnetic clusters embedded in an
insulating matrix [12–14]. It is believed that CMR arises
from a field-induced percolating transition of the metallic
nano-clusters in such mixed-phase states [15–17].

Considerable experimental and theoretical e↵ort has
been devoted to understanding the origin of these com-
plex mesoscopic textures in manganites and other corre-
lated systems. An emerging picture is that such inho-
mogeneous states result from the competition between
two distinct electronic phases with nearly degenerate
energies [9, 10]. Microscopically, the double-exchange
model [18, 19] is considered a major mechanism for the
electronic phase separation. It describes itinerant elec-
trons interacting with local magnetic moments through
the Hund’s rule coupling. Since electrons can gain kinetic
energy when propagating in a sea of parallel spins, an in-
stability occurs when ferromagnetic domains favored by
doped carriers compete with the background antiferro-
magnetic order. The tendency toward phase separation is
further enhanced by factors such as long-range Coulomb
interaction, quenched disorder, and coupling to orbital,
and lattice degrees of freedom [10].

The magnetization dynamics of the hole-doped man-
ganites L1�x

A
x

MnO3, where L is a trivalent lanthanide
ion and A is a divalent alkaline earth ion, has also been
extensively studied experimentally [20–25]. The major-
ity of the investigations focused on the ferromagnetic
phase with optimal hole doping, which is also the regime
exhibiting pronounced CMR e↵ect. While the spin-

wave spectrum of some ferromagnetic manganites such
as La1�x

Sr
x

MnO3 seems well described by the double-
exchange model [26, 27], intriguing unconventional mag-
netic behaviors have also been reported. For example,
the spin wave dispersion of manganites with a lower crit-
ical temperature is significantly softened near the Bril-
louin zone boundary. Moreover, the magnon excitations
close to zone boundary also exhibit an enhanced broaden-
ing. Theoretically, the anomalous spin-wave excitations
have been attributed to a host of diverse mechanisms in-
cluding higher-order e↵ects of spin-charge coupling [28–
30], magnon-phonon interaction [31, 32], orbital fluctua-
tions [33], and disorder e↵ect [34].

Despite extensive studies on the spin-wave excitations
of the ferromagnetic regime, the spin dynamics of the
phase-separated states has received much less atten-
tion. From the theoretical viewpoint, the lack of trans-
lation invariance in a mixed-phase state renders most
momentum-based techniques inapplicable. In this paper,
we present the first large-scale dynamical simulations of
the phase-separated states in the single-band double ex-
change model based on an e�cient real-space method
for the evolution of the electrons and spins. The dy-
namical structure factor of these highly inhomogeneous
states are computed via the space-time Fourier trans-
form of the spin trajectories. Dynamical signatures of
the magnetic polarons and ferromagnetic metallic clus-
ters are also identified. In particular, an abundance of
low-energy magnons is found to arise from the metallic
clusters.

We start with the single-band double-exchange (DE)
model on a square lattice,

H = �t
X

hiji

⇣
c†
i↵

c
j↵

+ h.c.
⌘

� J
X

i

S
i

· c†
i↵

�
↵�

c
i�

, (1)

where repeated indices ↵, � imply summation. The first
term describes the electron hopping: c†

i↵

creates an elec-
tron with spin ↵ =", # at site i, hiji indicates the nearest
neighbors, t is the electron hopping constant. The sec-
ond term represents the Hund’s rule coupling between
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We present extensive large-scale dynamical simulations of phase-separated states in the double
exchange model. These inhomogeneous electronic states that play a crucial role in the colossal
magnetoresistance phenomenon are composed of ferromagnetic metallic clusters embedded in an
antiferromagnetic insulating matrix. We compute the dynamical structure factor of these nanoscale
textures using an e�cient real-space formulation of coupled spin and electron dynamics. Dynamical
signatures of the various underlying magnetic structures are identified. At small hole doping, the
structure factor exhibits a dominating signal of magnons from the background Néel order and local-
ized modes from magnetic polarons. A low-energy continuum due to large-size ferromagnetic clusters
emerges at higher doping levels. Implications for experiments on magnetoresistive manganites are
discussed.

Phase separation is ubiquitous in systems dominated
by nonlinear and nonequilibrium processes [1, 2]. In par-
ticular, it has been observed in the intermediate state
of numerous first-order phase transitions [3]. Nanoscale
phase separation also underpins many of the intrigu-
ing functionalities of strongly correlated electron materi-
als [4–9]. A prominent example is the colossal magnetore-
sistance (CMR) observed in several manganese oxides [7–
11], in which a small change in magnetic field induces an
enormous variation of resistance. Detailed microscopic
studies have revealed complex nano-scale textures con-
sisting of metallic ferromagnetic clusters embedded in an
insulating matrix [12–14]. It is believed that CMR arises
from a field-induced percolating transition of the metallic
nano-clusters in such mixed-phase states [15–17].

Considerable experimental and theoretical e↵ort has
been devoted to understanding the origin of these com-
plex mesoscopic textures in manganites and other corre-
lated systems. An emerging picture is that such inho-
mogeneous states result from the competition between
two distinct electronic phases with nearly degenerate
energies [9, 10]. Microscopically, the double-exchange
model [18, 19] is considered a major mechanism for the
electronic phase separation. It describes itinerant elec-
trons interacting with local magnetic moments through
the Hund’s rule coupling. Since electrons can gain kinetic
energy when propagating in a sea of parallel spins, an in-
stability occurs when ferromagnetic domains favored by
doped carriers compete with the background antiferro-
magnetic order. The tendency toward phase separation is
further enhanced by factors such as long-range Coulomb
interaction, quenched disorder, and coupling to orbital,
and lattice degrees of freedom [10].

The magnetization dynamics of the hole-doped man-
ganites L1�x

A
x

MnO3, where L is a trivalent lanthanide
ion and A is a divalent alkaline earth ion, has also been
extensively studied experimentally [20–25]. The major-
ity of the investigations focused on the ferromagnetic
phase with optimal hole doping, which is also the regime
exhibiting pronounced CMR e↵ect. While the spin-

wave spectrum of some ferromagnetic manganites such
as La1�x

Sr
x

MnO3 seems well described by the double-
exchange model [26, 27], intriguing unconventional mag-
netic behaviors have also been reported. For example,
the spin wave dispersion of manganites with a lower crit-
ical temperature is significantly softened near the Bril-
louin zone boundary. Moreover, the magnon excitations
close to zone boundary also exhibit an enhanced broaden-
ing. Theoretically, the anomalous spin-wave excitations
have been attributed to a host of diverse mechanisms in-
cluding higher-order e↵ects of spin-charge coupling [28–
30], magnon-phonon interaction [31, 32], orbital fluctua-
tions [33], and disorder e↵ect [34].

Despite extensive studies on the spin-wave excitations
of the ferromagnetic regime, the spin dynamics of the
phase-separated states has received much less atten-
tion. From the theoretical viewpoint, the lack of trans-
lation invariance in a mixed-phase state renders most
momentum-based techniques inapplicable. In this paper,
we present the first large-scale dynamical simulations of
the phase-separated states in the single-band double ex-
change model based on an e�cient real-space method
for the evolution of the electrons and spins. The dy-
namical structure factor of these highly inhomogeneous
states are computed via the space-time Fourier trans-
form of the spin trajectories. Dynamical signatures of
the magnetic polarons and ferromagnetic metallic clus-
ters are also identified. In particular, an abundance of
low-energy magnons is found to arise from the metallic
clusters.

We start with the single-band double-exchange (DE)
model on a square lattice,

H = �t
X

hiji

⇣
c†
i↵

c
j↵

+ h.c.
⌘

� J
X

i

S
i

· c†
i↵

�
↵�

c
i�

, (1)

where repeated indices ↵, � imply summation. The first
term describes the electron hopping: c†

i↵

creates an elec-
tron with spin ↵ =", # at site i, hiji indicates the nearest
neighbors, t is the electron hopping constant. The sec-
ond term represents the Hund’s rule coupling between
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FIG. 1: Upper panels: density plots of the on-site electron number n(r
i

) = hc†
i,↵

c
i,↵

i in sample phase-separated states for
filling fractions (a) f = 0.43, (b) f = 0.45, (c) f = 0.465, (d) f = 0.48, (e) f = 0.498, obtained from Langevin dynamics
simulations on a 60 ⇥ 60 lattice with Hund’s coupling J = 6t and temperature T = 5 ⇥ 10�4t. The corresponding dynamical
structure factors S(q,!) averaged over tens of independent initial states are shown in the lower panels. The high-symmetry
points of the Brillouin zone are � = (0, 0), X = (⇡, 0),M = (⇡,⇡).

electron spin and the local magnetic moments S
i

, which
are assumed to be classical spins of length S = 1. The
square-lattice DE model has been extensively studied
theoretically [35–37]. Exactly at half-filling, the local
spins develop a long-range Néel order in the T = 0
insulating ground state. When the electron density is
small, on the other hand, a metallic state with predom-
inantly ferromagnetic (FM) spin correlation emerges as
the ground state. Near half-filling with a small hole dop-
ing, the FM metal becomes unstable against either a non-
collinear magnetic spiral or phase separation [35–38] de-
pending on the strength of the Hund’s coupling J .

In the large-J regime, the instability of the FM phase
leads to phase separation with FM domains coexisting
with a Néel background. Such mixed-phase state has
been observed in Monte Carlo simulations [35]. Because
of the nonlocal electronic degrees of freedom, large-scale
equilibrium simulation of the DE model requires e�cient
algorithms for solving the tight-binding Hamiltonian.
The linear-scaling kernel polynomial method (KPM) is
usually used to solve the electronic structure problem in
simulations of DE model [39–41]. Here we adopt an e�-
cient Langevin dynamics method combined with a gradi-
ent extension of the KPM [42–44] to obtain equilibrium
phase-separated states. A few examples of such mixed-
phase states on a 60 ⇥ 60 square lattice are shown in the
upper panels of Fig. 1. The red region corresponds to
the half-filled insulating background with the antiferro-
magnetic order, while the green and blue regions indicate
metallic FM domains with low electron density. Interest-
ingly, in addition to forming the FM puddles, a fraction
of the doped holes are self-trapped in a composite ob-

ject which can be viewed as the magnetic analog of the
polaron [45–48].

To describe the dynamics of the DE system, one needs
to account for the time evolution of both the local spins
and the electrons. Here we assume the dynamics of local
moments is governed by the Landau-Lifshitz equation

dS
i

dt
= �S

i

⇥ @hHi
@S

i

= JS
i

⇥ �
↵�

⇢
i�,i↵

, (2)

where ⇢
i↵,j�

⌘ hc†
j�

c
i↵

i is the reduced single-particle
electron density matrix. Importantly, the e↵ective local
field h

i

(t) = �@hHi/@S
i

depends on the electron degrees
of freedom which have to be propagated simultaneously.
The evolution of the electronic state is given by a time-
dependent Slater determinant | (t)i =

Q
Ne

m=1  
†
m

(t)|0i,
where the quasi-particle field operator satisfies the
Heisenberg equation @ 

m

/@t = i[H(t), 
m

(t)]. This ap-
proach has been employed to study the photo-induced
dynamics of DE system in recent works [49, 50]. How-
ever, the propagation of the Slater determinant is rather
cumbersome numerically.

Instead of evolving the many-body wavefunction, one
could equally describe the electron dynamics in terms
of the reduced density matrix. An additional advantage
with this formulation is that it can be straightforwardly
generalized to finite-temperature simulations, which are
beyond the description of a single Slater determinant. To
this end, we define a time-dependent “first-quantization”
Hamiltonian H

i↵,j�

(t) = �t
ij

�
↵�

� J �
ij

S
i

(t) · �
↵�

.
The DE model in Eq. (1) can then be expressed as
Ĥ =

P
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P
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. In terms of H, the re-
duced density matrix satisfies the von Neumann equation
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d⇢/dt = i[⇢, H], or explicitly:
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It can be readily verified that the total energy of the sys-
tem E = hHi = Tr(⇢H) is a constant of motion. The nu-
merical e�ciency of integrating the von Neumann equa-
tion can be improved with optimized sparse-matrix mul-
tiplication algorithms. A similar formulation has been
developed for the semiclassical dynamics of spin density
waves in the Hubbard model [51].

In our dynamical simulations, the initial state is pre-
pared using the Langevin simulations at a tempera-
ture of T = 5 ⇥ 10�4 t. A fourth-order Runge-Kutta
method is used to integrate the coupled equations of mo-
tions. Given the numerical spin trajectories S

i

(t), the
dynamical structure factor S(q, !) is computed from the
space-time Fourier transform of the correlation function
C(r

ij

, t) = hS
i

(t) · S
j

(0)i. Importantly, the dynamical
simulation here is completely deterministic and energy-
conserving. The symbol h· · · i denotes ensemble average
over independent initial states at the same temperature.
The lower panels of Fig. 1 show the S(q, !) of phase-
separated states with five di↵erent electron filling frac-
tions; each is averaged over 50 distinct initial states.

Since the Néel order parameter, characterized by the
wavevector Q = (⇡, ⇡) at the M -point, is not a conserved
quantity, the fluctuations of the associated Fourier com-
ponent S̃(Q, t) ⌘ P

i

S
i

(t) eiQ·ri produce a huge artifact
in the raw data of the dynamical structure factor. In-
terestingly, we found that the drifting of this Goldstone
mode of finite lattices exhibits a 1/! power-law behavior,
extending to very high energies. This observation thus
allows us to systematically remove the large artificial sig-
nal in the vicinity of the M -point. The S(q, !) shown in
Fig. 1 were obtained after this subtraction.

The dynamical structure factor in the vicinity of half-
filling is dominated by the background antiferromagentic
spin-wave excitations, as shown in Fig. 1(e). The pro-
nounced signals around the M -point correspond to the
Goldstone modes of the underlying Néel order. As men-
tioned above, the doped holes in this regime are localized
by the self-induced potential in a magnetic polaron. Nu-
merically, each polaron is found to accommodate nearly
exactly one hole. To understand the nature of the as-
sociated spin excitations, we focus on the dynamics of a
single magnetic polaron. We first perform relaxational
dynamics on a perturbed half-filled Néel state (by flip-
ping a center spin) with exactly one electron removed
to obtain the initial states. From the spin dynamics,
we compute the power spectrum I(!) ⌘ P

i2C |S̃
i

(!)|2,
where S̃

i

(!) =
R

S
i

(t)e�i!tdt and the summation is over
five spins at the center of the polaron. The computed
spectrum, shown in Fig. 2(a), is characterized by promi-
nent peaks at, e.g. !/t = 0.05, 0.25, 0.49, corresponding
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FIG. 2: The power spectrum I(!) =
P

i2C |S̃
i

(!)|2 of (a) a
magnetic polaron and (b) a FM metallic cluster consisting of
roughly 20 spins. Here the sum runs over spins in the FM
domain of these object. The inset shows the electron density
plot n(r

i

) = hc†
i↵

c
i↵

i. With a large Hund’s coupling J = 6t,
the size of the magnetic polaron is rather small, with a radius
of roughly three lattice constants.

to eigen-energies of the spin-wave excitations localized
at the magnetic polaron. Importantly, these localized
magnons contribute to the flat bands seen in the S(q, !).

With increasing hole doping, the antiferromagnetic
spin-wave dispersion is still visible, yet with gradually
reduced strength. Some of the flat-bands due to mag-
netic polarons also persist. An intriguing new feature
is the emergence of a continuum of low-energy magnons
throughout the whole Brillouin zone. It is tempting to
associate this continuum with the metallic FM clusters
whose size also grows with increasing hole doping; see
Fig. 1. To this end, we examine the spectrum of metallic
clusters of varying shapes and sizes. Similar to the prepa-
ration of the magnetic polaron, we manually create such
structures by carefully tuning the hole doping with the
cluster size. Fig. 2(b) shows the I(!) of a sample cluster
consisting of roughly 20 spins. A few pronounced peaks,
corresponding to the dominant quantized magnons, can
be seen in the spectrum. While the intensity and position
of these peaks depend on the geometric details of the FM
clusters, a common feature of the cluster spectrum is the
appearance of numerous low energy modes.

To further investigate the nature of these low-energy
magnons, we compare their spatial profile F(r) with the
corresponding electron density plot n(r) for a particu-
lar initial state, as demonstrated in Fig. 3 for two elec-
tron filling fractions. Here the magnon profile function
is defined as the integral of the spin Fourier components
F(r

i

) =
R

!2

!1
|S̃

i

(!)|2 d!, over a finite band [!1, !2] of
small energies. In the case of electron filling n = 0.465,
where the system is spontaneously segregated into FM
domains of various sizes in an AFM background, the
dominant spin excitations in this energy range are from
the FM clusters of the doped holes; see Fig. 3(a) and (c).
For even smaller hole doping with f = 0.498, the in-

• GPU-enabled Langevin dynamics for preparing initial phase separated states

• Double exchange model on square-lattice  
close to half-filling:
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We present extensive large-scale dynamical simulations of phase-separated states in the double
exchange model. These inhomogeneous electronic states that play a crucial role in the colossal
magnetoresistance phenomenon are composed of ferromagnetic metallic clusters embedded in an
antiferromagnetic insulating matrix. We compute the dynamical structure factor of these nanoscale
textures using an e�cient real-space formulation of coupled spin and electron dynamics. Dynamical
signatures of the various underlying magnetic structures are identified. At small hole doping, the
structure factor exhibits a dominating signal of magnons from the background Néel order and local-
ized modes from magnetic polarons. A low-energy continuum due to large-size ferromagnetic clusters
emerges at higher doping levels. Implications for experiments on magnetoresistive manganites are
discussed.

Phase separation is ubiquitous in systems dominated
by nonlinear and nonequilibrium processes [1, 2]. In par-
ticular, it has been observed in the intermediate state
of numerous first-order phase transitions [3]. Nanoscale
phase separation also underpins many of the intrigu-
ing functionalities of strongly correlated electron materi-
als [4–9]. A prominent example is the colossal magnetore-
sistance (CMR) observed in several manganese oxides [7–
11], in which a small change in magnetic field induces an
enormous variation of resistance. Detailed microscopic
studies have revealed complex nano-scale textures con-
sisting of metallic ferromagnetic clusters embedded in an
insulating matrix [12–14]. It is believed that CMR arises
from a field-induced percolating transition of the metallic
nano-clusters in such mixed-phase states [15–17].

Considerable experimental and theoretical e↵ort has
been devoted to understanding the origin of these com-
plex mesoscopic textures in manganites and other corre-
lated systems. An emerging picture is that such inho-
mogeneous states result from the competition between
two distinct electronic phases with nearly degenerate
energies [9, 10]. Microscopically, the double-exchange
model [18, 19] is considered a major mechanism for the
electronic phase separation. It describes itinerant elec-
trons interacting with local magnetic moments through
the Hund’s rule coupling. Since electrons can gain kinetic
energy when propagating in a sea of parallel spins, an in-
stability occurs when ferromagnetic domains favored by
doped carriers compete with the background antiferro-
magnetic order. The tendency toward phase separation is
further enhanced by factors such as long-range Coulomb
interaction, quenched disorder, and coupling to orbital,
and lattice degrees of freedom [10].

The magnetization dynamics of the hole-doped man-
ganites L1�x

A
x

MnO3, where L is a trivalent lanthanide
ion and A is a divalent alkaline earth ion, has also been
extensively studied experimentally [20–25]. The major-
ity of the investigations focused on the ferromagnetic
phase with optimal hole doping, which is also the regime
exhibiting pronounced CMR e↵ect. While the spin-

wave spectrum of some ferromagnetic manganites such
as La1�x

Sr
x

MnO3 seems well described by the double-
exchange model [26, 27], intriguing unconventional mag-
netic behaviors have also been reported. For example,
the spin wave dispersion of manganites with a lower crit-
ical temperature is significantly softened near the Bril-
louin zone boundary. Moreover, the magnon excitations
close to zone boundary also exhibit an enhanced broaden-
ing. Theoretically, the anomalous spin-wave excitations
have been attributed to a host of diverse mechanisms in-
cluding higher-order e↵ects of spin-charge coupling [28–
30], magnon-phonon interaction [31, 32], orbital fluctua-
tions [33], and disorder e↵ect [34].

Despite extensive studies on the spin-wave excitations
of the ferromagnetic regime, the spin dynamics of the
phase-separated states has received much less atten-
tion. From the theoretical viewpoint, the lack of trans-
lation invariance in a mixed-phase state renders most
momentum-based techniques inapplicable. In this paper,
we present the first large-scale dynamical simulations of
the phase-separated states in the single-band double ex-
change model based on an e�cient real-space method
for the evolution of the electrons and spins. The dy-
namical structure factor of these highly inhomogeneous
states are computed via the space-time Fourier trans-
form of the spin trajectories. Dynamical signatures of
the magnetic polarons and ferromagnetic metallic clus-
ters are also identified. In particular, an abundance of
low-energy magnons is found to arise from the metallic
clusters.

We start with the single-band double-exchange (DE)
model on a square lattice,

H = �t
X

hiji

⇣
c†
i↵

c
j↵

+ h.c.
⌘

� J
X

i

S
i

· c†
i↵

�
↵�

c
i�

, (1)

where repeated indices ↵, � imply summation. The first
term describes the electron hopping: c†

i↵

creates an elec-
tron with spin ↵ =", # at site i, hiji indicates the nearest
neighbors, t is the electron hopping constant. The sec-
ond term represents the Hund’s rule coupling between
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FIG. 1: Upper panels: density plots of the on-site electron number n(r
i

) = hc†
i,↵

c
i,↵

i in sample phase-separated states for
filling fractions (a) f = 0.43, (b) f = 0.45, (c) f = 0.465, (d) f = 0.48, (e) f = 0.498, obtained from Langevin dynamics
simulations on a 60 ⇥ 60 lattice with Hund’s coupling J = 6t and temperature T = 5 ⇥ 10�4t. The corresponding dynamical
structure factors S(q,!) averaged over tens of independent initial states are shown in the lower panels. The high-symmetry
points of the Brillouin zone are � = (0, 0), X = (⇡, 0),M = (⇡,⇡).

electron spin and the local magnetic moments S
i

, which
are assumed to be classical spins of length S = 1. The
square-lattice DE model has been extensively studied
theoretically [35–37]. Exactly at half-filling, the local
spins develop a long-range Néel order in the T = 0
insulating ground state. When the electron density is
small, on the other hand, a metallic state with predom-
inantly ferromagnetic (FM) spin correlation emerges as
the ground state. Near half-filling with a small hole dop-
ing, the FM metal becomes unstable against either a non-
collinear magnetic spiral or phase separation [35–38] de-
pending on the strength of the Hund’s coupling J .

In the large-J regime, the instability of the FM phase
leads to phase separation with FM domains coexisting
with a Néel background. Such mixed-phase state has
been observed in Monte Carlo simulations [35]. Because
of the nonlocal electronic degrees of freedom, large-scale
equilibrium simulation of the DE model requires e�cient
algorithms for solving the tight-binding Hamiltonian.
The linear-scaling kernel polynomial method (KPM) is
usually used to solve the electronic structure problem in
simulations of DE model [39–41]. Here we adopt an e�-
cient Langevin dynamics method combined with a gradi-
ent extension of the KPM [42–44] to obtain equilibrium
phase-separated states. A few examples of such mixed-
phase states on a 60 ⇥ 60 square lattice are shown in the
upper panels of Fig. 1. The red region corresponds to
the half-filled insulating background with the antiferro-
magnetic order, while the green and blue regions indicate
metallic FM domains with low electron density. Interest-
ingly, in addition to forming the FM puddles, a fraction
of the doped holes are self-trapped in a composite ob-

ject which can be viewed as the magnetic analog of the
polaron [45–48].

To describe the dynamics of the DE system, one needs
to account for the time evolution of both the local spins
and the electrons. Here we assume the dynamics of local
moments is governed by the Landau-Lifshitz equation

dS
i

dt
= �S

i

⇥ @hHi
@S

i

= JS
i

⇥ �
↵�

⇢
i�,i↵

, (2)

where ⇢
i↵,j�

⌘ hc†
j�

c
i↵

i is the reduced single-particle
electron density matrix. Importantly, the e↵ective local
field h

i

(t) = �@hHi/@S
i

depends on the electron degrees
of freedom which have to be propagated simultaneously.
The evolution of the electronic state is given by a time-
dependent Slater determinant | (t)i =

Q
Ne

m=1  
†
m

(t)|0i,
where the quasi-particle field operator satisfies the
Heisenberg equation @ 

m

/@t = i[H(t), 
m

(t)]. This ap-
proach has been employed to study the photo-induced
dynamics of DE system in recent works [49, 50]. How-
ever, the propagation of the Slater determinant is rather
cumbersome numerically.

Instead of evolving the many-body wavefunction, one
could equally describe the electron dynamics in terms
of the reduced density matrix. An additional advantage
with this formulation is that it can be straightforwardly
generalized to finite-temperature simulations, which are
beyond the description of a single Slater determinant. To
this end, we define a time-dependent “first-quantization”
Hamiltonian H

i↵,j�

(t) = �t
ij

�
↵�

� J �
ij

S
i

(t) · �
↵�

.
The DE model in Eq. (1) can then be expressed as
Ĥ =

P
i,j

P
↵,�

H
i↵,j�

ĉ†
i↵

ĉ
j�

. In terms of H, the re-
duced density matrix satisfies the von Neumann equation
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We present extensive large-scale dynamical simulations of phase-separated states in the double
exchange model. These inhomogeneous electronic states that play a crucial role in the colossal
magnetoresistance phenomenon are composed of ferromagnetic metallic clusters embedded in an
antiferromagnetic insulating matrix. We compute the dynamical structure factor of these nanoscale
textures using an e�cient real-space formulation of coupled spin and electron dynamics. Dynamical
signatures of the various underlying magnetic structures are identified. At small hole doping, the
structure factor exhibits a dominating signal of magnons from the background Néel order and local-
ized modes from magnetic polarons. A low-energy continuum due to large-size ferromagnetic clusters
emerges at higher doping levels. Implications for experiments on magnetoresistive manganites are
discussed.

Phase separation is ubiquitous in systems dominated
by nonlinear and nonequilibrium processes [1, 2]. In par-
ticular, it has been observed in the intermediate state
of numerous first-order phase transitions [3]. Nanoscale
phase separation also underpins many of the intrigu-
ing functionalities of strongly correlated electron materi-
als [4–9]. A prominent example is the colossal magnetore-
sistance (CMR) observed in several manganese oxides [7–
11], in which a small change in magnetic field induces an
enormous variation of resistance. Detailed microscopic
studies have revealed complex nano-scale textures con-
sisting of metallic ferromagnetic clusters embedded in an
insulating matrix [12–14]. It is believed that CMR arises
from a field-induced percolating transition of the metallic
nano-clusters in such mixed-phase states [15–17].

Considerable experimental and theoretical e↵ort has
been devoted to understanding the origin of these com-
plex mesoscopic textures in manganites and other corre-
lated systems. An emerging picture is that such inho-
mogeneous states result from the competition between
two distinct electronic phases with nearly degenerate
energies [9, 10]. Microscopically, the double-exchange
model [18, 19] is considered a major mechanism for the
electronic phase separation. It describes itinerant elec-
trons interacting with local magnetic moments through
the Hund’s rule coupling. Since electrons can gain kinetic
energy when propagating in a sea of parallel spins, an in-
stability occurs when ferromagnetic domains favored by
doped carriers compete with the background antiferro-
magnetic order. The tendency toward phase separation is
further enhanced by factors such as long-range Coulomb
interaction, quenched disorder, and coupling to orbital,
and lattice degrees of freedom [10].

The magnetization dynamics of the hole-doped man-
ganites L1�x

A
x

MnO3, where L is a trivalent lanthanide
ion and A is a divalent alkaline earth ion, has also been
extensively studied experimentally [20–25]. The major-
ity of the investigations focused on the ferromagnetic
phase with optimal hole doping, which is also the regime
exhibiting pronounced CMR e↵ect. While the spin-

wave spectrum of some ferromagnetic manganites such
as La1�x

Sr
x

MnO3 seems well described by the double-
exchange model [26, 27], intriguing unconventional mag-
netic behaviors have also been reported. For example,
the spin wave dispersion of manganites with a lower crit-
ical temperature is significantly softened near the Bril-
louin zone boundary. Moreover, the magnon excitations
close to zone boundary also exhibit an enhanced broaden-
ing. Theoretically, the anomalous spin-wave excitations
have been attributed to a host of diverse mechanisms in-
cluding higher-order e↵ects of spin-charge coupling [28–
30], magnon-phonon interaction [31, 32], orbital fluctua-
tions [33], and disorder e↵ect [34].

Despite extensive studies on the spin-wave excitations
of the ferromagnetic regime, the spin dynamics of the
phase-separated states has received much less atten-
tion. From the theoretical viewpoint, the lack of trans-
lation invariance in a mixed-phase state renders most
momentum-based techniques inapplicable. In this paper,
we present the first large-scale dynamical simulations of
the phase-separated states in the single-band double ex-
change model based on an e�cient real-space method
for the evolution of the electrons and spins. The dy-
namical structure factor of these highly inhomogeneous
states are computed via the space-time Fourier trans-
form of the spin trajectories. Dynamical signatures of
the magnetic polarons and ferromagnetic metallic clus-
ters are also identified. In particular, an abundance of
low-energy magnons is found to arise from the metallic
clusters.

We start with the single-band double-exchange (DE)
model on a square lattice,

H = �t
X

hiji

⇣
c†
i↵

c
j↵

+ h.c.
⌘

� J
X

i

S
i

· c†
i↵

�
↵�

c
i�

, (1)

where repeated indices ↵, � imply summation. The first
term describes the electron hopping: c†

i↵

creates an elec-
tron with spin ↵ =", # at site i, hiji indicates the nearest
neighbors, t is the electron hopping constant. The sec-
ond term represents the Hund’s rule coupling between
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Semiclassical dynamics of spin density waves
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We present a theoretical framework for equilibrium and nonequilibrium dynamical simulation of quantum
states with spin-density-wave (SDW) order. Within a semiclassical adiabatic approximation that retains electron
degrees of freedom, we demonstrate that the SDW order parameter obeys a generalized Landau-Lifshitz equation.
With the aid of an enhanced kernel polynomial method, our linear-scaling quantum Landau-Lifshitz dynamics
(QLLD) method enables dynamical SDW simulations with N ≃ 105 lattice sites. Our real-space formulation
can be used to compute dynamical responses, such as the dynamical structure factor, of complex and even
inhomogeneous SDW configurations at zero or finite temperatures. Applying the QLLD to study the relaxation
of a noncoplanar topological SDW under the excitation of a short pulse, we further demonstrate the crucial role
of spatial correlations and fluctuations in the SDW dynamics.

DOI: 10.1103/PhysRevB.97.035120

Quantum states with unusual broken symmetries have long
fascinated physicists because of their fundamental importance
and potential technological applications. Of particular interest
is the regular spatial modulation of electron spin known as the
spin-density-wave (SDW) state [1,2]. SDWs are ubiquitous in
strongly correlated systems and play a crucial role in several
intriguing many-body phenomena. For example, the SDW state
is proximate to the superconducting phase in several unconven-
tional superconductors, including cuprates and iron pnictides.
Indeed, non-Fermi liquid behavior is usually observed in the
vicinity of a SDW phase transition [3]. Moreover, conduction
electrons propagating in a noncoplanar spin texture acquire
a nontrivial Berry phase and exhibit unusual transport and
topological properties [4,5]. Consequently, metallic SDW with
complex spin structures, such as spirals or skyrmion crystals,
offers a novel route to control the charge degrees of freedom
through manipulation of spins and vice versa [6].

While analytical techniques have yielded much insight
about itinerant magnetism and SDW states [7,8], numerical
methods continue to provide valuable benchmarks and shed
light on controversial issues. Among the various numerical
tools [9], quantum Monte Carlo (QMC) simulations provide
numerically exact solutions to strongly correlated models
[10–12]. However, one severe restriction of most QMC
methods is the infamous sign problem. Powerful alternative
approaches that avoid the sign problem include dynamical
mean-field theory (DMFT) [13,14] and density-matrix renor-
malization group (DMRG) [15,16]. Significant developments
have also been made in their nonequilibrium extension such as
time-dependent (TD) DMFT [17,18] and TD-DMRG [19,20].
Both methods, however, are still very limited in their treatment
of complex mesoscopic structures.

*Corresponding author: gchern@virginia.edu
†Corresponding author: cbatist2@utk.edu

In this paper, we present a different numerical approach to
SDW dynamics, emphasizing the ability to simulate large-scale
lattices and complex SDW orders that often occur in highly
frustrated systems. Our starting point is a semiclassical treat-
ment of Hubbard-like models, which neglects quantum fluc-
tuations, but retains the spatial fluctuations of the SDW field.
In a way, this approach is the complement of DMFT, which
includes quantum fluctuations at the expense of neglecting
spatial correlations. A systematic approach is then developed
to reintroduce quantum dynamics to the SDW order parameter.
We show that in the leading adiabatic approximation, the
SDW dynamics is described by a generalized Landau-Lifshitz
(LL) equation in which the effective forces acting on the
spins are generated from itinerant electrons. Our numerical
scheme can be viewed as a quantum LL dynamics (QLLD),
in which the electronic degrees of freedom are integrated out
at each time step. By supplementing the LL equation with
Ginzburg-Landau type relaxation and stochastic terms, our
QLLD method can be used to simulate SDW dynamics both
near and far from equilibrium.

I. SPIN-FERMION HAMILTONIAN
FOR EQUILIBRIUM SDW PHASES

We consider the one-band Hubbard model with an on-site
repulsion U > 0,

H = −
∑

ij,α

tij c
†
i,αcj,α + U

∑

i

ni,↑ni ↓. (1)

After performing the Hubbard-Stratonovich (HS) transforma-
tion [21,22], we obtain the following spin-fermion Hamilto-
nian,

HSDW = −
∑

ij,α

tij c
†
i,αcj,α − 2U

∑

i

mi · si + U
∑

i

|mi |2,

(2)
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exchange of Eq. (3). More details can be found in the
supplementary information.

For intermediate and small U/t values, one needs to
solve the von Neumann equation. Since the number of
independent density-matrix elements is of order O(N2)
for a lattice of N spins, the computational cost of in-
tegrating the von Neumann equation is tremendous for
large lattices, e.g. N ⇠ 105. To further simplify the
numerical calculation, here we derive the SDW dynam-
ics in a similar adiabatic limit for arbitrary U . Formally,
we employ the multiple-time-scale method [35] and intro-
duce an adiabaticity parameter ✏ ⇠ |dm/dt| such that the
fast (electronic) and slow (SDW) times are ⌧ = ✏t and t,
respectively. The single-particle Hamiltonian varies with
the slow time, i.e. He↵({m

i

}) = He↵(⌧). Expanding
the density matrix in terms of the adiabaticity parame-
ter: ⇢(t) = ⇢(0)(⌧) + ✏⇢(1)(t, ⌧) + ✏2⇢(2)(t, ⌧) + · · · , and
plugging it into the von Neumann equation, we obtain

[⇢(0), He↵ ] = 0 and d⇢

(`)

dt

� i[⇢(`), He↵ ] = �d⇢

(`�1)

d⌧

for
` � 1. This provides a systematic approach to obtain the
time dependence of the density matrix.

Here we use the leading adiabatic solution ⇢(0) to com-
pute the expectation value of the spin-current density
J

ij

, which is the right-hand side of Eq. (4). We first
write He↵ = T + ⌃ where T

i↵,j�

= �t
ij

�
↵�

is the tight-
binding Hamiltonian and ⌃

i↵,j�

= �U�
ij

m

i

· �
↵�

is
the spin-fermion coupling. It is then straightforward to
show that Eq. (4) is simply dm

i

/dt = i�
↵�

[⇢, T ]
i�,i↵

/2.
Using the adiabatic equation [⇢(0), He↵ ] = 0, we have
[⇢(0), T ] = �[⇢(0), ⌃], which gives

dm
i

dt
= � iU

4
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. (7)

The right-hand side of the above equation can be fur-
ther simplified using the properties of Pauli matrix mul-
tiplication: �a�b = �

ab

I2⇥2 + i✏
abc

�c, where a, b, c are

x, y, z. For example, �
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i
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i

m

i

+

im
i

⇥�
↵�

⇢
(0)
i�,i↵

, where n
(0)
i

= ⇢
(0)
i↵,i↵

is the local electron
density. After some algebra, we obtain

dm
i

dt
=

U

2
m

i

⇥ �
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⇢
(0)
i↵,i�

= �m

i

⇥ @hHSDWi
@m

i

. (8)

The second equality comes from the fact that ⇢(0) is
computed from the equilibrium electron liquid described
by HSDW. Importantly, this equation shows that the
adiabatic SDW dynamics is described by the Landau-
Lifshitz (LL) equation with an e↵ective energy func-
tional given by hHSDWi. The local electron spin hs

i

i =
1
2 hc†

i↵

�
↵�

c
i�

i = 1
2��↵

⇢
(0)
i↵,i�

acts as an e↵ective magnetic
field and drives the slow dynamics of the SDW field.

A. Benchmark with exact diagonalization

We first benchmark our semiclassical SDW dynamics,
with and without the adiabatic approximation, against
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FIG. 2: (Color online) Comparison of the dynamical structure
factor of the Hubbard model on a 4 ⇥ 4 square lattice for
t = 1 and U = 7.33: (a) The exact diagonalization result
at T = 0, where a Lorentzian broadening factor ⌘ = 0.02 is
used, (b) the semiclassical SDW calculation in the adiabatic
approximation described by Eq. (8), and (c) the real-space
TDHF calculation. For (b) and (c), the temperature was
set T = 10�4 for generating initial configurations, and the
results were averaged over 27 independent runs starting from
di↵erent initial configurations.

the exact diagonalization (ED) calculation of the origi-
nal Hubbard model. To this end, we apply our formu-
lation to the two-sublattice collinear Néel state that is
obtained for the half-filled Hubbard model on a square
lattice. Since we only include NN hopping, the Néel or-
dering is stable for any positive value of U/|t|. Specif-
ically, as shown in Fig. 2, we compute the dynamical
structure factor S(k, !) of a 4 ⇥ 4 Hubbard cluster with
periodic boundaries for U/t = 7.33. Details of the ED
calculation are described in Ref. [36]. We compare the
ED result at T = 0 and the semiclassical SDW dynamics
at an extremely low temperature. We set temperature
at T = 10�4t and verify that the results do not change
upon decreasing the temperature to T = 10�5, indicat-
ing that our results capture the dynamical response of
the classical moments in the T ! 0 limit.

For both the real-space TDHF dynamics [Eqs. (4) and
(5)] and the adiabatic dynamics [Eq. (8)], SDW states
are first generated by means of GL-Langevin simulations
described in Sec. I. The obtained spin configurations,
which are representative of the canonical ensemble, are

4
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The second equality comes from the fact that ⇢(0) is
computed from the equilibrium electron liquid described
by HSDW. Importantly, this equation shows that the
adiabatic SDW dynamics is described by the Landau-
Lifshitz (LL) equation with an e↵ective energy func-
tional given by hHSDWi. The local electron spin hs
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FIG. 2: (Color online) Comparison of the dynamical structure
factor of the Hubbard model on a 4 ⇥ 4 square lattice for
t = 1 and U = 7.33: (a) The exact diagonalization result
at T = 0, where a Lorentzian broadening factor ⌘ = 0.02 is
used, (b) the semiclassical SDW calculation in the adiabatic
approximation described by Eq. (8), and (c) the real-space
TDHF calculation. For (b) and (c), the temperature was
set T = 10�4 for generating initial configurations, and the
results were averaged over 27 independent runs starting from
di↵erent initial configurations.

the exact diagonalization (ED) calculation of the origi-
nal Hubbard model. To this end, we apply our formu-
lation to the two-sublattice collinear Néel state that is
obtained for the half-filled Hubbard model on a square
lattice. Since we only include NN hopping, the Néel or-
dering is stable for any positive value of U/|t|. Specif-
ically, as shown in Fig. 2, we compute the dynamical
structure factor S(k, !) of a 4 ⇥ 4 Hubbard cluster with
periodic boundaries for U/t = 7.33. Details of the ED
calculation are described in Ref. [36]. We compare the
ED result at T = 0 and the semiclassical SDW dynamics
at an extremely low temperature. We set temperature
at T = 10�4t and verify that the results do not change
upon decreasing the temperature to T = 10�5, indicat-
ing that our results capture the dynamical response of
the classical moments in the T ! 0 limit.

For both the real-space TDHF dynamics [Eqs. (4) and
(5)] and the adiabatic dynamics [Eq. (8)], SDW states
are first generated by means of GL-Langevin simulations
described in Sec. I. The obtained spin configurations,
which are representative of the canonical ensemble, are
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ically, as shown in Fig. 2, we compute the dynamical
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We introduce a matrix-product state based method to efficiently obtain dynamical response functions
for two-dimensional microscopic Hamiltonians. We apply this method to different phases of the Kitaev-
Heisenberg model and identify characteristic dynamical features. In the ordered phases proximate to the
spin liquid, we find significant broad high-energy features beyond spin-wave theory, which resemble those
of the Kitaev model. This establishes the concept of a proximate spin liquid, which was recently invoked in
the context of inelastic neutron scattering experiments on α-RuCl3. Our results provide an example of a
natural path for proximate spin liquid features to arise at high energies above a conventionally ordered state,
as the diffuse remnants of spin-wave bands intersect to yield a broad peak at the Brillouin zone center.
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Introduction.—The interplay of strong interactions and
quantum fluctuations in spin systems can give rise to new and
exciting physics. A prominent example is quantum spin
liquids (QSLs), as fascinating as they are hard to detect: they
lack local order parameters and are instead characterized in
terms of emergent gauge fields. On the experimental side,
spectroscopicmeasurements provide useful insights into such
systems, particularly by probing the fractionalized excitations
(e.g., deconfined spinons) accompanying the gauge field.
Such measurements can be related to dynamical response
functions, e.g., inelastic neutron scattering to the dynamical
structure factor. On the theoretical side, determining the
ground state properties of such quantum spin models is
already a hard problem, and it is even more challenging to
understand their dynamical properties.
Here, we present a combination of the density-matrix

renormalization (DMRG) ground state method and a
matrix-product state (MPS) based dynamical algorithm to
obtain the response functions for generic two-dimensional
spin systems. With this we are able to access the dynamics
of exotic phases that can occur in frustrated systems.
Moreover, it is also very useful for regular ordered phases
where one would conventionally use large-S approxima-
tions, which in some cases cannot qualitatively explain
certain high-energy features [1,2].
We demonstrate our method by applying it to the

currently much-studied Kitaev-Heisenberg model (KHM)
model on the honeycomb lattice,

H ¼
X

hi;jiγ

KγS
γ
i S

γ
j þ J

X

hi;ji
Si · Sj: ð1Þ

The first term is the pure Kitaev model exhibiting strongly
anisotropic spin exchange coupling [3]. Neighboring
spins couple depending on the direction of their bond γ
with SxSx, SySy, or SzSz (Fig. 1). The second is the

SUð2Þ-symmetric Heisenberg term. The KHM serves as
a putative minimal model for several materials, including
Na2IrO3, Li2IrO3 [4], and α-RuCl3 [5]. The pure model is
an exactly solvable spin-1=2 model stabilizing two differ-
ent Kitaev quantum spin liquids (KSLs): a gapped Z2 one
with Abelian excitations (the “A phase”) and one hosting
gapless Majorana and gapped flux excitations (the
“B phase”) [3]. If not stated otherwise, we use the para-
metrization J¼ cosα and Kγ ¼K¼2sinα. For α¼%ðπ=2Þ,
we obtain the pure Kitaev model in the B phase, which is
stable under time-reversal symmetric perturbations, as
pointed out by Kitaev. Numerical studies of the ground
state phase diagram of the KHM have shown an extended
QSL phase for small J’s and four symmetry broken phases
for larger J’s [4].
The dynamical response functions of the pure Kitaev

model are known exactly and reveal characteristic features
[6,7], such as a spectral gap in the dynamical spin structure
factor due to a spin flip not only creating gapless Majorana
but also gapped flux excitations. This feature is perturba-
tively stable to a small J [8], but the influence of J on high-
energy features (or nonperturbatively at low energies) is

(a) (b)

FIG. 1. (a) Green, red, and blue edges correspond to Kitaev
exchange couplings Sγi S

γ
j with γ ¼ x, y, z. (b) Allowed k vectors

(the red lines) for an infinitely long cylinder with circumference
L2 ¼ 6 and periodic boundary condition along N2. Black nodes
picture the position of the gapless Majorana cones.
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low-, mid-, and high-energy features, with parameters
L2 ¼ 12 and time cutoff T ¼ 10 corresponding to
σω ≈ 0.23. We average over the different symmetry broken
directions. Results for L2 ¼ 6 and T ¼ 40 reveal that, even
at this resolution, the high-energy features stay very broad
[28]. The first column shows the low-energy physics of the
Kitaev model being reconstructed into spin-wave bands,
with minima on the edges of the first Brillouin zone. For
α ¼ 0.7π and 0.8π, these obey the C6 symmetry, indicating
that the cylinder geometry locally looks to be 2D.
Interestingly, the high-energy physics of the ordered phases
is very similar to that of the pure Kitaev model: broad
features are centered around the symmetric Γ point, k ¼ 0,
with its characteristic energy and width simultaneously
decreasing as α increases. The interplay between these low-
and high-energy features then gives rise to different
midenergy shapes. In fact, the six spin-wave bands start
on the edges of the first Brillouin zone. As the energy

increases, these bands become increasingly diffuse, even-
tually overlapping in a very broad blob at Γ. Both the spin
waves and the blob sharpen as one moves away from the
nearby QSL. The persistence of the broad high-energy
features characteristic of the QSL across the transition into
the zigzag phase are the essence of the idea of a proximate
spin liquid. This concept was recently invoked for the
putative Kitaev compound α-RuCl3 [2,4,5,11]. However,
its detailed microscopic Hamiltonian, while not yet uni-
versally agreed upon, likely contains important terms
beyond the KHM studied here [13,42–44]. Note that in
Fig. 5, for α ¼ 0.7π at intermediate energies, there is a
six-pointed star whose arms point towards the edges of the
first Brillouin zone. It is interesting to note that if we do
not average over different symmetry broken directions, the
low-energy physics strongly breaks the C6 symmetry, yet
the six-pointed star at intermediate energies persists; thus,
even if we interpret these high-energy features as the
overlap of broad spin waves, at this point, the effect of
symmetry breaking has disappeared. Under what condi-
tions such a symmetry restoration occurs more generally is
an interesting question, as is the issue regarding which

(a)

(b)

(c)

FIG. 4. Sðk;ωÞ for cuts k ¼ ðkx; 0Þ in different phases of the
KHM with an ω resolution σω ≈ 0.06. Dashed lines show the
results from LSWT. (Insets) The data for all allowed cuts. (a) FM
phase for a cylinder with L2 ¼ 12. (b) Antiferromagnet with
small spin anisotropy without a Kitaev term (L2 ¼ 8). The solid
blue line shows next order spin-wave calculations [41]. (c) AFM
phase in proximity to the KSL (L2 ¼ 6).

FIG. 5. Sðk;ωÞ at three different energies for four models: KSL
at α ¼ 0.5π (analytic result, 2D) and zigzag order at α ¼ 0.55π,
0.7π, and 0.8π (with L2 ¼ 12).
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unclear and of ongoing interest [9]. More pressingly, there
appear to be proximate spin liquids [10,11], such as, possibly,
the currentlymuch-studied α-RuCl3 [2,5,11–19], whose low-
energy physics is consistent with spin waves on an ordered
background, but whose broad high-energy features resemble
those of a KSL. Specifically, for intermediate energy scales,
there are starlike features [2] apparently arising from a
combination of spin-wave and QSL physics.
In this Letter, we first revisit the ground state phase

diagram and confirm the previously found phases. The
infinite cylinder geometry allows us to numerically confirm
that the gaplessness of the KSL is robust throughout the
entire phase. Second, we use a recently introduced MPS
based time evolution algorithm [20] to obtain the dynami-
cal spin structure factor. We benchmark our method by
comparing it to exact results for the Kitaev model and find
good agreement. We calculate the spectra of different
(nonsoluble) phases of the KHM.Most notably, we identify
broad high-energy continua even in ordered phases, which
are, moreover, similar to the high-energy features in the
nearby spin liquid phase. This provides a concrete reali-
zation of the concept of a proximate spin liquid, which was
recently invoked in the context of neutron scattering
experiments on α-RuCl3.
Ground state phase diagram.—We use the infinite size

variant of the DMRG (iDMRG) algorithm on the KHM on
infinite cylinders to map out the phase diagram. We choose
cylinder geometries such that the corresponding momen-
tum cuts contain the gapless Majorana modes of the Kitaev
spin liquid. For the pure isotropic Kitaev model, there are
gapless Majorana cones on the corners of the first Brilluoin
zone, Fig. 1(b). The full KHM has a C6 symmetry, which
means that in the 2D limit these cones cannot shift. The
iDMRG method determines the ground state of systems of
size L1 × L2, where L1 is in the thermodynamic limit and
L2 a finite circumference of up to 12 sites, being well
beyond what is achievable in exact diagonalization. While,
traditionally, iDMRG is used for finding the ground state of
one-dimensional systems, it has become a fairly unbiased
method for studying two-dimensional frustrated systems.
The resulting phase diagram for L2 ¼ 12 is shown in

Fig. 2 (for the iDMRG simulations, we keep χ ¼ 1200
states), which agrees with previous studies [4,21–25]. For
this L2, the system is compatible with the sublattice trans-
formation that maps zigzag to antiferromagnetic (AFM) and
stripy to ferromagnetic (FM) [22]. Plotted are the ground
state energy and the entanglement or von Neumann entropy
S ¼ −Trρred log ρred of the reduced density matrix ρred for a
bipartitioning of the cylinder by cutting along a ring. Both
the cusps in the energy density and the discontinuities of the
entanglement entropy indicate first order transitions. A
careful finite size scaling is difficult because of the large
bond dimension needed, and thus it is not possible to make
definite statements about whether the transitions remain first
order in the limit L2 → ∞. The symmetry broken phases can

be identified by measuring the local magnetization. We
identify a Néel phase (−0.185 < α=π < 0.487) that extends
around the pure antiferromagnetic Heisenberg [26] point,
the corresponding zigzag phase (0.513 < α=π < 0.894),
a ferromagnetic phase around the pure FM Heisenberg
point (0.894 < α=π < 1.427), and its stripy phase (1.559 <
α=π < 1.815). The two KSLs between Néel and zigzag as
well as between FMand stripy are confirmed to be gapless, as
expected for theB phase. For example, ifL2 is amultiple of 6,
we use the finite-entanglement scaling approach [29–31] and
extract the expected chiral central chargec ¼ 1 for bothKSLs
[28], with each of the two Majorana cones contributing
c ¼ 1=2. Note that when a gapless spin liquid is placed on a
cylinder, the gauge field generically adjusts to open a gap
[34]. In order to see gapless behavior, we have to initiate
the iDMRG simulations in the gapless sector to access a
metastable state [28]. The gapped ground state having a
nonzero flux through the cylinder overestimates the stability
of theQSLphases. It is notable howwell thephaseboundaries
agree with those from the infinite projected entangled pair
state (iPEPS) simulations [21].
Dynamical spin structure factor Sðk;ωÞ.—Starting from

a ground state obtained using iDMRG, we calculate
Sðk;ωÞ by Fourier transforming the dynamical correlation
function Cγγðr; tÞ ¼ hSγrðtÞSγ0ð0Þi. The real-time correla-
tions can be efficiently obtained using a recently introduced
matrix-product operator based time evolution method [20].
This allows for long-range interactions resulting from
unraveling the cylinder to a one-dimensional system which
render standard methods like the time-evolving block
decimation inefficient. Following the general strategy laid
out in Refs. [35–37], we perform the simulations for an
infinite cylinder with a fixed circumference. Note that
the entanglement growth and the resulting growth of the

FIG. 2. Phase diagram for an infinite cylinder with circum-
ference L2 ¼ 12 obtained using iDMRG. The black line corre-
sponds to the ground state energy density, and the blue line to the
entanglement entropy for a bipartition of the cylinder into a left
and right half. (Insets) The ordering pattern of the magnetic
phases. Two spin liquid phases exist around the pure Kitaev
model (α ¼ 0.5π and 1.5π). The results of exact diagonalization
(ED) [4] and infinite PEPS [21] are illustrated at the top.
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required number of states is generically slow, as the ground
state is only locally perturbed, and thus long times can be
reached even in the cylinder geometry. We show results
obtained for 0 ≤ t ≤ T and, to avoid Gibbs oscillations, we
multiply our real-time data by a Gaussian (σt ≈ 0.43T).
This corresponds to a broadening in ω space (σω ≈
ð2.3=TÞ). We use linear prediction to allow room for the
tail of the Gaussian in real time, but we confirm that the
final results do not depend on its details [38]. Thence,

Sγγðk;ωÞ ¼ 1

2π

X

r

Z
∞

−∞
eiðωt−k·rÞCγγðr; tÞdt;

which is normalized as
R
Sγγðk;ωÞdkdω ¼

R
dk. Unless

stated otherwise, we present results for Sðk;ωÞ ¼P
γS

γγðk;ωÞ.
We benchmark the method by comparing our numerical

approach to exact results for the pure Kitaev model.
Figure 3(a) shows a comparison for the gapped Kitaev
model in the A phase with Kx=Ky;z ¼ 6, with the exact
solution for Szzðk ¼ 0;ωÞ shown in black. Our numerics
(with resolution σω ≈ 0.06 in the units shown) for an
infinite cylinder with L2 ¼ 10 (red) agrees well with such
features as gap, bandwidth, and total spectral weight. In the
real-time data (inset), while the numerics agrees with the
exact solution for the cylinder geometry, it overlaps with
the 2D result only until a characteristic time scale corre-
sponding to the perturbation traveling around the cylinder
and then feeling the static fluxes inserted by the spin flip.
More generally, we expect such time scales (after which 2D
physics becomes 1D) to be particularly significant for
systems with fractionalization. For Fig. 3(b), we take Kx ¼
Ky ¼ Kz ¼ −2 to be in the gapless KSL phase, the B
phase, at α ¼ ð3π=2Þ. Comparing the exact 2D result
(black) to our numerics for a cylinder of circumference
L2 ¼ 6 (red), we see qualitative similarities, such as a
spectral gap (the dashed lines; slightly obscured by our
finite-time window), a dip where the fluxes suppress the
van Hove singularity of the Majorana spectrum [6],
comparable bandwidth, and strong low-energy weight.
To better resolve the spectral gap, we rely slightly on
linear prediction [38] by using a real-time Gaussian
envelope with σt ¼ 0.56T, corresponding to σω ≈ 0.045.
Two striking quantitative differences are (i) the spectral gap
which for this circumference is approximately half that of
the 2D limit, and (ii) the presence of a delta peak on this gap
(≈4% of total spectral weight). The latter, present for any
cylinder, vanishes as L2 → ∞ [39]. The inset compares
exact real-time results for the cylinder [40] with our
numerics. Despite approximating the ground state of the
gapless sector using MPS, we find good agreement for
appreciable times.
After this benchmarking, we explore Sðk;ωÞ in different

phases of the KHM shown in Fig. 4, all with σω ≈ 0.06. The
pure Heisenberg FM (α ¼ π) can be solved in terms of

linear spin-wave theory (LSWT) and numerically captured
with bond dimension χ ¼ 2. Instead of this special point, in
Fig. 4(a) we show results for α ¼ 1.1π (corresponding to
K ¼ 0.65J), where we still find excellent agreement with
LSWT. Note that there is a small gap (≈0.05jJj) which is
absent in LSWT despite the presence of SUð2Þ-breaking
Kitaev coupling [4]. We do not observe any strong cylinder
effects on the dynamics, which is presumably related to
the short correlation length and the absence of fractional
excitations. The pure Heisenberg AFM (with small XXZ
anisotropy) in Fig. 4(b) shows appreciable deviations from
LSWT, with second order SWT [41] giving better agree-
ment. Moreover, the weight in the spin waves is approx-
imately halved, indicating the importance of higher order
magnon contributions. Staying within the Néel phase but
approaching the QSL, LSWT cannot even qualitatively
describe Fig. 4(c), with much weight in very broad high-
energy features unaccounted for.
Lastly, we focus on a parameter regime producing zigzag

ordering like that found in α-RuCl3 [2,11,12]. Figure 5
shows Sðk;ωÞ for four different choices of α: the first row
contains the exact solution for the pure AFMKitaev model,
and the subsequent rows are all numerical results within
the zigzag phase with increasing α. For each α, we show
Sðk;ωÞ at a fixed ω: the columns display representative

(a)

(b)

FIG. 3. Dynamical spin structure factor Szzðk ¼ 0;ωÞ from our
numerical approach compared with the exact result (the insets
show real-time data). Exact results were obtained following
Ref. [6], except for the blue curve in (b) [40]. (a) Gapped
KSL, A phase, on a cylinder with L2 ¼ 10 and anisotropic
couplings Kx ¼ −2 and Ky ¼ Kz ¼ −ð1=3Þ. (b) Gapless iso-
tropic KSL, B phase, with L2 ¼ 6 and α ¼ ð3π=2Þ.
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We show that the off-diagonal exchange anisotropy drives Mott insulators with strong spin-orbit
coupling to a classical spin liquid regime, characterized by an infinite number of ground states and Ising
variables living on closed or open strings. Depending on the sign of the anisotropy, quantum fluctuations
either fail to lift the degeneracy down to very low temperatures, or select noncoplanar magnetic states with
unconventional spin correlations. The results apply to all 2D and 3D tricoordinated materials with bond-
directional anisotropy and provide a consistent interpretation of the suppression of the x-ray magnetic
circular dichroism signal reported recently for β-Li2IrO3 under pressure.
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Introduction.—The search for quantum spin liquids
(QSLs) has been a central thread of correlated electron
material research since their initial proposal decades ago
[1]. Ideally, QSLs evade magnetic order down to zero
temperature and harbor a remarkable set of collective
phenomena, including topological ground-state degen-
eracy, long-range entanglement, and fractionalized excita-
tions [2–4]. While the long activity on frustrated Mott
insulators with 3d ions has lead to several candidate QSLs
with dominant isotropic interactions [3], a certain class of
4d and 5dmaterials, the so-called Jackeli-Khaliullin-Kitaev
(JKK) systems [5–10], with strong spin-orbit coupling
(SOC) and dominant anisotropic interactions has emerged
in recent years as another prominent playground for QSLs
[11]. By now, several two- (2D) and three-dimensional
(3D) materials have been identified in the JKK class, all
described by pseudospin Jeff ¼ 1=2 Kramer’s doublets.
Most notably, the layered A2IrO3 (A ¼ Na;Li) [12–18]
and α-RuCl3 [19–24], and the 3D iridates (β, γ)-Li2IrO3

[25–28], all proximate to exactly solvable Kitaev
QSLs [5,9,29].
The key ingredients for the desired degree of frustration

in the JKK systems is the threefold coordination and the
compasslike, nearest-neighbor (NN) Ising interactions
along bond-dependent quantization axes [7,30–39].
While this so-called Kitaev anisotropy is the dominant
interaction, all JKK materials show magnetic order at
sufficiently low temperatures [12–28], consistent with
predictions that Kitaev QSLs are fragile against perturba-
tions [7,8,30,40–44].
Nevertheless, the aspiration for spin liquid physics in

JKK systems still stands. The new experimental direction is
to use external perturbations, such as magnetic field [45],
chemical substitution [46], and pressure [28]. For
β-Li2IrO3, for example, x-ray magnetic circular dichroism
(XMCD) experiments show a strong reduction of the signal
with pressure, and a complete suppression around 2 GPa

[28]. Since the system remains insulating under pressure,
the authors suggest that the system is driven into a spin-
liquid regime, and naturally the Kitaev QSL is the first
suspect. Surprisingly, however, according to two indepen-
dent ab initio studies [39,47], pressure pushes the system
further away from the ideal Kitaev model, and the inter-
action becoming increasingly relevant is the symmetric
off-diagonal exchange Γ [30–32,37,38,42].
Motivated by these reports, we set out to investigate the

physics of the JKK systems in the region where Γ is the
dominant coupling. Remarkably, the qualitative results are
shared by all 2D and 3D JKK systems. The Γ coupling
drives these systems to a classical spin liquid regime,
characterized by an infinite number of ground states. This is
consistent with the report that the spin correlation length
becomes extremely small as we go into the large-Γ regime
[32]. The infinite degeneracy is not accidental but arises
from an infinite number of zero- (0D) and one-dimensional
(1D) gauge symmetries that exist only for classical spins.
For quantum spins, the degeneracy is eventually lifted by
the order-by-disorder mechanism at an energy scale which
depends strongly on the sign of Γ. For Γ > 0, the leading
quantum fluctuations fail to remove the frustration, leading
to a “cooperative paramagnet” down to very low temper-
atures. For Γ < 0, fluctuations select a noncoplanar state
with vanishing total moment. Both scenarios are consistent
with the XMCD data, although the latter might be more
relevant for β-Li2IrO3, according to ab initio stud-
ies [39,47].
Model.—The JKK systems have three types of NN

bonds, α ¼ fx; y; zg, shown as

ð1Þ
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Introduction.—The search for quantum spin liquids
(QSLs) has been a central thread of correlated electron
material research since their initial proposal decades ago
[1]. Ideally, QSLs evade magnetic order down to zero
temperature and harbor a remarkable set of collective
phenomena, including topological ground-state degen-
eracy, long-range entanglement, and fractionalized excita-
tions [2–4]. While the long activity on frustrated Mott
insulators with 3d ions has lead to several candidate QSLs
with dominant isotropic interactions [3], a certain class of
4d and 5dmaterials, the so-called Jackeli-Khaliullin-Kitaev
(JKK) systems [5–10], with strong spin-orbit coupling
(SOC) and dominant anisotropic interactions has emerged
in recent years as another prominent playground for QSLs
[11]. By now, several two- (2D) and three-dimensional
(3D) materials have been identified in the JKK class, all
described by pseudospin Jeff ¼ 1=2 Kramer’s doublets.
Most notably, the layered A2IrO3 (A ¼ Na;Li) [12–18]
and α-RuCl3 [19–24], and the 3D iridates (β, γ)-Li2IrO3

[25–28], all proximate to exactly solvable Kitaev
QSLs [5,9,29].
The key ingredients for the desired degree of frustration

in the JKK systems is the threefold coordination and the
compasslike, nearest-neighbor (NN) Ising interactions
along bond-dependent quantization axes [7,30–39].
While this so-called Kitaev anisotropy is the dominant
interaction, all JKK materials show magnetic order at
sufficiently low temperatures [12–28], consistent with
predictions that Kitaev QSLs are fragile against perturba-
tions [7,8,30,40–44].
Nevertheless, the aspiration for spin liquid physics in

JKK systems still stands. The new experimental direction is
to use external perturbations, such as magnetic field [45],
chemical substitution [46], and pressure [28]. For
β-Li2IrO3, for example, x-ray magnetic circular dichroism
(XMCD) experiments show a strong reduction of the signal
with pressure, and a complete suppression around 2 GPa

[28]. Since the system remains insulating under pressure,
the authors suggest that the system is driven into a spin-
liquid regime, and naturally the Kitaev QSL is the first
suspect. Surprisingly, however, according to two indepen-
dent ab initio studies [39,47], pressure pushes the system
further away from the ideal Kitaev model, and the inter-
action becoming increasingly relevant is the symmetric
off-diagonal exchange Γ [30–32,37,38,42].
Motivated by these reports, we set out to investigate the

physics of the JKK systems in the region where Γ is the
dominant coupling. Remarkably, the qualitative results are
shared by all 2D and 3D JKK systems. The Γ coupling
drives these systems to a classical spin liquid regime,
characterized by an infinite number of ground states. This is
consistent with the report that the spin correlation length
becomes extremely small as we go into the large-Γ regime
[32]. The infinite degeneracy is not accidental but arises
from an infinite number of zero- (0D) and one-dimensional
(1D) gauge symmetries that exist only for classical spins.
For quantum spins, the degeneracy is eventually lifted by
the order-by-disorder mechanism at an energy scale which
depends strongly on the sign of Γ. For Γ > 0, the leading
quantum fluctuations fail to remove the frustration, leading
to a “cooperative paramagnet” down to very low temper-
atures. For Γ < 0, fluctuations select a noncoplanar state
with vanishing total moment. Both scenarios are consistent
with the XMCD data, although the latter might be more
relevant for β-Li2IrO3, according to ab initio stud-
ies [39,47].
Model.—The JKK systems have three types of NN

bonds, α ¼ fx; y; zg, shown as

ð1Þ
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where Si denotes the pseudospin 1=2 at site i. The
Hamiltonian describing the off-diagonal exchange reads

H ¼ "Γ
X

hiji∈‘x’
ðSyi Szj þ SziS

y
jÞ " Γ

X

hiji∈‘y’
ðSziSxj þ Sxi S

z
jÞ

þ Γ
X

hiji∈‘z’
ðSxi S

y
j þ Syi S

x
jÞ; ð2Þ

where hiji denotes NN sites and " accounts for the sign
modulation of the couplings on x and y bonds in the 3D
systems [48]. For the 2D case all bonds have the plus sign.
Classical limit.—Let us consider the classical limit

where Si are vectors of length S and begin with the 2D
honeycomb case. The highly frustrated nature of this model
is first revealed by the fact that the lowest eigenvalue of
the 6 × 6 interaction matrix Λk in momentum space [49]
is completely flat. In fact, this holds for all six bands,
with λ1 ¼ −jΓj, λ2 ¼ λ3 ¼ −jΓj=2, λ4 ¼ λ5 ¼ jΓj=2, and
λ6 ¼ jΓj, see Fig. 1.
To understand the nature of the ground states and why

there is an infinite number of them, we search for states that
saturate the lower bound of the energy per site λ1S2 [49].
Consider a pair of spins, say S0 and S1 of (1), which
interact via ΓðSx0S

y
1 þ Sy0S

x
1Þ. If these spins were isolated

from the rest, then their energy would be minimized by
placing the spins on the xy plane with Sx1 ¼ ζSy0, S

y
1 ¼ ζSx0,

ζ ¼ −sgnðΓÞ. Similarly, for the x bond of (1), we would get
Sy3 ¼ ζSz0, S

z
3 ¼ ζSy0, and for the y bond of (1), Sx2 ¼ ζSz0,

Sz2 ¼ ζSx0. Returning to the lattice problem, the idea is to
require that the two components involved in each Γ term
satisfy the respective relations above, without specifying
the third component for the moment. This is done as
follows: (i) We choose a direction for the central spin of (1)
and parametrize it as

S0 ¼ ðη1a; η2b; η3cÞ; ð3Þ

where a ¼ jSx0j, b ¼ jSy0j, c ¼ jSz0j, η1 ¼ sgnðSx0Þ, η2 ¼
sgnðSy0Þ, and η3 ¼ sgnðSz0Þ. (ii) Then, we fix two compo-
nents of the three neighbors as

S1 ¼ ðζη2b; ζη1a; Sz1Þ; S2 ¼ ðζη3c; S
y
2; ζη1aÞ;

S3 ¼ ðSx3; ζη3c; ζη2bÞ:
ð4Þ

(iii) Then, we fix accordingly two components of the
neighbors of S1;2;3, etc., until we cover the whole lattice.
The total energy of the generated configurations saturates
the lower energy bound, and are therefore ground states.
Indeed, the energy contribution from the cluster (1) is

, and this holds for
any such cluster in the lattice. Since each bond is shared by
two sites, the total energy per site is E=N ¼ −jΓjS2, which
saturates the lower bound.
Now, the reason why there are infinite ground states lies

in the freedom to choose the third component of the spins,
i.e., Sz1, S

y
2, S

x
3, etc. Imposing the spin length constraint

shows that this freedom is associated with the overall signs,

Sz1 ¼ ζη4c; Sy2 ¼ ζη5b; Sx3 ¼ ζη6a; ð5Þ

where ηi ¼ "1 are Ising variables. The choice of signs in
front of the ηs give the simplest representation of the state
as we see below, but is otherwise arbitrary. To see how
many independent ηs exist, we look closely what happens
around the central cluster (1), see Fig. 2. We see that each ηi
appears only around a single hexagon; i.e., we can label the
states by assigning the ηs to the hexagons. This para-
metrization in terms of local Ising variables gives a total of
2N=2 states for fixed fa; b; cg. Note that if two (one) of
fa; b; cg vanish then 2=3 (1=3) of the ηs are idle and we get
2N=6 (2N=3) states instead. On top, there is the degeneracy
associated to fa; b; cg.
The η parametrization reveals that the local zero-energy

modes responsible for the extensive degeneracy correspond
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FIG. 1. Spectrum λ1−6=jΓj of the matrix Λk entering the Fourier
transform of the classical energy, see Supplemental Material [49].

FIG. 2. Classical ground states of the Γ model on the 2D
honeycomb lattice, where a2 þ b2 þ c2 ¼ S2 and ηi ¼ "1.
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Introduction.—The search for quantum spin liquids
(QSLs) has been a central thread of correlated electron
material research since their initial proposal decades ago
[1]. Ideally, QSLs evade magnetic order down to zero
temperature and harbor a remarkable set of collective
phenomena, including topological ground-state degen-
eracy, long-range entanglement, and fractionalized excita-
tions [2–4]. While the long activity on frustrated Mott
insulators with 3d ions has lead to several candidate QSLs
with dominant isotropic interactions [3], a certain class of
4d and 5dmaterials, the so-called Jackeli-Khaliullin-Kitaev
(JKK) systems [5–10], with strong spin-orbit coupling
(SOC) and dominant anisotropic interactions has emerged
in recent years as another prominent playground for QSLs
[11]. By now, several two- (2D) and three-dimensional
(3D) materials have been identified in the JKK class, all
described by pseudospin Jeff ¼ 1=2 Kramer’s doublets.
Most notably, the layered A2IrO3 (A ¼ Na;Li) [12–18]
and α-RuCl3 [19–24], and the 3D iridates (β, γ)-Li2IrO3

[25–28], all proximate to exactly solvable Kitaev
QSLs [5,9,29].
The key ingredients for the desired degree of frustration

in the JKK systems is the threefold coordination and the
compasslike, nearest-neighbor (NN) Ising interactions
along bond-dependent quantization axes [7,30–39].
While this so-called Kitaev anisotropy is the dominant
interaction, all JKK materials show magnetic order at
sufficiently low temperatures [12–28], consistent with
predictions that Kitaev QSLs are fragile against perturba-
tions [7,8,30,40–44].
Nevertheless, the aspiration for spin liquid physics in

JKK systems still stands. The new experimental direction is
to use external perturbations, such as magnetic field [45],
chemical substitution [46], and pressure [28]. For
β-Li2IrO3, for example, x-ray magnetic circular dichroism
(XMCD) experiments show a strong reduction of the signal
with pressure, and a complete suppression around 2 GPa

[28]. Since the system remains insulating under pressure,
the authors suggest that the system is driven into a spin-
liquid regime, and naturally the Kitaev QSL is the first
suspect. Surprisingly, however, according to two indepen-
dent ab initio studies [39,47], pressure pushes the system
further away from the ideal Kitaev model, and the inter-
action becoming increasingly relevant is the symmetric
off-diagonal exchange Γ [30–32,37,38,42].
Motivated by these reports, we set out to investigate the

physics of the JKK systems in the region where Γ is the
dominant coupling. Remarkably, the qualitative results are
shared by all 2D and 3D JKK systems. The Γ coupling
drives these systems to a classical spin liquid regime,
characterized by an infinite number of ground states. This is
consistent with the report that the spin correlation length
becomes extremely small as we go into the large-Γ regime
[32]. The infinite degeneracy is not accidental but arises
from an infinite number of zero- (0D) and one-dimensional
(1D) gauge symmetries that exist only for classical spins.
For quantum spins, the degeneracy is eventually lifted by
the order-by-disorder mechanism at an energy scale which
depends strongly on the sign of Γ. For Γ > 0, the leading
quantum fluctuations fail to remove the frustration, leading
to a “cooperative paramagnet” down to very low temper-
atures. For Γ < 0, fluctuations select a noncoplanar state
with vanishing total moment. Both scenarios are consistent
with the XMCD data, although the latter might be more
relevant for β-Li2IrO3, according to ab initio stud-
ies [39,47].
Model.—The JKK systems have three types of NN

bonds, α ¼ fx; y; zg, shown as

ð1Þ
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Quantum-to-classical crossover is a fundamental question in dynamics of quantum many-body systems. In
frustrated magnets, for example, it is highly nontrivial to describe the crossover from the classical spin liquid
with a macroscopically degenerate ground-state manifold to the quantum spin liquid phase with fractionalized
excitations. This is an important issue, as we often encounter the demand for a sharp distinction between the
classical and quantum spin liquid behaviors in real materials. Here we take the example of the classical spin
liquid in a frustrated magnet with novel bond-dependent interactions to investigate the classical dynamics, and
critically compare it with quantum dynamics in the same system. In particular, we focus on signatures in the
dynamical spin structure factor. Combining Landau-Lifshitz dynamics simulations and the analytical Martin-
Siggia-Rose approach, we show that the low-energy spectra are described by relaxational dynamics and highly
constrained by the zero mode structure of the underlying degenerate classical manifold. Further, the higher energy
spectra can be explained by precessional dynamics. Surprisingly, many of these features can also be seen in the
dynamical structure factor in the quantum model studied by finite-temperature exact diagonalization. We discuss
the implications of these results and their connection to recent experiments on frustrated magnets with strong
spin-orbit coupling.

DOI: 10.1103/PhysRevB.98.045121

I. INTRODUCTION

The crossover between classical and quantum regimes in
frustrated magnets has been an important theoretical question
in the last few decades. This issue is particularly important in
understanding the nature of the quantum spin liquid phases
which may arise at low temperature due to extreme quantum
fluctuations. In the classical regime, there may exist a win-
dow of temperatures below the Curie-Weiss scale where the
correlated spin moments are thermally fluctuating within the
degenerate manifold of classical ground states. This is the co-
operative paramagnetic state, or the so-called classical spin liq-
uid. In the quantum regime, it is clearly not possible to maintain
such a state down to zero temperature as the quantum ground
state should be unique (up to a topological degeneracy in the
case of quantum spin liquids). An important question is how
much information about the degenerate manifold of classical
ground states is encoded in the emergent quantum spin liquid at
zero and low temperatures. Such a question may be especially
relevant for two-dimensional spin liquid phases which show
no finite-temperature phase transition, but only crossovers.

One natural place to look for the clue for this question is
the dynamical spin correlation or the dynamical spin struc-
ture factor. A recent work on the Kitaev model [1] in two

dimensions investigates the dynamical spin correlations of the
classical Kitaev model via Landau-Lifshitz (LL) dynamics
[2]. The resulting dynamical structure factor was compared
with that of the quantum model [3–5], which is exactly
solvable and supports a quantum spin liquid ground state
with gapless Majorana fermion excitations. There exist two
crossover temperatures, Tv and TQ, in the Kitaev model on the
honeycomb lattice, as seen in the specific heat [6]. At T < Tv ,
the vision or flux gap is larger than the temperature scale so that
the system is essentially characterized by the zero-temperature
ground state. When Tv < T < TQ, the flux degree of freedom
is thermally disordered, but the Majorana fermions are still well
defined. For T > TQ, the system crosses over to the classical
regime. It was found that the dynamical spin correlations in
the quantum model at T > Tv are remarkably similar to those
of the cooperative paramagnetic regime of the classical model
at finite temperature. Moreover, the dynamical structure factor
of the quantum model knows about the zero mode structure of
the classically degenerate manifold, even when Tv < T < TQ.
This suggests that all the classically degenerate spin states
are participating in the quantum fluctuations down to T ≈ Tv ,
which eventually leads to the emergence of the quantum spin
liquid phase at low temperature T < Tv .

2469-9950/2018/98(4)/045121(16) 045121-1 ©2018 American Physical Society
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FIG. 1. Trace of the dynamical magnetic structure factor
S(Q,ω) =

∑
α Sαα( Q,ω) for (a) AFM (# > 0), (b) FM (# < 0) #

models along the Brillouin zone path, K − ! − M − Y − X − K −
M, as depicted in the inset.

where Br is the molecular field acting on the spin Sr . This LL
equation can be solved numerically by applying a fourth-order
Runge-Kutta algorithm with adaptive step size. The average
over configurations at a given temperature T is obtained from
the Metropolis Monte Carlo sampling method. We note that
a closed LL dynamics is more appropriate than Langevin
dynamics when the experiment is much faster than the spin-
lattice relaxation, which is the typical case in inelastic neutron-
scattering experiments. The simulations are performed on a
finite lattice of 30 × 30 unit cells (1800 spins) with periodic
boundary conditions.

Figure 1 shows the trace of the dynamical spin structure
factor, S( Q,ω) =

∑
α Sαα( Q,ω), obtained for the antiferro-

magnetic (AFM) (# > 0) and ferromagnetic (FM) (# < 0)
versions of the # model. As expected for a liquid state,
S( Q,ω) exhibits a continuum of low- and high-frequency
modes. The low-frequency (zero) modes arise from the very
slow dynamics through different classical ground states. The
number of zero modes is macroscopic because of the extensive
residual entropy of the ground-state manifold. This dynamics
is expected to be relaxational because the average of the
local field over a period 2π/ω is equal to zero. In contrast,
the high-frequency modes correspond to the much faster spin
precession around the local fields produced by a given ground-
state configuration. Accordingly, the average of the local fields
Br over a period 2π/ω remains finite.

Both the low- and high-frequency modes contain relevant
information about the liquid state. The momentum distribution
of the zero-energy modes is a direct consequence of the set of
constraints defining the ground-state manifold. Specifically,
we show in Appendix A that the Fourier transform Sα(q) =∑

r Sα
r eiq·r of any state Sα

r in the ground-state manifold
vanishes for both q = ! and q = X. As a result, the low-energy

FIG. 2. (a) Elastic component of the trace of the magnetic struc-
ture factor S( Q,ω = 0). (b)–(d) S( Q,ω), integrated over finite energy
cuts: (b) ω/# = [0.1,0.3], (c) ω/# = [0.8, 1.0], and (d) ω/# = [1.8,
2.0].

spectral weight of Sαα( Q,ω) is suppressed at the ! and X
points of the Brillouin zone [see Fig. 2(a)]. Correspondingly,
as shown in Figs. 2(b)–2(d), the missing low-energy spectral
weight at these two points is shifted to frequencies of order
#. In other words, magnetic excitations with wave vectors !
and X are purely precessional. Indeed, as shown in Fig. 2,
the precessional modes have the highest intensity at these two
wave vectors. As we will see later, the low-energy modes of the
quantumS = 1/2 model inherit this structure. The high-energy
modes contain information about the magnitude and spatial
distribution of the instantaneous local fields Br of a typical
ground-state spin configuration. The dispersion of these modes
contains information about the magnetic correlation length of
the spin liquid state.

To gain more insight on the structure of the zero-energy
modes, we also present the real-space spin-spin correlation
function, S(r,ω), as a function of ω and T . Figure 3 shows
the elastic contribution S(r,ω = 0) for different distances
up to fifth nearest neighbors (NN) and T = 10−5#. (Cal-
culations need to be done at finite T to have fluctuations
and be able to exploit the fluctuation-dissipation theorem.)
Remarkably, this is significant only for the on-site and for the

FIG. 3. S(r,ω = 0) as a function of |r|/a (where a is the lattice
parameter) at T = 10−5#.
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FIG. 14. Dynamical spin structure factors of the S = 1/2 AFM !

model at (a) T = 0.5, (b) T = 0.2, (c) T = 0.1, and (d) T = 0, along
symmetry lines. For visibility, the broadening factor η/! = 0.02 is
used (see Appendix D for the definition of η).
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FIG. 15. Real-space static spin-spin correlation function,
⟨Sα

0 Sβ
r ⟩ (α,β = x,y,z), of the S = 1/2 ! > 0 model on the 24-site

cluster with periodic boundary conditions, at T = 0. The location
of the origin 0 is denoted by the open circle (◦). The radiuses of the
closed circles at r represent the amplitude of |⟨Sα

0 Sβ
r ⟩|, while the

color of the closed circles shows ⟨Sα
0 Sβ

r ⟩. Within numerical accuracy,
there is no spin-spin correlation represented by a circle with a radius
smaller than the width of the solid lines representing the bonds.

the antiferromagnetic low-energy fluctuations at the Y and K
points in the momentum space. As a result, these correlations
harden the spin fluctuations at these momenta. In other words,
these correlations suppress the relaxational dynamics and
introduce the quasicollective precessional dynamics at these
momenta.

A quantitative description of the classical-quantum
crossover is obtained by examining the temperature depen-
dence of the typical static spin-spin correlation functions
shown in Fig. 16. While the off-diagonal nearest-neighbor
correlations ⟨Sα

0 S
β
r ⟩ on the γ bond, where (α,β,γ ) is a

FIG. 16. Temperature dependence of static spin-spin correlations
of the AFM ! model on the 24-site cluster. Here, the error bars, which
are smaller than or comparable to the symbol size, are the standard
errors estimated by several random initial vectors.
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the antiferromagnetic low-energy fluctuations at the Y and K
points in the momentum space. As a result, these correlations
harden the spin fluctuations at these momenta. In other words,
these correlations suppress the relaxational dynamics and
introduce the quasicollective precessional dynamics at these
momenta.

A quantitative description of the classical-quantum
crossover is obtained by examining the temperature depen-
dence of the typical static spin-spin correlation functions
shown in Fig. 16. While the off-diagonal nearest-neighbor
correlations ⟨Sα

0 S
β
r ⟩ on the γ bond, where (α,β,γ ) is a

FIG. 16. Temperature dependence of static spin-spin correlations
of the AFM ! model on the 24-site cluster. Here, the error bars, which
are smaller than or comparable to the symbol size, are the standard
errors estimated by several random initial vectors.
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FIG. 9. Dynamic structure factor as obtained from Eq. (15), for
(a) the AFM ! > 0, and (b) the FM ! < 0 models. Here we have
used γ = 0.12, # = 2.05!, and g2T = 0.04!.

the low-energy correlations at X . Thus we find a depletion in
the dynamic structure factor at ! and X , echoing the analysis
of the zero modes in the previous section.

Perturbation theory in g. It is possible to treat the precession
term using diagrammatic perturbation theory. We represent
the symmetrized precession vertex by Fig. 8(c). The dressed
correlation function C

αβ
ij (ω) can be calculated approximately

by summing over a subset of infinite diagrams, as shown in
Fig. 8. Specifically, we approximate C(ω) by a product of two
infinite series,

C(ω) ≈ 2γT

∣∣∣∣∣G0(ω)
∞∑

n=0

('(ω)G0(ω))n
∣∣∣∣∣

2

, (15)

where the self-energy ' is calculated to leading order in g. The
self-energy term for the ! model dynamics mixes different
sectors, and therefore its calculation must be done in Fourier
space. However, the procedure is no different than in quantum
field theory, once the appropriate Feynman rules are deter-
mined. Figure 9 shows the resulting dynamic structure factor.
Equation (14), obtained for g = 0, qualitatively accounts for
the low-frequency features, including the depletion at ! and
X in the AFM case. The main qualitative effect of finite g > 0
on the dynamic structure factor is the addition of correlations
peaked at finite frequency, due to the precession of the spins. In
Appendix C we describe the calculation for the Kitaev model,
which is simpler and can be done in real space. Furthermore,
the closed-form result for the Kitaev model shows that the
self-energy is larger for the mode which is suppressed at low
energies. Similar behavior is observed in Fig. 9 for the !
model, where the precession features appear at finite frequency
at the same momentum positions with depleted low-energy
correlations. Besides the qualitative effect of precessional
dynamics, a finite g is also expected to renormalize the values
of γ and # required to fit the numerical data obtained at a given
temperature.

FIG. 10. Finite-size honeycomb clusters with 24 spins and peri-
odic boundary conditions. Bonds along the three different directions
are labeled as the x, y, and z bond, which are along −60◦, 60◦, and
horizontal directions, respectively.

IV. DYNAMICS OF THE SPIN- 1
2 MODEL

Using the exact-diagonalization method, described in
Ref. [32] and Appendix D, we study the finite-temperature
dynamical spin structure factors of the S = 1/2 AFM !
model. Here we use a 24-site cluster with periodic boundary
conditions, illustrated in Fig. 10. As explained below, the
dynamical spin structure factor of the quantum model shows a
gradual classical-to-quantum crossover when the temperature
is decreased.

Before going into details of the quantum spin dynamics of
the ! model, we summarize the energy scale of the quantum
S = 1/2! model. As shown in Ref. [24] and Fig. 11, there are
two temperature scales given by the peaks in the temperature
dependence of the specific heat. The higher-temperature peak
appears at around T2/! ≈ 0.4 and the lower-temperature peak
emerges below T1/! ! 0.03. The two-peak structure in the
temperature dependence of the specific heat has been found
in the Kitaev model [6] and in the proximity of the Kitaev’s
spin liquid [33], although the balance of the entropy released
by these two peaks is different from that of the ! model.

In Fig. 12, the momentum dependence of the equi-energy
slices of S( Q,ω) are shown by changing temperature and

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.01  0.1  1  10

FIG. 11. Specific heat C/N of the AFM ! model on the N =
24-site cluster [24], calculated by the typical pure quantum states ap-
proach [30,31]. There are two maxima in the temperature dependence
of C/N . The error bars are the standard errors estimated by 32 random
initial vectors.
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Ising Transition in Frustrated Heisenberg Models

P. Chandra
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We derive scaling equations for a 2D square Heisenberg model where frustration spontaneously
breaks the Z4 lattice symmetry. At short distances, the model behaves as two interpenetrating Neel sub-
lattices. Short-wavelength fluctuations couple these sublattices, driving a crossover to single-lattice be-
havior at long distances and generating an Ising order parameter. When the spin-correlation and cross-
over lengths become comparable, there exists a finite-temperature Ising phase transition independent of
the subsequent development of a sublattice magnetization.

PACS numbers: 75.10.Jm, 74.65.+n, 75.30.—m, 75.50.Ee

The possible connection between antiferromagnetism
and copper-oxide superconductivity has led to consider-
able interest in the properties of two-dimensional (2D)
Heisenberg models. It was originally proposed that these
systems have a strong-coupling phase where quantum
fluctuations destabilize the long-range Neel order. '
Though the relevant 2D S 2 square Heisenberg anti-
ferromagnet appears to have a finite sublattice magneti-
zation, the possibility of strong coupling "disordered
phases" in certain generalizations of this model remains
a subject of great interest.
One method of enhancing fluctuations in the 2D

Heisenberg antiferromagnet is to add diagonal bond
frustration. The model considered is

H= g J(R;—RJ)S"Si,
(i,j )

with

about the other. According to Villain's principle of "or-
der from disorder, "' ' ' short-wavelength fluctuations lift
these degeneracies, generating new correlations at long
wavelengths.
In this Letter, we explore some of the consequences in

the simplest example, where g & 1 and the magnet be-
comes collinear, with Q=(O, n) or (x,O). Classically, the
ground state consists of two interpenetrating Neel sub-
lattices with independent staggered magnetizations nl
and n2. Although the exchange fields between the two
sublattices cancel, the zero-point and thermal fluctua-
tions depend on the angle 8 between the two sublattices.
This is most clearly understood in the analogous fer-
romagnetic J|,J2 model, (J|,J2 (0), which behaves as
two interpenetrating ferromagnetic sublattices. Here,
zero-point motion is completely eliminated when the two
sublattices are parallel, forming a pure ferromagnet. In

J(R) =g [2J|(c„+c~)+4J2(c„c~)]cos(qR), (2)

where el cos(qla), and J2 and J1 2rI J2 are the
second- and first-nearest-neighbor couplings (Fig. I ). In
the region g-1, quantum fluctuations become large
enough to destroy the sublattice magnetization.
Previous theoretical work has focused on the limit of

weak frustration g&1, where the relevant long-wave-
length action is the O(3) nonlinear sigma model. s'9 In
this regime, it has been suggested that when the micro-
scopic spins are not multiples of two, the strong-coupling
limit is characterized by a dimer ground state. However,
for strong frustration g (1, the relevant long-wavelength
action is no longer a conventional O(3) sigma model. In
this regime, the magnetic wave vector Q of the classical
ground states no longer lies along a diagonal in recipro-
cal space, breaking the Z4 lattice symmetry and giving
rise to a superlattice structure. Classically, these mag-
netic structures exhibit an internal O(3) degeneracy
analogous to the phason mode of charge-density waves,
whereby one sublat tice may be continuously rotated

J) J2

1/S

'o
FIG. 1. Inset: Illustration of 2D square frustrated Heisen-

berg antiferromagnet. Main diagram: The critical value of S
where the sublattice magnetization vanishes, calculated for
J3=0.1JI from spin-wave theory, showing the Neel, helicoid,
and collinear phases.
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Ising Transition Driven by Frustration in a 2D Classical Model with Continuous Symmetry
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We study the thermal properties of the classical antiferromagnetic Heisenberg model with both
nearest (J1) and next-nearest (J2) exchange couplings on the square lattice by extensive Monte Carlo
simulations. We show that, for J2=J1 > 1=2, thermal fluctuations give rise to an effective Z2 symmetry
leading to a finite-temperature phase transition. We provide strong numerical evidence that this
transition is in the 2D Ising universality class, and that Tc ! 0 with an infinite slope when J2=J1 ! 1=2.

DOI: 10.1103/PhysRevLett.91.177202 PACS numbers: 75.10.Hk, 75.40.Cx, 75.40.Mg

Since the milestone papers by Hohenberg and by Mer-
min and Wagner [1] it is known that in two-dimensional
systems a continuous symmetry cannot be broken at any
finite temperature, and only systems with a discrete sym-
metry can show a finite-temperature phase transition. In
this regard, a proposal by Chandra, Coleman, and Larkin
(CCL) [2] opened a new route to finite-temperature phase
transitions in systems with a continuous spin-rotational
invariance: CCL argued that the presence of frus-
trating interactions can induce nontrivial discrete degrees
of freedom, that may undergo a phase transition at low
temperatures. In particular, in Ref. [2], the authors con-
sidered the antiferromagnetic Heisenberg model with
both nearest (J1) and next-nearest neighbor (J2) cou-
plings:

ĤH ! J1
X
nn

ŜSi " ŜSj # J2
X
nnn

ŜSi " ŜSj; (1)

where ŜSi are spin S operators on a periodic square lattice
with N ! L$ L sites. For J2=J1 < 1=2, the classical
ground state has antiferromagnetic Néel order with pitch
vector Q ! %!;!&, while for J2=J1 > 1=2, the classical
ground state consists of two independent sublattices with
antiferromagnetic order [3]. The ground-state energy does
not depend on the relative orientations between the mag-
netizations of the two sublattices, and the ground state has
an O%3& $ O%3& symmetry. Following Henley’s analysis
of the XY case [4], CCL showed that both quantum and
thermal fluctuations are expected to lift this degeneracy
by an order by disorder mechanism [5] and to select two
collinear states which are the helical states with pitch
vectors Q ! %0;!& and %!; 0&, respectively, reducing the
symmetry to O%3& $ Z2. CCL further argued that the Z2
symmetry should give rise to an Ising phase transition at
finite temperature and provided an estimate of the tran-
sition temperature.

The interest in this model raised recently with the
discovery of two vanadates which can be considered as
prototypes of the J1 ' J2 model in the collinear region:
Li2VOSiO4 and Li2VOGeO4 [6,7]. Indeed, although the
value of J2=J1 is not exactly known [7–9], all estimates
indicate that J2 * J1. In particular, NMR and muon spin
rotation magnetization in Li2VOSiO4 provide clear evi-
dence for the presence of a phase transition to a collinear
order at Tc ( 2:8 K. While several additional ingredients,
such as interlayer coupling and lattice distortion [10],
are probably involved in the transition, the basic expla-
nation relies on the presence of the Ising transition pre-
dicted by CCL.

However, CCL’s predictions have been challenged by a
number of numerical studies. Using Monte Carlo simula-
tions, Loison and Simon [11] reported the presence of two
phase transitions for the XY version of the classical model
for J2=J1 > 0:5: A Kosterliz-Thouless transition, as ex-
pected for XY models, followed by a transition which is
continuous but does not seem to be in the Ising universal-
ity class since their estimates of the critical exponents
depend on the ratio J2=J1. More recently, the S ! 1=2
Heisenberg case has been investigated by Singh and co-
workers [12] using a combination of series expansion
methods and linear spin-wave theory. They show that if
there is a phase transition it can occur only at tempera-
tures much lower than that predicted by CCL for S !
1=2, and they argue that Tc is actually equal to zero.

In this Letter, we show, on the basis of extensive Monte
Carlo simulations, that the classical limit of the model of
Eq. (1), where spins are classical vectors of length 1,
indeed undergoes a continuous phase transition at a finite
temperature, that the critical exponents agree with the
Ising universality class, and that, modulo minor adjust-
ments of CCL’s estimate, Tc is in good quantitative agree-
ment with CCL’s prediction in the range J1 < J2 where
their approximation is expected to be valid. However,
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contrary to CCL’s prediction, we show that Tc goes con-
tinuously to zero when J2=J1 ! 1=2, and we argue that
this is due to a competition between Néel and collinear
order at finite temperature in this parameter range.

Starting from the original spin variables ŜSi, we con-
struct the Ising-like variable of the dual lattice:

!" ! "ŜSi # ŜSk$ % "ŜSj # ŜSl$
j"ŜSi # ŜSk$ % "ŜSj # ŜSl$j

; (2)

where "i; j; k; l$ are the corners with diagonal "i; k$ and
"j; l$ of the plaquette centered at the site " of the dual
lattice. The two collinear states with Q ! "#; 0$ and Q !
"0;#$ have !" ! &1. It is important to stress that the
normalization term does not affect the critical properties
of the model. It is only introduced to have a normalized
variable. The Ising-like order parameter is defined as
M! ! "1=N$P"!".

We have performed classical Monte Carlo simulations
using both local and global algorithms as well as more
recent broad histogram methods [13] (details will be
given elsewhere [14]) to calculate the temperature and
size dependence of several quantities including the Binder
cumulant, the susceptibility, and the correlation length
associated to M!, as well as the specific heat, for sizes up
to 200' 200 and for several values of J2=J1 between 1=2
and 2. For reasons discussed below, the critical behavior
is easier to detect for small values of J2=J1, and we first
concentrate on J2=J1 ! 0:55.

As a first hint of a phase transition, we report the
temperature dependence of the susceptibility defined by
$ ! "N=T$"hM2

!i# hjM!ji2$ for different sizes [see
Fig. 1(a)]. If there is a phase transition, this susceptibility
is expected to diverge at Tc in the thermodynamic limit,
and, indeed, the development of a peak around T=J1 !
0:2 upon increasing the system size is clearly visible. To
get a precise estimate of Tc, we have calculated Binder’s
fourth cumulant of the order parameter defined by
U4"T$ ! 1# hM4

!i=3hM2
!i2. This cumulant should go to

2=3 below Tc and to zero above Tc when the size increases,
and the finite-size estimates are expected to cross around
Tc. Binder cumulants for different sizes are reported in
Fig. 1(b), and they indeed cross around T=J1 ’ 0:197. In
Fig. 1(c), we report U4"T$ as a function of 1=L for several
temperatures around 0.197. Excluding temperatures for
which U4 clearly increases or decreases with 1=L leads to
the remarkably precise estimate Tc=J1 ! 0:1970"2$.

To identify the universality class of the phase transi-
tion, we have looked at the finite-size scaling of several
quantities. The critical exponents % and & can be ex-
tracted from the dependence of the peak position of the
susceptibility Tc"L$ ! Tc ( aL#1=% and from its value
$"L; Tc$ ) L&=% as a function of L. Using the value of
Tc deduced from Binder’s cumulant, the fits lead to % !
1:0"1$ and &=% ! 1:76"2$. A more precise estimate of the
exponent % can be obtained from the temperature depen-

dence of the second-moment correlation length ' [16],
extracted from the Fourier components of the correlation
functions of the Ising-like variable (2). By considering
only values such that ' & L=6, where the finite-size ef-
fects are found to be negligible, it is possible to have a
very accurate value of the critical exponent from the fact
that, for T * Tc, '#1 ! A"T # Tc$%. In Fig. 2, we report
the behavior of the correlation length ' as a function of
the temperature. By performing a three-parameter fit
(for A, Tc, and %) we obtain Tc=J1 ! 0:1965"5$ and % !
1:00"3$. This value of Tc is compatible with the estimation
given by Binder’s cumulant.

These exponents agree with those of the Ising univer-
sality class in 2D (% ! 1 and & ! 7=4). A cross-check for
this universality class comes from the measure of the
critical exponent ", related to the divergence of the

FIG. 1. (a) Finite-size susceptibility $"L$=L and (b) Binder
cumulant U4 as a function of the temperature for different
sizes; (c) Binder cumulant U4 as a function of 1=L for different
temperatures (0:1965; 0:1966; . . . ; 0:1973, from top to bottom).
The lines are guides to the eye and the horizontal line marks
the value for U4 at the critical point for the Ising universality
class [15]. All data are for J2=J1 ! 0:55.

FIG. 2. Inverse of the correlation length '#1 as a function of
the temperature for different sizes of the lattice and J2=J1 !
0:55. The critical exponent % and Tc can be extracted from the
behavior of '#1 as a function of the temperature. The arrow
marks the resulting Tc.
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contrary to CCL’s prediction, we show that Tc goes con-
tinuously to zero when J2=J1 ! 1=2, and we argue that
this is due to a competition between Néel and collinear
order at finite temperature in this parameter range.

Starting from the original spin variables ŜSi, we con-
struct the Ising-like variable of the dual lattice:

!" ! "ŜSi # ŜSk$ % "ŜSj # ŜSl$
j"ŜSi # ŜSk$ % "ŜSj # ŜSl$j

; (2)

where "i; j; k; l$ are the corners with diagonal "i; k$ and
"j; l$ of the plaquette centered at the site " of the dual
lattice. The two collinear states with Q ! "#; 0$ and Q !
"0;#$ have !" ! &1. It is important to stress that the
normalization term does not affect the critical properties
of the model. It is only introduced to have a normalized
variable. The Ising-like order parameter is defined as
M! ! "1=N$P"!".

We have performed classical Monte Carlo simulations
using both local and global algorithms as well as more
recent broad histogram methods [13] (details will be
given elsewhere [14]) to calculate the temperature and
size dependence of several quantities including the Binder
cumulant, the susceptibility, and the correlation length
associated to M!, as well as the specific heat, for sizes up
to 200' 200 and for several values of J2=J1 between 1=2
and 2. For reasons discussed below, the critical behavior
is easier to detect for small values of J2=J1, and we first
concentrate on J2=J1 ! 0:55.

As a first hint of a phase transition, we report the
temperature dependence of the susceptibility defined by
$ ! "N=T$"hM2

!i# hjM!ji2$ for different sizes [see
Fig. 1(a)]. If there is a phase transition, this susceptibility
is expected to diverge at Tc in the thermodynamic limit,
and, indeed, the development of a peak around T=J1 !
0:2 upon increasing the system size is clearly visible. To
get a precise estimate of Tc, we have calculated Binder’s
fourth cumulant of the order parameter defined by
U4"T$ ! 1# hM4

!i=3hM2
!i2. This cumulant should go to

2=3 below Tc and to zero above Tc when the size increases,
and the finite-size estimates are expected to cross around
Tc. Binder cumulants for different sizes are reported in
Fig. 1(b), and they indeed cross around T=J1 ’ 0:197. In
Fig. 1(c), we report U4"T$ as a function of 1=L for several
temperatures around 0.197. Excluding temperatures for
which U4 clearly increases or decreases with 1=L leads to
the remarkably precise estimate Tc=J1 ! 0:1970"2$.

To identify the universality class of the phase transi-
tion, we have looked at the finite-size scaling of several
quantities. The critical exponents % and & can be ex-
tracted from the dependence of the peak position of the
susceptibility Tc"L$ ! Tc ( aL#1=% and from its value
$"L; Tc$ ) L&=% as a function of L. Using the value of
Tc deduced from Binder’s cumulant, the fits lead to % !
1:0"1$ and &=% ! 1:76"2$. A more precise estimate of the
exponent % can be obtained from the temperature depen-

dence of the second-moment correlation length ' [16],
extracted from the Fourier components of the correlation
functions of the Ising-like variable (2). By considering
only values such that ' & L=6, where the finite-size ef-
fects are found to be negligible, it is possible to have a
very accurate value of the critical exponent from the fact
that, for T * Tc, '#1 ! A"T # Tc$%. In Fig. 2, we report
the behavior of the correlation length ' as a function of
the temperature. By performing a three-parameter fit
(for A, Tc, and %) we obtain Tc=J1 ! 0:1965"5$ and % !
1:00"3$. This value of Tc is compatible with the estimation
given by Binder’s cumulant.

These exponents agree with those of the Ising univer-
sality class in 2D (% ! 1 and & ! 7=4). A cross-check for
this universality class comes from the measure of the
critical exponent ", related to the divergence of the

FIG. 1. (a) Finite-size susceptibility $"L$=L and (b) Binder
cumulant U4 as a function of the temperature for different
sizes; (c) Binder cumulant U4 as a function of 1=L for different
temperatures (0:1965; 0:1966; . . . ; 0:1973, from top to bottom).
The lines are guides to the eye and the horizontal line marks
the value for U4 at the critical point for the Ising universality
class [15]. All data are for J2=J1 ! 0:55.

FIG. 2. Inverse of the correlation length '#1 as a function of
the temperature for different sizes of the lattice and J2=J1 !
0:55. The critical exponent % and Tc can be extracted from the
behavior of '#1 as a function of the temperature. The arrow
marks the resulting Tc.
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specific heat per site, Cmax!L" # L!=". Indeed, the value
of ! is the fingerprint for the 2D Ising universality class,
for which we have ! $ 0 and a logarithmic divergence of
the specific heat as a function of L. In Fig. 3, we show the
results for the specific heat per site. We have obtained a
very accurate fit of the maximum of the specific heat per
site as a function of L with the known expression for the
leading finite-size corrections of the 2D Ising model [17],
Cmax!L" $ a0 % a1 ln!L" % a2=L, with a0, a1, and a2 fit-
ting parameters, while a power law is clearly inadequate.
These results are consistent with ! $ 0.

Finally, if the phase transition is indeed Ising, Binder’s
cumulant at Tc should reach the universal value U4!Tc" #
0:6107 in the thermodynamic limit [15]. The nonmon-
tonic behavior of Binder’s cumulant with the size prevents
a precise extrapolation, but this value is not incompatible
with our numerical data [see Fig. 1(c)].

Altogether, these results show unambiguously that a
phase transition occurs for J2=J1 $ 0:55 at Tc $
0:1970!2" and give strong evidence in favor of 2D Ising
universality class, in agreement with CCL’s prediction.
The same analysis can be repeated for different values
of the frustrating ratio J2=J1, and the complete phase
diagram is shown in Fig. 4, where we report Tc as a
function of J2=J1. While the critical behavior is every-
where consistent with Ising, it turns out that finite-size
effects become more and more severe upon increasing
J2=J1, preventing a meaningful determination of Tc with
available cluster sizes beyond J2=J1 ’ 2. Indeed, for large
ratios J2=J1, physical quantities such as the susceptibility
and the specific heat only exhibit broad peaks while the
mean value of the order parameter goes very smoothly to
zero, a behavior typical of strong finite-size effects. This

we believe can be traced back to the width of the domain
walls between domains with Q $ !#; 0" and Q $ !0;#",
which we have estimated by studying systems with
fixed boundary conditions. Details will be presented else-
where [14], but the width increases very fast with J2=J1,
starting around ten lattice spacings for J2=J1 * 1=2, and
already reaching values of the order of 40 lattice spacings
for J2=J1 ’ 1:5. Since cluster sizes should be significantly
larger than the width of the domain walls to observe the
critical behavior, we are not able to go beyond J2=J1 ’ 2.

Let us now discuss the dependence of Tc upon J2=J1
(see Fig. 4). Two regimes can clearly be identified: (i) A
large J2 regime (J2=J1 > 1) where Tc=J1 scales more or
less linearly with J2=J1; (ii) a smaller J2 regime defined
by !J2=J1 & 1=2" ' 1 where Tc vanishes with an infinite
slope as J2=J1 ! 1=2. For J2=J1 # 1=2, this disagrees
with CCL’s prediction that Tc=J2 reaches its maximum
when J2=J1 ! 1=2. However, since their approach is
based on an expansion in J1=J2, this is not a final blow,
and CCL’s predictions should be tested in the large J2
regime, where the approximations are better controlled.
CCL’s central criterion for estimating Tc is the equation
Tc ’ E!Tc"($N!Tc"=a)2, where E!Tc" is the energy barrier
to go from one domain to the other through the inter-
mediate canted state where sublattice staggered magnet-
izations are perpendicular, and $N!T" is the Néel
correlation length of each sublattice. To get a quantitative
estimate of Tc based on this approach, we have solved this
equation using the exactly known temperature depen-
dence of $N!T" for the classical antiferromagnet [18]
and a corrected expression for E!T" [19]. This leads to
Tc $ 0:768 J2=(1% 0:135 ln!J2=J1"). The best way to
check this approach would be to detect the logarithmic
correction, but unfortunately this would require one to go
to temperatures much larger than what we can reach, and
in the temperature range available to our simulations,
CCL’s prediction reduces to Tc ’ 0:77 J2. This prediction
is in good agreement with our results: In the large J2
regime, Tc indeed scales linearly with J2, within error
bars our high J2 data extrapolate to 0 at J2 $ 0, and the
slope is equal to 0.55. Note that the slight difference in
slopes is not significant since including a constant factor

FIG. 3. (a) Specific heat per site C as a function of the
temperature for different sizes of the lattice and J2=J1 $
0:55. The lines are guides to the eye. (b) Maximum of the
specific heat per site Cmax!L" as a function of L. The line is a
three-parameter fit (see text).

FIG. 4. Monte Carlo results for the critical temperature Tc as
a function of the frustrating ratio J2=J1. The line is an extrapo-
lation of the large J2 data down to J2 $ 0 (see text).
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specific heat per site, Cmax!L" # L!=". Indeed, the value
of ! is the fingerprint for the 2D Ising universality class,
for which we have ! $ 0 and a logarithmic divergence of
the specific heat as a function of L. In Fig. 3, we show the
results for the specific heat per site. We have obtained a
very accurate fit of the maximum of the specific heat per
site as a function of L with the known expression for the
leading finite-size corrections of the 2D Ising model [17],
Cmax!L" $ a0 % a1 ln!L" % a2=L, with a0, a1, and a2 fit-
ting parameters, while a power law is clearly inadequate.
These results are consistent with ! $ 0.

Finally, if the phase transition is indeed Ising, Binder’s
cumulant at Tc should reach the universal value U4!Tc" #
0:6107 in the thermodynamic limit [15]. The nonmon-
tonic behavior of Binder’s cumulant with the size prevents
a precise extrapolation, but this value is not incompatible
with our numerical data [see Fig. 1(c)].

Altogether, these results show unambiguously that a
phase transition occurs for J2=J1 $ 0:55 at Tc $
0:1970!2" and give strong evidence in favor of 2D Ising
universality class, in agreement with CCL’s prediction.
The same analysis can be repeated for different values
of the frustrating ratio J2=J1, and the complete phase
diagram is shown in Fig. 4, where we report Tc as a
function of J2=J1. While the critical behavior is every-
where consistent with Ising, it turns out that finite-size
effects become more and more severe upon increasing
J2=J1, preventing a meaningful determination of Tc with
available cluster sizes beyond J2=J1 ’ 2. Indeed, for large
ratios J2=J1, physical quantities such as the susceptibility
and the specific heat only exhibit broad peaks while the
mean value of the order parameter goes very smoothly to
zero, a behavior typical of strong finite-size effects. This

we believe can be traced back to the width of the domain
walls between domains with Q $ !#; 0" and Q $ !0;#",
which we have estimated by studying systems with
fixed boundary conditions. Details will be presented else-
where [14], but the width increases very fast with J2=J1,
starting around ten lattice spacings for J2=J1 * 1=2, and
already reaching values of the order of 40 lattice spacings
for J2=J1 ’ 1:5. Since cluster sizes should be significantly
larger than the width of the domain walls to observe the
critical behavior, we are not able to go beyond J2=J1 ’ 2.

Let us now discuss the dependence of Tc upon J2=J1
(see Fig. 4). Two regimes can clearly be identified: (i) A
large J2 regime (J2=J1 > 1) where Tc=J1 scales more or
less linearly with J2=J1; (ii) a smaller J2 regime defined
by !J2=J1 & 1=2" ' 1 where Tc vanishes with an infinite
slope as J2=J1 ! 1=2. For J2=J1 # 1=2, this disagrees
with CCL’s prediction that Tc=J2 reaches its maximum
when J2=J1 ! 1=2. However, since their approach is
based on an expansion in J1=J2, this is not a final blow,
and CCL’s predictions should be tested in the large J2
regime, where the approximations are better controlled.
CCL’s central criterion for estimating Tc is the equation
Tc ’ E!Tc"($N!Tc"=a)2, where E!Tc" is the energy barrier
to go from one domain to the other through the inter-
mediate canted state where sublattice staggered magnet-
izations are perpendicular, and $N!T" is the Néel
correlation length of each sublattice. To get a quantitative
estimate of Tc based on this approach, we have solved this
equation using the exactly known temperature depen-
dence of $N!T" for the classical antiferromagnet [18]
and a corrected expression for E!T" [19]. This leads to
Tc $ 0:768 J2=(1% 0:135 ln!J2=J1"). The best way to
check this approach would be to detect the logarithmic
correction, but unfortunately this would require one to go
to temperatures much larger than what we can reach, and
in the temperature range available to our simulations,
CCL’s prediction reduces to Tc ’ 0:77 J2. This prediction
is in good agreement with our results: In the large J2
regime, Tc indeed scales linearly with J2, within error
bars our high J2 data extrapolate to 0 at J2 $ 0, and the
slope is equal to 0.55. Note that the slight difference in
slopes is not significant since including a constant factor

FIG. 3. (a) Specific heat per site C as a function of the
temperature for different sizes of the lattice and J2=J1 $
0:55. The lines are guides to the eye. (b) Maximum of the
specific heat per site Cmax!L" as a function of L. The line is a
three-parameter fit (see text).

FIG. 4. Monte Carlo results for the critical temperature Tc as
a function of the frustrating ratio J2=J1. The line is an extrapo-
lation of the large J2 data down to J2 $ 0 (see text).
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contrary to CCL’s prediction, we show that Tc goes con-
tinuously to zero when J2=J1 ! 1=2, and we argue that
this is due to a competition between Néel and collinear
order at finite temperature in this parameter range.

Starting from the original spin variables ŜSi, we con-
struct the Ising-like variable of the dual lattice:

!" ! "ŜSi # ŜSk$ % "ŜSj # ŜSl$
j"ŜSi # ŜSk$ % "ŜSj # ŜSl$j

; (2)

where "i; j; k; l$ are the corners with diagonal "i; k$ and
"j; l$ of the plaquette centered at the site " of the dual
lattice. The two collinear states with Q ! "#; 0$ and Q !
"0;#$ have !" ! &1. It is important to stress that the
normalization term does not affect the critical properties
of the model. It is only introduced to have a normalized
variable. The Ising-like order parameter is defined as
M! ! "1=N$P"!".

We have performed classical Monte Carlo simulations
using both local and global algorithms as well as more
recent broad histogram methods [13] (details will be
given elsewhere [14]) to calculate the temperature and
size dependence of several quantities including the Binder
cumulant, the susceptibility, and the correlation length
associated to M!, as well as the specific heat, for sizes up
to 200' 200 and for several values of J2=J1 between 1=2
and 2. For reasons discussed below, the critical behavior
is easier to detect for small values of J2=J1, and we first
concentrate on J2=J1 ! 0:55.

As a first hint of a phase transition, we report the
temperature dependence of the susceptibility defined by
$ ! "N=T$"hM2

!i# hjM!ji2$ for different sizes [see
Fig. 1(a)]. If there is a phase transition, this susceptibility
is expected to diverge at Tc in the thermodynamic limit,
and, indeed, the development of a peak around T=J1 !
0:2 upon increasing the system size is clearly visible. To
get a precise estimate of Tc, we have calculated Binder’s
fourth cumulant of the order parameter defined by
U4"T$ ! 1# hM4

!i=3hM2
!i2. This cumulant should go to

2=3 below Tc and to zero above Tc when the size increases,
and the finite-size estimates are expected to cross around
Tc. Binder cumulants for different sizes are reported in
Fig. 1(b), and they indeed cross around T=J1 ’ 0:197. In
Fig. 1(c), we report U4"T$ as a function of 1=L for several
temperatures around 0.197. Excluding temperatures for
which U4 clearly increases or decreases with 1=L leads to
the remarkably precise estimate Tc=J1 ! 0:1970"2$.

To identify the universality class of the phase transi-
tion, we have looked at the finite-size scaling of several
quantities. The critical exponents % and & can be ex-
tracted from the dependence of the peak position of the
susceptibility Tc"L$ ! Tc ( aL#1=% and from its value
$"L; Tc$ ) L&=% as a function of L. Using the value of
Tc deduced from Binder’s cumulant, the fits lead to % !
1:0"1$ and &=% ! 1:76"2$. A more precise estimate of the
exponent % can be obtained from the temperature depen-

dence of the second-moment correlation length ' [16],
extracted from the Fourier components of the correlation
functions of the Ising-like variable (2). By considering
only values such that ' & L=6, where the finite-size ef-
fects are found to be negligible, it is possible to have a
very accurate value of the critical exponent from the fact
that, for T * Tc, '#1 ! A"T # Tc$%. In Fig. 2, we report
the behavior of the correlation length ' as a function of
the temperature. By performing a three-parameter fit
(for A, Tc, and %) we obtain Tc=J1 ! 0:1965"5$ and % !
1:00"3$. This value of Tc is compatible with the estimation
given by Binder’s cumulant.

These exponents agree with those of the Ising univer-
sality class in 2D (% ! 1 and & ! 7=4). A cross-check for
this universality class comes from the measure of the
critical exponent ", related to the divergence of the

FIG. 1. (a) Finite-size susceptibility $"L$=L and (b) Binder
cumulant U4 as a function of the temperature for different
sizes; (c) Binder cumulant U4 as a function of 1=L for different
temperatures (0:1965; 0:1966; . . . ; 0:1973, from top to bottom).
The lines are guides to the eye and the horizontal line marks
the value for U4 at the critical point for the Ising universality
class [15]. All data are for J2=J1 ! 0:55.

FIG. 2. Inverse of the correlation length '#1 as a function of
the temperature for different sizes of the lattice and J2=J1 !
0:55. The critical exponent % and Tc can be extracted from the
behavior of '#1 as a function of the temperature. The arrow
marks the resulting Tc.
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We show that the classical Heisenberg antiferromagnet on a Kagome lattice is an example of a spin
nematic. By calculating the eAects of thermal Auctuations around ground states, and by Monte Carlo
simulations, we find entropically driven, local spin-nematic order at low temperature T with a correlation
length which is divergent in the limit T 0. Dynamical correlations are also studied, within the har-
monic approximation, in the nematically ordered states.

PACS numbers: 75. 10.3m, 75.30.—m, 75.50.Ee

Frustrated antiferromagnets are interesting particular-
ly because of the scope they oN'er for novel low-tem-
perature states, which may be magnetically disordered
[1,2] or have only unconventional (non-Neel) order
[3-51. One example, the Heisenberg antiferromagnet on
a Kagome lattice, has been proposed as a model for two
experimental systems: He adsorbed on graphite (with
spin S= —,

' ) [6], and the insulating, layered compound
SrCrsGa40i9 (with s = —'. ) [7,8].
In this Letter we discuss the properties of the Heisen-

berg Kagome antiferromagnet in the classical limit
(S ~), by low-temperature expansion, by Monte Carlo
simulation, and via spin-wave theory. We find that the
system displays "order from disorder" [9], the order be-
ing spin nematic .[4,10,11]. Specifically, thermal fluctua-
tions select, from the vicinity of the highly degenerate
classical ground states, configurations in which spins are
coplanar. We show that such nematic states support
"disguised" spin waves, which have properties consistent
with recent inelastic neutron scattering measurements on
SrCrqGa40 f9.
Our approach is complementary to recent treatments

of the model with S —,
' [12], and to the quantum-fluid

description of Chandra and Coleman [4]. An interesting
difl'erence between our results (for S=ee) and those (for
S finite) of the latter authors is in the symmetry of the
nematic state. Using the classification of Andreev and
Grishchuk [10],we find (for T 0) n-type as opposed to
[4] p-type order.
I n brief, one expects the dominant classical, low-

temperature configurations to be close to whichever
ground states have the softest fluctuations [13,14]. The
ground states in which spins are coplanar (so defining a
nematic axis perpendicular to the plane) are unique in
having an entire branch of soft modes. Consequently, the
nematie correlation length is divergent in the low-
temperature limit.
As a starting point, we need an understanding of the

classical ground states of the Heisenberg Kagome antifer-
romagnet. A picture can be built up as follows, with the

Hamiltonian
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FIG. 1. Temperature dependence of specific heat. Upper in-
set: Enlargement of low-T region. Lower inset: Kagome lat-
tice. )08, 432, and 768 site systems: N, 0, and O.

where S; is a classical, three-component unit vector, and
the sum runs over pairs of sites on the Kagome lattice
(Fig. 1). The energy is minimized by any configuration
for which the total spin of each elementary triangle on
the lattice is zero. In such states, the spins of a given tri-
angle lie in one plane, forming a rigid unit in spin space;
the degeneracy stems from the many ways of fitting these
units together. Consider first the subset of ground states
having all spins coplanar. Each such planar state is
highly constrained, in the sense that only three distinct
spin orientations occur, but the subset as a whole retains
a large degeneracy: It has an extensive entropy, and
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der will be evident in the correlation function, g(r, p)=[ ~ ((n, . np) )——,
' ], which takes the value 1 in planar

ground states. Expanding around a planar state, Bn
=—

3 (ei'ii+eji2+e3zq)+O(e ). We expect, there-
fore, a characteristic temperature dependence, 1 g(—r)
tx: (e e)I)—T'/ as T 0, which serves to emphasize that
nematic short-range order will appear only at rather low
temperatures [(T/J) '/ «1]. It is probable that the
nematic correlation length diverges only in the limit
T 0: While a two-dimensional nematic supports topo-
logical defects, renormalization group analysis [16] sug-
gests that, in models with non-Abelian continuous sym-
metry, interactions between small-amplitude fluctuations
are sufficient to generate a finite correlation length, pre-
ernpting a defect-unbinding transition.
To test these ideas, we have performed Monte Carlo

simulations of the model defined by Eq. (I). The most
interesting behavior is at low temperatures (T/J
& 10 ), where results are in striking accord with
theory. The specific heat, Fig. 1, varies smoothly with
temperature. There is no indication of a phase transition
at finite temperature. Its low-temperature limit agrees
rather precisely with the theoretical value Cp' [ i2—(5/4N)]ka in a system of JV spins. We estitnate (via
the entropy loss on cooling from T=~) that, for S= &,
quantum aspects would dominate below T/J =0.2.
Short-range nematic correlations, Fig. 2, are large at low
temperatures, have the predicted temperature depen-
dence, and extrapolate to complete order as T 0.
Nematic correlations fall with distance, Fig. 3, initially as
a power. Antiferromagnetic correlations are also present.
We find from a detailed analysis (not shown) that they

have the structure of the J3xJ3, three-sublattice Neel
state [Ref. [8], Fig. 1(a)]. In Fig. 3 (inset) we compare
the nematic correlation function g(r) with the spin corre-
lation function, g, (r) =(S(0) S(r)), for spins belonging
to the same sublattice of the J3xJ3 state. In contrast to
the nematic correlations, antiferromagnetic correlations
do not saturate even at very low temperatures. While it
is clear that the predominant order is nematic, it remains
an open and delicate question whether the system sup-
ports long-range antiferromagnetic order as T 0. If
such order exists in the model studied, it is likely to be
sensitive to quantum fluctuations, impurities, or glassy
freezing.
The influence of finite system size on these results is in-

dicated in Figs. 1 and 3: Its effects on C& are very small,
and on g(r) are significant only for r approaching the lat-
tice half-width. The influence of finite simulation time
(10 —10 Monte Carlo steps per spin at each tempera-
ture) requires more discussion. We have been able to
reproduce the correlation function data in Fig. 3 (inset)
starting from both a high-temperature configuration and
the 43x J3 antiferromagnetic state. There are, however,
degrees of freedom that do not relax in the course of the
simulations. Specifically, we have been unable to equili-
brate the q =0, three-sublattice, planar antiferromagnetic
ground state (which has three spins per magnetic unit
cell). This is illustrated in Fig. 2 by the small differences
in behavior between samples heated from this state and
those cooled from high temperature. We believe the im-
portant distinction in this context between the J3xJ3
and q =0 antiferromagnetic states is that escape from the
former is possible via the introduction of short line de-
fects, while escape from the latter involves line defects
which span the system.
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FIG. 2. Temperature dependence of nematic correlation
function g(r, s) for a,P nearest-neighbor (N) and next-
nearest-neighbor (NN) triangles. I08 site system. The data
were obtained by heating the q =0, antiferromagnetic ground
state (solid lines), and by cooling a high-temperature
configuration (dashed lines).
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Classical Heisenberg antiferromagnets on two-dimensional kagome and three-dimensional hyperkagome
lattices are investigated by Monte Carlo simulations. For both models the symmetry-breaking states at low
temperatures are described by nonzero octupole moments or third-rank spin tensor order parameters. In the
case of the two-dimensional kagome antiferromagnet, a sharp crossover into a coplanar state takes place at
Tk#0.004J, which we attribute to proliferation of fractional vortices. The three-dimensional model exhibits a
first-order transition at Tc#0.002J into a phase with critical spin correlations, which possesses a long-range
order of octupole moments.
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I. INTRODUCTION

A two-dimensional !2D" network of corner-sharing tri-
angles known as the kagome lattice !Fig. 1" is a prototype of
geometrical frustration. The nearest-neighbor Heisenberg an-
tiferromagnet on such a lattice has an infinite number of spin
configurations minimizing the exchange energy. Both
quantum1 and classical2–8 spin models on the kagome lattice
have attracted significant theoretical interest in the past. Re-
alizations of the kagome lattice topology among magnetic
solids were initially rather scarce, with the prime example
being SrCr8−xGa4+xO19.9,10 In the last few years a significant
number of new magnetic compounds that are believed to be
related to the kagome lattice antiferromagnet have been syn-
thesized and studied.11–21 Often these materials suffer from
substitutional disorder, are affected by small structural devia-
tions from the ideal kagome network, or have extra interac-
tions, which lift the magnetic degeneracy. Nevertheless, re-
cent neutron-scattering experiments on powder samples of
large-S kagome materials, Y0.5Ca0.5BaCo4O7 !Ref. 19" !S
=3 /2" and deuteronium jarosite21 !S=5 /2", have demon-
strated remarkable similarity between the measured diffuse
intensities and the Monte Carlo results for the classical
model.7 Motivated by these two seemingly good realizations
of the classical kagome antiferromagnet, we reinvestigate in
the present work the finite-temperature properties of this
model. In particular, we consider the angular dependence of
magnetic correlations, which can be measured in neutron-
diffraction experiments on single crystals.

A second source of motivation is provided by the recent
discovery of a three-dimensional !3D" array of corner-
sharing triangles in a spin-1/2 Mott insulator Na4Ir3O8.22

Due to similarity with its 2D counterpart, this lattice struc-
ture has been coined a hyperkagome lattice. A network of
triangles with similar topology is also known to exist in ga-
dolinium gallium garnet, Gd3Ga5O12 !Refs. 23–25" !S
=7 /2", whose enigmatic behavior attracted a lot of theoreti-
cal efforts.26–28 Though the magnetic properties of both sys-
tems may be quite distant from those of the nearest-neighbor
classical model, in the former case due to quantum effects
and in the latter material due to strong dipolar interactions, it
is still important to understand the properties of the classical
antiferromagnet as a starting reference point. Furthermore,

recent Monte Carlo simulations29 have found evidence for an
interesting low-temperature phase transition for the hyper-
kagome antiferromagnet.

The classical ground states of the Heisenberg kagome lat-
tice antiferromagnet are derived from the block representa-
tion of the spin Hamiltonian

Ĥ = J$
%ij&

Si · S j =
J

2$
!

!S1 + S2 + S3"!
2 + const. !1"

The energy is minimized by any spin configuration, which
has S!=0 for every triangular plaquette. This classical con-
straint is satisfied for infinitely many configurations includ-
ing planar and nonplanar states. Chalker et al.2 argued that
coplanar spin states are selected by thermal fluctuations via
the order by disorder effect. They also related an asymptotic
selection of the spin plane with development of the nematic
order30,31 in spin chiralities defined as

! =
2

3'3
!S1 ! S2 + S2 ! S3 + S3 ! S1" !2"

for each triangular plaquette. The published Monte Carlo
data seem to confirm this prediction2,7 and the corresponding
point of view prevails now in the literature on frustrated
magnets.

Below we present arguments that such a description is
incomplete and the low-temperature state of the classical

FIG. 1. !Color online" Section of the kagome lattice with spins
in the fully ordered '3!'3 structure.
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The enlarged low-temperature part of C!T" is shown in
Fig. 4 for several cluster sizes. Two features are noteworthy.
First, the crossover between a planar spin state and a coop-
erative paramagnet corresponds to a rather sharp kink in
C!T" at around Tk /J=0.004!0.0005. At T"Tk the specific
heat grows linearly with temperature, which can be ac-
counted for by interaction between the spin waves. Second,
the specific heat exhibits a peculiar finite-size behavior in the
vicinity of the kink point, showing a rounded peak on small
clusters, which disappears for L#30 with no significant
finite-size corrections afterward.

The temperature dependence of the mean square of the
octupole moment is shown in Fig. 5!a". Large clusters ex-
hibit a clear enhancement of the order parameter below
Tk /J#0.004, which coincides with a kink position in the
specific heat. At low temperatures, $!T$%&"2% approaches 1/4,
which is the limiting value for the fully ordered coplanar
phase. The octupolar susceptibility

'T =
1

TN&
i,j

$Ti
$%&Tj

$%&% !12"

is presented in Fig. 5!b". For each cluster there is an inflec-
tion point TL

! below which the correlation length (T becomes
on the order of the linear lattice size, (T'L, and the suscep-
tibility begins to exhibit finite-size effects. The lattice-
independent part of 'T diverges as T→0, signaling a long-
range-ordered state at T=0. The fast increase in 'T!T" at low
temperatures is consistent with a typical divergence 'T!T"
(ATn exp!B /T" found from the nonlinear sigma model
mapping,44 though no specific predictions for A, B, and n
exists for the kagome antiferromagnet. Note that a rapid
crossover in the behavior of 'T!T" takes place in the vicinity
of T /J'0.005.

The behaviors of the two order parameters T$%& and Q$%

are compared in Fig. 6. The octupole moment shows a faster
growth with decreasing temperature, which would corre-
spond to a larger exponent if a second-order transition is
assigned to Tk. Figure 6 illustrates our previous conclusion
that the octupolar order parameter drives the low-
temperature transformation in the kagome antiferromagnet.

Finally, we investigate the elastic properties of the
kagome antiferromagnet by computing the temperature de-
pendence of the spin stiffness. The spin stiffness )s is defined
as the second derivative of the free energy with respect to
weak nonuniform twist of spins performed about a certain
direction $ in spin space:

*F =
1
2) d2r)s*!+$!r"+2. !13"

Substituting +i
$=,+!ê ·ri" for the twist angle and taking the

limit ,+→0, we obtain the following expression after proper
symmetrization and normalization per unit area:

)s = −
,3
2N-1

3
$E% +

J2

T ./&$ij% !Si - S j"$!ê · ,ij"0212 ,

!14"

where $E% is the internal energy and ê is an arbitrary unit
vector on the lattice plane.

Numerical results for )s!T" are presented in Fig. 7 for
three system sizes. The spin stiffness vanishes at tempera-
tures above T /J'0.005. This further supports identification
of the intermediate phase at 0.005.T /J.0.1 with the coop-
erative paramagnet, which has well developed local spin cor-
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FIG. 4. !Color online" Finite-size behavior of the specific heat in
the low-temperature region.
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FIG. 5. !Color online" Temperature dependences of !a" the oc-
tupolar order parameter and !b" the corresponding susceptibility for
different cluster sizes.
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• coplanar/nematic order = quadrupole order

kagome antiferromagnet should be described by a third-rank
tensor or octupolar order parameter. Such a proposal was
first put forward a long time ago,5,6,8 though no numerical
results were presented to substantiate this idea. The differ-
ence between the broken symmetries for the two types of
order parameters is important for topological classification of
point defects in the kagome antiferromagnet. Topologically
stable defects or vortices play a significant role in low-
temperature transformations of 2D geometrically frustrated
magnets and may lead to topological phase transitions32

and/or to an unconventional spin-glass behavior.5,6 The ana-
lytic consideration is supported in the following by extensive
Monte Carlo simulations.

The paper is organized as follows: In Sec. II the possible
tensor order parameters are considered for magnetically dis-
ordered spin systems and the presence of fractional vortices
is emphasized in the case of the classical kagome antiferro-
magnet. Section III is devoted to Monte Carlo results for the
2D kagome antiferromagnet. In particular, the specific heat
exhibits a sharp kink, which signifies formation of the copla-
nar spin state. In Sec. IV we investigate the behavior of the
3D kagome antiferromagnet and find that it shows a
fluctuation-driven first-order transition. The low-temperature
phase possesses no long-range antiferromagnetic correlations
and is described instead by an octupolar order parameter.

II. SPIN TENSOR ORDER PARAMETERS

A. Symmetry analysis

Let us first recall the arguments for the order by disorder
effect in the kagome antiferromagnet.2,4,5 Similar discussion
for the hyperkagome antiferromagnet is postponed until Sec.
IV. The classical constraint S!=0 for one triangular
plaquette is satisfied by a 120° spin structure. Once the ori-
entation of the three sublattices is chosen for the first
plaquette, all lowest-energy coplanar configurations can be
identified with the ground states of the three-state Potts an-
tiferromagnet or, equivalently, with coloring all sites of the
kagome lattice into three colors, such that no two neighbor-
ing sites have the same color. There are 1.134 71N such states
with N as the number of lattice sites.33 The manifold of co-
planar states contains two simple periodic structures: the q
=0 state, in which all triangles pointing up !!" or down !""
are in the same state, and the #3!#3 structure, which is
shown in Fig. 1 and is described by the wave vector Q
= !4" /3a ,0", a being the lattice constant. The q=0 state has
the same chiralities for up and down triangles, while in the
#3!#3 structure chiralities alternate between ! and "
plaquettes.

Nonplanar states are constructed from planar configura-
tions by identifying various closed or open two-color lines.
In the #3!#3 state, these are represented by hexagonal
loops; see Fig. 1. Nearest neighbors off such a line are nec-
essarily spins of the third color. Spins on the line can be
continuously rotated about the direction determined by the
third sublattice. The obtained spin fold !also called weather-
vane mode" retains the 120° spin orientation and costs, there-
fore, no energy. Rotation by " returns spins back into a
single plane, creating a new coplanar state.

The harmonic analysis2,5 indicates that coplanar states are
selected at low temperatures because they have the largest
number of soft excitations. The harmonic excitation spectra
are identical for all coplanar configurations. Hence, selection
of a specific translational pattern, if any, occurs due to
weaker nonlinear effects. Therefore, there should be a range
of temperatures where selection of the spin plane is not ac-
companied by a wave-vector selection. The heat capacity in
this regime is equal to C=11 /12 per spin.2 The spin plane is
specified by its normal $Eq. !2"%, which for a general
chirality-disordered coplanar state selects a line without di-
rection. The corresponding order parameter is a second-rank
traceless tensor:30,31

Q#
$% =

1
N!

&
p
'#p

$#p
% −

1
3

!p
2&$%( , !3"

where the summation extends over all triangular plaquettes.
A simpler form of the nematic order parameter can be con-
structed as a sum of on-site quadrupole moments:

Q$% =
1
N&

i
'Si

$Si
% −

1
3

&$%( . !4"

The two order parameters $Eqs. !3" and !4"% describe the
same type of broken symmetry and it is only a matter of
convenience to choose one of them.

This is not, however, the end of the story. The coplanar
states break, in addition, the spin-rotational symmetry inside
the plane: At large distances spins do not follow any specific
translational pattern but still are chosen from the initial sub-
lattice triad. The ground states of the XY kagome antiferro-
magnet with planar spins S j = !cos ' j , sin ' j" have a long-
range order in wj =exp!3i' j".4 Generalization to Heisenberg
spins is given by an on-site octupole moment expressed as a
symmetric third-rank tensor,

Ti
$%( = Si

$Si
%Si

( −
1
5

Si
$&%( −

1
5

Si
%&$( −

1
5

Si
(&$%, !5"

with vanishing trace over any pair of indexes. The uniform
long-range order of such octupoles is described by nonzero
values of

T$%( =
1
N&

i
)Ti

$%(* , !6"

where )¯* denotes thermodynamic averaging. The tensor
T$%( has in total seven independent components, as follows
from its symmetry and tracelessness. Note that a similar du-
ality in the choice between the two tensor order parameters
exists for liquid crystals consisting of bent-core
molecules.34,35 A complete characterization of the orienta-
tional order in such systems requires definition of a third-
rank tensor order parameter in addition to the more familiar
nematic tensor. Different forms of third-rank spin tensors
have been discussed in the literature.5,8,36,37 For classical
spins all of them are equivalent to Eq. !5", the latter form
being more convenient for numerical simulations.

The order parameters T$%( and Q$% transform according
to different irreducible representations of the rotation group
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kagome antiferromagnet should be described by a third-rank
tensor or octupolar order parameter. Such a proposal was
first put forward a long time ago,5,6,8 though no numerical
results were presented to substantiate this idea. The differ-
ence between the broken symmetries for the two types of
order parameters is important for topological classification of
point defects in the kagome antiferromagnet. Topologically
stable defects or vortices play a significant role in low-
temperature transformations of 2D geometrically frustrated
magnets and may lead to topological phase transitions32

and/or to an unconventional spin-glass behavior.5,6 The ana-
lytic consideration is supported in the following by extensive
Monte Carlo simulations.

The paper is organized as follows: In Sec. II the possible
tensor order parameters are considered for magnetically dis-
ordered spin systems and the presence of fractional vortices
is emphasized in the case of the classical kagome antiferro-
magnet. Section III is devoted to Monte Carlo results for the
2D kagome antiferromagnet. In particular, the specific heat
exhibits a sharp kink, which signifies formation of the copla-
nar spin state. In Sec. IV we investigate the behavior of the
3D kagome antiferromagnet and find that it shows a
fluctuation-driven first-order transition. The low-temperature
phase possesses no long-range antiferromagnetic correlations
and is described instead by an octupolar order parameter.

II. SPIN TENSOR ORDER PARAMETERS

A. Symmetry analysis

Let us first recall the arguments for the order by disorder
effect in the kagome antiferromagnet.2,4,5 Similar discussion
for the hyperkagome antiferromagnet is postponed until Sec.
IV. The classical constraint S!=0 for one triangular
plaquette is satisfied by a 120° spin structure. Once the ori-
entation of the three sublattices is chosen for the first
plaquette, all lowest-energy coplanar configurations can be
identified with the ground states of the three-state Potts an-
tiferromagnet or, equivalently, with coloring all sites of the
kagome lattice into three colors, such that no two neighbor-
ing sites have the same color. There are 1.134 71N such states
with N as the number of lattice sites.33 The manifold of co-
planar states contains two simple periodic structures: the q
=0 state, in which all triangles pointing up !!" or down !""
are in the same state, and the #3!#3 structure, which is
shown in Fig. 1 and is described by the wave vector Q
= !4" /3a ,0", a being the lattice constant. The q=0 state has
the same chiralities for up and down triangles, while in the
#3!#3 structure chiralities alternate between ! and "
plaquettes.

Nonplanar states are constructed from planar configura-
tions by identifying various closed or open two-color lines.
In the #3!#3 state, these are represented by hexagonal
loops; see Fig. 1. Nearest neighbors off such a line are nec-
essarily spins of the third color. Spins on the line can be
continuously rotated about the direction determined by the
third sublattice. The obtained spin fold !also called weather-
vane mode" retains the 120° spin orientation and costs, there-
fore, no energy. Rotation by " returns spins back into a
single plane, creating a new coplanar state.

The harmonic analysis2,5 indicates that coplanar states are
selected at low temperatures because they have the largest
number of soft excitations. The harmonic excitation spectra
are identical for all coplanar configurations. Hence, selection
of a specific translational pattern, if any, occurs due to
weaker nonlinear effects. Therefore, there should be a range
of temperatures where selection of the spin plane is not ac-
companied by a wave-vector selection. The heat capacity in
this regime is equal to C=11 /12 per spin.2 The spin plane is
specified by its normal $Eq. !2"%, which for a general
chirality-disordered coplanar state selects a line without di-
rection. The corresponding order parameter is a second-rank
traceless tensor:30,31

Q#
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1
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'#p

$#p
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!p
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where the summation extends over all triangular plaquettes.
A simpler form of the nematic order parameter can be con-
structed as a sum of on-site quadrupole moments:

Q$% =
1
N&

i
'Si

$Si
% −

1
3

&$%( . !4"

The two order parameters $Eqs. !3" and !4"% describe the
same type of broken symmetry and it is only a matter of
convenience to choose one of them.

This is not, however, the end of the story. The coplanar
states break, in addition, the spin-rotational symmetry inside
the plane: At large distances spins do not follow any specific
translational pattern but still are chosen from the initial sub-
lattice triad. The ground states of the XY kagome antiferro-
magnet with planar spins S j = !cos ' j , sin ' j" have a long-
range order in wj =exp!3i' j".4 Generalization to Heisenberg
spins is given by an on-site octupole moment expressed as a
symmetric third-rank tensor,

Ti
$%( = Si

$Si
%Si
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Si
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with vanishing trace over any pair of indexes. The uniform
long-range order of such octupoles is described by nonzero
values of

T$%( =
1
N&

i
)Ti

$%(* , !6"

where )¯* denotes thermodynamic averaging. The tensor
T$%( has in total seven independent components, as follows
from its symmetry and tracelessness. Note that a similar du-
ality in the choice between the two tensor order parameters
exists for liquid crystals consisting of bent-core
molecules.34,35 A complete characterization of the orienta-
tional order in such systems requires definition of a third-
rank tensor order parameter in addition to the more familiar
nematic tensor. Different forms of third-rank spin tensors
have been discussed in the literature.5,8,36,37 For classical
spins all of them are equivalent to Eq. !5", the latter form
being more convenient for numerical simulations.

The order parameters T$%( and Q$% transform according
to different irreducible representations of the rotation group
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The enlarged low-temperature part of C!T" is shown in
Fig. 4 for several cluster sizes. Two features are noteworthy.
First, the crossover between a planar spin state and a coop-
erative paramagnet corresponds to a rather sharp kink in
C!T" at around Tk /J=0.004!0.0005. At T"Tk the specific
heat grows linearly with temperature, which can be ac-
counted for by interaction between the spin waves. Second,
the specific heat exhibits a peculiar finite-size behavior in the
vicinity of the kink point, showing a rounded peak on small
clusters, which disappears for L#30 with no significant
finite-size corrections afterward.

The temperature dependence of the mean square of the
octupole moment is shown in Fig. 5!a". Large clusters ex-
hibit a clear enhancement of the order parameter below
Tk /J#0.004, which coincides with a kink position in the
specific heat. At low temperatures, $!T$%&"2% approaches 1/4,
which is the limiting value for the fully ordered coplanar
phase. The octupolar susceptibility

'T =
1

TN&
i,j

$Ti
$%&Tj

$%&% !12"

is presented in Fig. 5!b". For each cluster there is an inflec-
tion point TL

! below which the correlation length (T becomes
on the order of the linear lattice size, (T'L, and the suscep-
tibility begins to exhibit finite-size effects. The lattice-
independent part of 'T diverges as T→0, signaling a long-
range-ordered state at T=0. The fast increase in 'T!T" at low
temperatures is consistent with a typical divergence 'T!T"
(ATn exp!B /T" found from the nonlinear sigma model
mapping,44 though no specific predictions for A, B, and n
exists for the kagome antiferromagnet. Note that a rapid
crossover in the behavior of 'T!T" takes place in the vicinity
of T /J'0.005.

The behaviors of the two order parameters T$%& and Q$%

are compared in Fig. 6. The octupole moment shows a faster
growth with decreasing temperature, which would corre-
spond to a larger exponent if a second-order transition is
assigned to Tk. Figure 6 illustrates our previous conclusion
that the octupolar order parameter drives the low-
temperature transformation in the kagome antiferromagnet.

Finally, we investigate the elastic properties of the
kagome antiferromagnet by computing the temperature de-
pendence of the spin stiffness. The spin stiffness )s is defined
as the second derivative of the free energy with respect to
weak nonuniform twist of spins performed about a certain
direction $ in spin space:

*F =
1
2) d2r)s*!+$!r"+2. !13"

Substituting +i
$=,+!ê ·ri" for the twist angle and taking the

limit ,+→0, we obtain the following expression after proper
symmetrization and normalization per unit area:

)s = −
,3
2N-1

3
$E% +

J2

T ./&$ij% !Si - S j"$!ê · ,ij"0212 ,

!14"

where $E% is the internal energy and ê is an arbitrary unit
vector on the lattice plane.

Numerical results for )s!T" are presented in Fig. 7 for
three system sizes. The spin stiffness vanishes at tempera-
tures above T /J'0.005. This further supports identification
of the intermediate phase at 0.005.T /J.0.1 with the coop-
erative paramagnet, which has well developed local spin cor-
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relations but exhibits zero response to long-wavelength per-
turbations. The spin rigidity starts to increase at T /J
!0.004 simultaneously with the development of short-range
octupolar correlations. Finite-size scaling in the low-
temperature regime still yields "s=0 as it should be for a 2D
Heisenberg spin system.

The origin of the sharp crossover in various properties of
the kagome antiferromagnet at T!Tk"0.004J deserves spe-
cial attention. The possible phase transition in 2D continuous
non-Abelian models driven by nontrivial topological defects
has been discussed in the context of two different physical
applications. The first group of works motivated by investi-
gation of liquid crystals has studied the RP2 model in two
dimensions, which in the spin language corresponds to a
model of three-component spins on a square lattice coupled
with ferrobiquadratic exchange.45–48 The order-parameter
space is the projective sphere RP2=S2 /Z2 with the first ho-
motopy group #1#RP2$=Z2. The topological defects in this
context are called disclinations. Independently, the role of
topological defects was emphasized for 2D noncollinear
Heisenberg antiferromagnets.32,49–53 The order-parameter
space is SO#3$=S3 /Z2 in this case and the fundamental
group is the same, #1%SO#3$&=Z2. For both types of models
a straightforward generalization of the Kosterlitz-Thouless
scenario suggests that topologically stable Z2 vortices are
bound in pairs for T$Tv and become free in the high-
temperature phase.32,45

Kawamura and Miyashita32 investigated numerically the
Heisenberg antiferromagnet on a triangular lattice and found
evidence for the vortex unbinding transition at Tv!0.3J. The
heat capacity exhibits a weak maximum in the vicinity of Tv.
The main difference with the standard Kosterlitz-Thouless
transition in planar spin systems is that the correlation length
remains finite both above and below Tv. This leads to a small
finite density of free defects in the low-temperature phase.
The low- and the high-temperature phases are still distin-
guished by an asymptotic behavior of the vorticity on a large
closed contour: The vorticity function changes from the pe-
rimeter law at T$Tv to the area law at T%Tv.32,50,52 The

renormalization-group analysis becomes, however, notori-
ously difficult since in this case it must include simulta-
neously spin waves and Z2 vortices. The precise form of a
singularity in the thermodynamic potential at such a topo-
logical transition remains unknown up to now.51

The topological properties of the kagome antiferromagnet
suggest a natural interpretation of the observed crossover in
terms of unbinding of fractional vortices. It may also provide
another example of topological transition in 2D Heisenberg
antiferromagnets. The kink anomaly in C#T$ is consistent
with a cusp-type singularity in the specific heat found at the
topological transition for the RP2 model47 and for the trian-
gular antiferromagnet.32 The behavior of the spin stiffness
also agrees with the defect unbinding scenario. Similar to the
Kosterlitz-Thouless transition, free topological defects are
responsible for vanishing "s=0 above the crossover point,
whereas a much slower decrease in "s with the system size at
low temperatures is determined by spin-wave excitations.
Further numerical studies, which directly measure the den-
sity of fractional vortices and the corresponding vorticity
function, are necessary to clarify the above conjecture of
topological transition in the kagome antiferromagnet.

C. Spin correlations

The high-temperature series expansion for the kagome
antiferromagnet3 finds that the maximum in the momentum-
dependent susceptibility corresponds to the '3&'3 spin
structure. A similar conclusion has been made by Huse and
Rutenberg4 from a different perspective: Spin correlations of
the three-state Potts model are dominated by the staggered
component at the wave vector of the '3&'3 structure with a
power-law decay !r−4/3 at long distances. Such a purely
entropic effect derived from the mapping to the two-
component height model is related to the fact that the “flat”
'3&'3 structure maximizes the number of flippable loops.
An enhancement of the antiferromagnetic correlations at low
temperatures was also seen in the Monte Carlo simulations
of the Heisenberg model.4,7

We have investigated spin correlations in the kagome an-
tiferromagnet by using the following form of the staggered
magnetization:
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Ever since the experiments which founded the field of highly frustrated magnetism, the kagome

Heisenberg antiferromagnet has been the archetypical setting for the study of fluctuation induced exotic

ordering. To this day the nature of its classical low-temperature state has remained a mystery: the

nonlinear nature of the fluctuations around the exponentially numerous harmonically degenerate ground

states has not permitted a controlled theory, while its complex energy landscape has precluded numerical

simulations at low temperature, T. Here we present an efficient Monte Carlo algorithm which removes the

latter obstacle. Our simulations detect a low-temperature regime in which correlations asymptote to a

remarkably small value as T ! 0. Feeding these results into an effective model and analyzing the results

in the framework of an appropriate field theory implies the presence of long-range dipolar spin order with

a tripled unit cell.

DOI: 10.1103/PhysRevLett.110.077201 PACS numbers: 75.10.Hk, 75.40.Cx, 75.40.Mg, 75.50.Ee

The first experiments on the ‘‘kagome bilayer’’
SCGO [1,2] triggered a wave of interest in kagome
antiferromagnets in particular, and frustrated systems in
general. A cluster of early seminal theoretical papers [3–7]
established kagome magnets as model systems for novel
ordering phenomena, discussing in particular spin liquid-
ity, partial order, disorder-free glassiness and order by
disorder. The excitement persists, not least in the quantum
realm [8], where there has been much recent progress in
understanding the ground state for S ¼ 1=2 [9].

Remarkably, for the classical kagome Heisenberg
magnet, the nature of low-temperature phase has not been
established, despite the deceptive simplicity of its
Hamiltonian, encoding only nearest-neighbour interactions
of strength J > 0 between classical unit-length spins
Si: H¼J

P
hijiSi "Sj. This happens because classical

Heisenberg spins do not lend themselves at all to the num-
erical methods applied to S¼1=2 (e.g., Refs. [9–11]), while
classical Monte Carlo simulations (e.g., Refs. [3,5,12,13])
have not been able to sample the different local free energy
minima separated by entropic barriers—for the best effort
yet, see Ref. [14]. At the same time, analytical approaches
have managed to develop different possible scenarios,
described below, without being able to choose between
them [3,15].

Here, we present a Monte Carlo algorithm which ena-
bles us to simulate systems containing over 2000 spins
down to a low-temperature regime, where we find that
correlations no longer change as T is lowered further. We
use the results to determine the best parameters in effective
models, a stiffness in a height model, an effective field
theory, as well as a further-neighbor coupling in an
extended Potts model. In particular the latter can then be
simulated for over 106 spins, which enables us to verify the

critical behavior encapsulated by the height model. Thus
we identify which ordering scenario applies: we obtain
spin ordering with a remarkably small ordered moment,
which we estimate to be about an order of magnitude below
fully developed order. In the remainder of this Letter,
we give an account of our analysis, starting with a review
of the unusual behavior of the kagome magnet as the
temperature is lowered.
Complex energy landscape.—As the kagome magnet

is cooled from high temperatures, it develops short-range
order like any other magnet. Upon cooling further, its
frustrated nature asserts itself: at the Curie temperature,
J, there is no sign of any ordering predicted by mean-field
theory, despite the fact that the spins in each triangle firmly
point at 120# to one another. Instead, it is not until much
lower T & 10$3 J that all spins adopt a common plane.
This coplanar ordering is described mathematically by

two order parameters [14]: a quadrupolar (also known as
nematic or coplanar) one for the direction normal to the
plane; and an octupolar one as follows. If one denotes the
angle the spins make in the plane with respect to a refer-
ence spin by !, it is expð3i!Þ which orders. Crucially, the
existence of dipolar (spin) order, in expði!Þ, remains an
open question.
It should be noted that since the kagome lattice is two

dimensional, di-, quadru- and octupolar orders in fact only
set in algebraically, being cut off on a length scale "MW for
T > 0, below which scale our analysis applies. Crucially,
however, "MW diverges exponentially as the temperature is
lowered, so that the ordered regimes are still well defined
in practise even at small but nonzero T.
As the ground state is continuously degenerate, the

energy landscape has many zero-energy directions
(flat valleys). However, at nonzero temperature, in the
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• Spectrum under spherical approximation:

where Si denotes the pseudospin 1=2 at site i. The
Hamiltonian describing the off-diagonal exchange reads

H ¼ "Γ
X

hiji∈‘x’
ðSyi Szj þ SziS

y
jÞ " Γ

X

hiji∈‘y’
ðSziSxj þ Sxi S

z
jÞ

þ Γ
X

hiji∈‘z’
ðSxi S

y
j þ Syi S

x
jÞ; ð2Þ

where hiji denotes NN sites and " accounts for the sign
modulation of the couplings on x and y bonds in the 3D
systems [48]. For the 2D case all bonds have the plus sign.
Classical limit.—Let us consider the classical limit

where Si are vectors of length S and begin with the 2D
honeycomb case. The highly frustrated nature of this model
is first revealed by the fact that the lowest eigenvalue of
the 6 × 6 interaction matrix Λk in momentum space [49]
is completely flat. In fact, this holds for all six bands,
with λ1 ¼ −jΓj, λ2 ¼ λ3 ¼ −jΓj=2, λ4 ¼ λ5 ¼ jΓj=2, and
λ6 ¼ jΓj, see Fig. 1.
To understand the nature of the ground states and why

there is an infinite number of them, we search for states that
saturate the lower bound of the energy per site λ1S2 [49].
Consider a pair of spins, say S0 and S1 of (1), which
interact via ΓðSx0S

y
1 þ Sy0S

x
1Þ. If these spins were isolated

from the rest, then their energy would be minimized by
placing the spins on the xy plane with Sx1 ¼ ζSy0, S

y
1 ¼ ζSx0,

ζ ¼ −sgnðΓÞ. Similarly, for the x bond of (1), we would get
Sy3 ¼ ζSz0, S

z
3 ¼ ζSy0, and for the y bond of (1), Sx2 ¼ ζSz0,

Sz2 ¼ ζSx0. Returning to the lattice problem, the idea is to
require that the two components involved in each Γ term
satisfy the respective relations above, without specifying
the third component for the moment. This is done as
follows: (i) We choose a direction for the central spin of (1)
and parametrize it as

S0 ¼ ðη1a; η2b; η3cÞ; ð3Þ

where a ¼ jSx0j, b ¼ jSy0j, c ¼ jSz0j, η1 ¼ sgnðSx0Þ, η2 ¼
sgnðSy0Þ, and η3 ¼ sgnðSz0Þ. (ii) Then, we fix two compo-
nents of the three neighbors as

S1 ¼ ðζη2b; ζη1a; Sz1Þ; S2 ¼ ðζη3c; S
y
2; ζη1aÞ;

S3 ¼ ðSx3; ζη3c; ζη2bÞ:
ð4Þ

(iii) Then, we fix accordingly two components of the
neighbors of S1;2;3, etc., until we cover the whole lattice.
The total energy of the generated configurations saturates
the lower energy bound, and are therefore ground states.
Indeed, the energy contribution from the cluster (1) is

, and this holds for
any such cluster in the lattice. Since each bond is shared by
two sites, the total energy per site is E=N ¼ −jΓjS2, which
saturates the lower bound.
Now, the reason why there are infinite ground states lies

in the freedom to choose the third component of the spins,
i.e., Sz1, S

y
2, S

x
3, etc. Imposing the spin length constraint

shows that this freedom is associated with the overall signs,

Sz1 ¼ ζη4c; Sy2 ¼ ζη5b; Sx3 ¼ ζη6a; ð5Þ

where ηi ¼ "1 are Ising variables. The choice of signs in
front of the ηs give the simplest representation of the state
as we see below, but is otherwise arbitrary. To see how
many independent ηs exist, we look closely what happens
around the central cluster (1), see Fig. 2. We see that each ηi
appears only around a single hexagon; i.e., we can label the
states by assigning the ηs to the hexagons. This para-
metrization in terms of local Ising variables gives a total of
2N=2 states for fixed fa; b; cg. Note that if two (one) of
fa; b; cg vanish then 2=3 (1=3) of the ηs are idle and we get
2N=6 (2N=3) states instead. On top, there is the degeneracy
associated to fa; b; cg.
The η parametrization reveals that the local zero-energy

modes responsible for the extensive degeneracy correspond
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FIG. 1. Spectrum λ1−6=jΓj of the matrix Λk entering the Fourier
transform of the classical energy, see Supplemental Material [49].

FIG. 2. Classical ground states of the Γ model on the 2D
honeycomb lattice, where a2 þ b2 þ c2 ¼ S2 and ηi ¼ "1.
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Macroscopically degenerate ground states

• Static Structure factor S(q):
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FIG. 8: Static structure factor S(q) in the extended Brillioun zone for the � model at low temperatures obtained from Monte
Carlo simulations. Panels (a) and (b) are computed at T = 0.03 and T = 0.05 respectively for antiferromagnetic � > 0. Similar
results for ferromagnetic � < 0 are shown in (c) T = 0.03, (d) T = 0.05.

characteristic of a second-order phase transition. The
crossing point of the Binder cumulant curves indicates
that T

c

' 0.0402, which further confirms a continuous
phase transition.

Critical exponents of this phase transition are deter-
mined from finite size scaling analysis by following stan-
dard procedures. Results of the scaled data are shown in
Fig. 7. For example, the exponent ⌫ can be determined
from the data collapsing of B

4

versus scaled temperature
L

1/⌫(T � T

c

). The slope of linear fitting the maximum
values of specific heat C

max

as a function of lattice size
L gives the value of ↵/⌫. The ratios �/⌫ and �/⌫ are
obtained similarly from the � and � curves. We obtain
the following critical exponents: ↵ = 0.167, � = 0.177,
� = 1.47, ⌫ = 0.863. These exponents also satisfy the
hyperscaling relation ↵+2� +� = 2. As shown in Fig. 7,
fairly nice data collapsing is obtained using this set of
critical exponents.

Fig. 8 shows the static structure factor S(q) of the
� model at low temperatures for both antiferromagnetic
and ferromagnetic �. The structure factor is computed
from the Fourier transform of the spin configuration, i.e.
S(q) = | 1

N

P
i

S(q) exp(iq · r
i

)|2. Importantly, the sys-
tem exhibits rather distinct structure factors above and
below the critical T

c

for both signs of �. We can see
for the antiferromagnetic case i.e. � > 0 (Fig. 8(a) and
(b)) the minimum spectral weight lies at the � point in
the brillioun zone(BZ). We see the characteristic devel-
opment of dark nearly circular patches at the centers of
the extended BZ especially at temperatures greater than
T

C

. Intensity starts to concentrate on the boundaries
of the BZ. For T < T

C

spectral intensity outside the �
point dark circular patch looks uniform for rest of the
BZ. For T > T

C

focusing on the bright BZ boundary
regions, the maximum spectral weight is found at the Y
point, with a decrease in magnitude as we move towards

the X point, and a uniform drop-o↵ as we move from
the Y point to the � point origin of BZ. Static structure
factors for ferromagnetic interaction(� < 0) exhibit com-
plete antipodal characteristics from its antiferromagnetic
counterpart. We see in Fig. 8(c) and (d) spectral inten-
sity has its maxima at the BZ centers. Intensity decreases
as we move closer to the edges of the extended BZ. For
T > T

C

it is clearly visible that towards the edge of the
BZ, intensity decreases when we move from X point to Y
point.

DYNAMICAL STRUCTURE FACTOR AND
LANDAU-LIFSHITZ DYNAMICS

In this section, we discuss details of the Landau-
Lifshitz (LL) dynamics simulations, and the numerical
calculation of the dynamical structure factor S(q, !).
The dynamics of classical spins is well described by the
LL equation:

dS
i

dt

= �S
i

⇥ @H
@S

i

, (11)

where H is the Hamiltonian of the � model. Here we do
not include dissipation terms such as the Gilbert damping
in our dynamical simulations, since we are interested in
the un-damped oscillations of the excited states. The ex-
citation energies can be extracted from these oscillations
through simple time-domain Fourier transform. An e�-
cient semi-implicit algorithm [2] is employed to integrate
the above LL equation. The high e�ciency of the algo-
rithm comes from fact that it preserves the spin length at
every time step and the energy values are well conserved
with time irrespective of the time length or time step
size in the simulation. In our computations of the struc-
ture factor, we consider a honeycomb lattice with 2⇥302

spins. A time step �t = 0.005 is used (with |�| = 1).
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FIG. 8: Static structure factor S(q) in the extended Brillioun zone for the � model at low temperatures obtained from Monte
Carlo simulations. Panels (a) and (b) are computed at T = 0.03 and T = 0.05 respectively for antiferromagnetic � > 0. Similar
results for ferromagnetic � < 0 are shown in (c) T = 0.03, (d) T = 0.05.
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factors for ferromagnetic interaction(� < 0) exhibit com-
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where H is the Hamiltonian of the � model. Here we do
not include dissipation terms such as the Gilbert damping
in our dynamical simulations, since we are interested in
the un-damped oscillations of the excited states. The ex-
citation energies can be extracted from these oscillations
through simple time-domain Fourier transform. An e�-
cient semi-implicit algorithm [2] is employed to integrate
the above LL equation. The high e�ciency of the algo-
rithm comes from fact that it preserves the spin length at
every time step and the energy values are well conserved
with time irrespective of the time length or time step
size in the simulation. In our computations of the struc-
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• The degenerate ground states are characterized by 
continuous variables                     and  
a set of discrete Ising variables 

n̂ = (a, b, c)

{⌘i}

where Si denotes the pseudospin 1=2 at site i. The
Hamiltonian describing the off-diagonal exchange reads

H ¼ "Γ
X

hiji∈‘x’
ðSyi Szj þ SziS

y
jÞ " Γ

X

hiji∈‘y’
ðSziSxj þ Sxi S

z
jÞ

þ Γ
X

hiji∈‘z’
ðSxi S

y
j þ Syi S

x
jÞ; ð2Þ

where hiji denotes NN sites and " accounts for the sign
modulation of the couplings on x and y bonds in the 3D
systems [48]. For the 2D case all bonds have the plus sign.
Classical limit.—Let us consider the classical limit

where Si are vectors of length S and begin with the 2D
honeycomb case. The highly frustrated nature of this model
is first revealed by the fact that the lowest eigenvalue of
the 6 × 6 interaction matrix Λk in momentum space [49]
is completely flat. In fact, this holds for all six bands,
with λ1 ¼ −jΓj, λ2 ¼ λ3 ¼ −jΓj=2, λ4 ¼ λ5 ¼ jΓj=2, and
λ6 ¼ jΓj, see Fig. 1.
To understand the nature of the ground states and why

there is an infinite number of them, we search for states that
saturate the lower bound of the energy per site λ1S2 [49].
Consider a pair of spins, say S0 and S1 of (1), which
interact via ΓðSx0S

y
1 þ Sy0S

x
1Þ. If these spins were isolated

from the rest, then their energy would be minimized by
placing the spins on the xy plane with Sx1 ¼ ζSy0, S

y
1 ¼ ζSx0,

ζ ¼ −sgnðΓÞ. Similarly, for the x bond of (1), we would get
Sy3 ¼ ζSz0, S

z
3 ¼ ζSy0, and for the y bond of (1), Sx2 ¼ ζSz0,

Sz2 ¼ ζSx0. Returning to the lattice problem, the idea is to
require that the two components involved in each Γ term
satisfy the respective relations above, without specifying
the third component for the moment. This is done as
follows: (i) We choose a direction for the central spin of (1)
and parametrize it as

S0 ¼ ðη1a; η2b; η3cÞ; ð3Þ

where a ¼ jSx0j, b ¼ jSy0j, c ¼ jSz0j, η1 ¼ sgnðSx0Þ, η2 ¼
sgnðSy0Þ, and η3 ¼ sgnðSz0Þ. (ii) Then, we fix two compo-
nents of the three neighbors as

S1 ¼ ðζη2b; ζη1a; Sz1Þ; S2 ¼ ðζη3c; S
y
2; ζη1aÞ;

S3 ¼ ðSx3; ζη3c; ζη2bÞ:
ð4Þ

(iii) Then, we fix accordingly two components of the
neighbors of S1;2;3, etc., until we cover the whole lattice.
The total energy of the generated configurations saturates
the lower energy bound, and are therefore ground states.
Indeed, the energy contribution from the cluster (1) is

, and this holds for
any such cluster in the lattice. Since each bond is shared by
two sites, the total energy per site is E=N ¼ −jΓjS2, which
saturates the lower bound.
Now, the reason why there are infinite ground states lies

in the freedom to choose the third component of the spins,
i.e., Sz1, S

y
2, S

x
3, etc. Imposing the spin length constraint

shows that this freedom is associated with the overall signs,

Sz1 ¼ ζη4c; Sy2 ¼ ζη5b; Sx3 ¼ ζη6a; ð5Þ

where ηi ¼ "1 are Ising variables. The choice of signs in
front of the ηs give the simplest representation of the state
as we see below, but is otherwise arbitrary. To see how
many independent ηs exist, we look closely what happens
around the central cluster (1), see Fig. 2. We see that each ηi
appears only around a single hexagon; i.e., we can label the
states by assigning the ηs to the hexagons. This para-
metrization in terms of local Ising variables gives a total of
2N=2 states for fixed fa; b; cg. Note that if two (one) of
fa; b; cg vanish then 2=3 (1=3) of the ηs are idle and we get
2N=6 (2N=3) states instead. On top, there is the degeneracy
associated to fa; b; cg.
The η parametrization reveals that the local zero-energy

modes responsible for the extensive degeneracy correspond
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FIG. 1. Spectrum λ1−6=jΓj of the matrix Λk entering the Fourier
transform of the classical energy, see Supplemental Material [49].

FIG. 2. Classical ground states of the Γ model on the 2D
honeycomb lattice, where a2 þ b2 þ c2 ¼ S2 and ηi ¼ "1.
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Macroscopically degenerate classical ground states
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FIG. 1. (Color online) Ground states of the � model on a
honeycomb lattice. A generic ground state is characterized
by a directional vector n̂ = (a, b, c) and a set of Ising variables
{⌘

↵

} defined on individual hexagons. To construct a ground
state, first we build a perfect

p
3 ⇥

p
3 order based on the

six inequivalent spins of the tripled unit cell: SA = (a, b, c),
SB = (c, a, b), SC = (b, c, a), SD = ⇣(b, a, c), SE = ⇣(a, c, b),
and SF = ⇣(c, b, a). Here ⇣ = �sgn(�). Next, go through
every hexagon and modify the component of its six spins:
Sx

1 ! ⌘Sx

1 , S
y

2 ! ⌘Sy

2 , S
z

3 ! ⌘Sz

3 , S
x

4 ! ⌘Sx

4 , S
y

5 ! ⌘Sy

5 , and
Sz

6 ! ⌘Sz

6 . In the example shown above, ⇣ = �1.

The classical ground states of � model are extensively
degenerate [47], giving rise to a new type of classical spin
liquid which is di↵erent from the familiar cases in geo-
metrically frustrated magnets. Our MC simulations over
a wide temperature range, summarized in Fig. 2, show no
sign of phase transition down to T ⇠ 0.05|�|. The energy
density gradually approaches its minimum E0 = �|�|,
while the specific heat shows a plateau-like feature at
T . 0.1 |�|. The static structure factor of the � > 0 case
at T = 0.05|�| exhibits a broad minima at q = 0; see
Fig. 2(c). The absence of Bragg peaks is consistent with
the picture of a classical spin liquid. The fact that there
is no pinch-point singularity, which is a unique feature
of spin liquids in geometrically frustrated magnets [48–
50], also points to a di↵erent nature of the macroscopic
degeneracy in � model. MC simulations further find ex-
tremely short-ranged spin-spin correlation, which is simi-
lar to that seen in Kitaev spin liquid [10, 13], but di↵erent
from that of geometrically frustrated systems.

The characterization of the degenerate ground-state
manifold has been discussed in great detail in Ref. [47].
A generic ground state is specified by a directional vec-
tor n̂ = (a, b, c) and a set of Ising variables {⌘

↵

} defined
on individual hexagons; see Fig. 1. In the classical limit,
or without consideration of dynamical e↵ects, these Ising
variables are pure gauge degrees of freedom and will re-
main disordered at all temperatures. An explicit pro-
cedure for constructing the ground state is as follows.
First, we use the unit vector n̂ to derive six inequiva-
lent spins SA, SB, · · · , SF for the tripled unit cell of a
perfect

p
3 ⇥

p
3 long-range order. Next, we go through

every hexagon ↵ in this periodic structure and modify
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FIG. 2. (Color online) (a) Energy density and (b) specific
heat vs temperature of the � model down to temperature
T ⇠ 0.05. Here both energy and temperatures are expressed
in units of |�|. (c) shows the static structure factor of the
antiferromagnetic � model at T = 0.05.

the spin components: S

x

1 ! ⌘S

x

1 , S

y

2 ! ⌘S

y

2 , S

z

3 ! ⌘S

z

3 ,
S

x

4 ! ⌘S

x

4 , S

y

5 ! ⌘S

y

5 , and S

z

6 ! ⌘S

z

6 , where S1,··· ,6 are
the six spins surrounding the ↵-th hexagon. Note that
the eight directions (±a, ±b, ±c) correspond to the same
n̂ as they are related by flipping the ⌘ variable. It is thus
similar to the director in nematic liquid crystal.

Since di↵erent ground states are labeled by discrete
Ising variables {⌘

↵

}, it raises the question whether the
ground-state manifold is fully connected. The issue here
is how one can move from one ground state continuously
to another, as simply changing ⌘ requires flipping spin
component which is a discrete process. It turns out con-
tinuous transformation of {⌘

↵

} can be achieved with the
aid of the directional vector n̂ = (a, b, c). To see this,
we first note that each ⌘

↵

is associated with only one
component of the unit vector n̂ in the ground state.
Take the hexagon shown in Fig. 1 as an example, the
six spins are S1 = (a, b, c), S2 = ⇣(b, a, c), S3 = (b, c, a),
S4 = ⇣(a, c, b), S5 = (c, a, b), and S6 = ⇣(c, b, a). Accord-
ing to the ground-state rule, the local ⌘ only controls the
‘a’-component of the six spins in this hexagon. As a
result, all ⌘-variables can be divided into three groups:
type-A (respectively, B and C) for spin-components con-
trolled by a (respectively, b and c). When one of the
component of n̂ vanishes, 1/3 of the ⌘ becomes idle.

This feature allows us to construct a continuous path
from one set of ⌘ to another one ⌘

0. Specifically, we
rotate the directional vector according to the sequence:
(a, b, c) ! (0, b

0
, c

0) ! (a00
, 0, c

00) ! (a000
, b

000
, 0) !

(a, b, c). After the first rotation, the vanishing a com-
ponent allows us to change 1/3 of the ⌘ variables (those
associated with a-component) to their counterpart in ⌘

0.
Repeating similar process for the other two sets of ⌘ then
completes the transformation from ⌘ to ⌘

0 while keeping
the n̂ vector in the same direction.

The above discussion clearly shows that the rotational
symmetry of the vector n̂ is crucial to the connectivity of

p
3⇥

p
3 order

SA = (a, b, c)

SB = (c, a, b)

SC = (b, c, a)

SD = ±(b, a, c)

SE = ±(a, c, b)

SF = ±(c, b, a)

Sx

1 ! ⌘Sx

1 , Sy

2 ! ⌘Sy

2 , Sz

3 ! ⌘Sz

3 ,

Sx

4 ! ⌘Sx

4 , Sy

5 ! ⌘Sy

5 , Sz

6 ! ⌘Sz

6



Thermal order by disorder ?
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FIG. 2: Temperature dependence of specific heat C obtained
by Monte Carlo simulations.
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When T ! 0, cubic axes are preferred, N
0

= 2 + 2N�6

6

,
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⇡ 0.917, which is consistent with the
simulated value, 0.918 at T = 0.001 (Fig. 2).

MONTE CARLO SIMULATIONS

We use Monte Carlo simulation to investigate the ther-
modynamic behaviors of the � model at low tempera-
tures. Standard Metropolis-Hastings algorithm based on
local updates is used to sample spin configurations in
thermal equilibrium. First, we consider auto-correlation
function defined as

A(t) =
1

N

NX

i

hS
i

(t) · S
i

(0)i. (5)

Here time t is measured in Monte Caro sweeps. Fig. 3
shows the auto-correlation function obtained from Monte
Carlo simulations at various temperatures. At small t,
the auto-correlation function A(t) decays exponentially.
We then fit the di↵erent auto-correlation curves with the
following simple function: A(t) = A1 + B exp(�t/⌧),
where A1 is the steady-state value as t ! 1, and ⌧ is
a relaxation time. The temperature dependence of A1
is shown in Fig. 4. For T > T

c

, we find A(t) ! 0 at
large time t ! 1. On the other hand, for T < T

c

, the
auto-correlation function approaches a finite steady-state
value A1, indicating the presence of long-range order.

Next we present details of the Monte Carlo simula-
tions for the phase transition at T

c

= 0.04�. Monte

FIG. 3: Auto-correlation function A(t) obtained from Monte
Carlo simulations at di↵erent temperatures. A1 represents
the steady-state value at large t, which corresponds to 20,000
Monte Carlo sweeps numerically.

FIG. 4: Temperature dependence of A1 (See in Fig:3). The
finite value A1 decreases with increasing temperature and
goes to zero at the transition temperature TC .

Carlo simulations were performed on systems with di↵er-
ent size L = 30, 60, 90, 120, 150. The results summarized
in FIG. 5 reveal a clear phase transition. Here the spe-
cific heat is computed according to the variance of energy
H obtained from Eq. 1.

C =
hH2i � hHi2
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2

(6)

The bracket h...i donates the Monte Carlo average.
The order-parameter of the plaquette pattern is de-

fined as the Fourier transform of the hexagonal fluxes
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We then fit the di↵erent auto-correlation curves with the
following simple function: A(t) = A1 + B exp(�t/⌧),
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FIG. 3: Auto-correlation function A(t) obtained from Monte
Carlo simulations at di↵erent temperatures. A1 represents
the steady-state value at large t, which corresponds to 20,000
Monte Carlo sweeps numerically.

FIG. 4: Temperature dependence of A1 (See in Fig:3). The
finite value A1 decreases with increasing temperature and
goes to zero at the transition temperature TC .

Carlo simulations were performed on systems with di↵er-
ent size L = 30, 60, 90, 120, 150. The results summarized
in FIG. 5 reveal a clear phase transition. Here the spe-
cific heat is computed according to the variance of energy
H obtained from Eq. 1.

C =
hH2i � hHi2

NT

2

(6)

The bracket h...i donates the Monte Carlo average.
The order-parameter of the plaquette pattern is de-

fined as the Fourier transform of the hexagonal fluxes
W

↵

at the characteristic wavevector of the
p
3⇥p

3 pat-

A(t) =
1

N

X

i

hSi(t) · Si(0)i

⇠ A1 + (1�A1) e�t/⌧

T < 0.04|�|T > 0.04|�|

• Snapshots of spins form Monte 
Carlo simulations

3

(a) (b)

FIG. 3. (Color online) Snapshots of spin configurations above
and below T

c

= 0.0401|�|: (a) T = 0.05 and (b) T = 0.03.
In the low-T phase, spins predominately point toward the six
cubic directions.

the ground-state manifold. Without this feature, di↵er-
ent {⌘

↵

} becomes disjoint from each other. Interestingly,
our MC simulations find a freezing phenomenon of the
vector n̂ at a very low temperature T

c

⇡ 0.04 |�|. This
is illustrated by snapshots of spins above and below this
critical temperature; see Fig. 3. At T > T

c

, the spins and
the directional vector n̂ exhibit an emergent spherical
symmetry even at temperatures well below the exchange
energy scale |�|. This rotational symmetry is lost at
the critical temperature, and spins mainly point toward
the six cubic axes, or equivalently the directional vector
freezes to one of the cubic directions, i.e. n̂ ⇠ (1, 0, 0),
(0, 1, 0), or (0, 0, 1) at T < T

c

. As states parameter-
ized by di↵erent n̂ are degenerate at the mean-field level,
the cubic directions are selected by thermal fluctuations
through the order-by-disorder mechanism. Equivalently,
this can also be viewed as the entropic selection, result-
ing from an e↵ective free energy Fani / �(a4 + b

4 + c

4).
Indeed, simple analysis shows that these cubic directions
allow for the largest number of zero modes at the har-
monic level. We note that similar cubic anisotropy is also
generated by quantum fluctuations [47].

It is crucial to note that although the spin-symmetry is
seemingly reduced from spherical to cubic when crossing
T

c

, this cannot be viewed as a true reduction of sym-
metries as the � model itself is already cubic-symmetric.
The apparent spherical symmetry at T

c

< T < |�| is
an emergent property of the phase, which is due to the
spatial fluctuations of directional vector n̂(r). Another
important observation is that while the degeneracy asso-
ciated with vector n̂ is lifted by thermal fluctuation, a
discrete macroscopic degeneracy persists due to the Ising
gauge symmetry of {⌘

↵

}, especially for classical spins.
Consequently, spins remain disordered at T < T

c

.

To resolve this issue and investigate the nature of the
low-T phase, we first note that the cubic spin-orbital
symmetry of the � model is indeed broken below T

c

, yet
in a complicated pattern: local spins have to pick one of
the six cubic directions in a coordinated way while pre-
serving the gauge symmetry of {⌘

↵

}. A convenient local
quantity to characterize the broken symmetry is the flux

x

y

z

⌘ = +1

⌘ = �1

⌘1

⌘2

⌘3

⌘4

⌘5

FIG. 4. (Color online) Plaquette order of hexagonal fluxes
on honeycomb lattice. Shaded hexagons have nonzero flux
W ⇠ 1, while empty hexagons have a vanishing W . Spins are
orthogonal to each other (with left handedness for ⇣ = �1)
on each shaded hexagon; their specific directions depend on
the local ⌘, as specified in the insets. The arrangement of
hexagons with finite W corresponds to the famous

p
3 ⇥

p
3

long-range order. Spins remain disordered due to uncorre-
lated ⌘

↵

on the shaded hexagons.

variable defined on each hexagon [10]:

W

↵

= S

x

1 S

y

2 S

z

3 S

x

4 S

y

5 S

z

6 , (2)

where S1,··· ,6 are the six spins around the ↵ hexagon.
These fluxes play an important role in the spin-1/2 Ki-
taev model as they are “integrals of motion” of the Kitaev
Hamiltonian [10]. In our case, the flux W

↵

is similarly a
gauge-invariant variable, that is independent of ⌘

↵

. On
the other hand, it can be used to characterize the order-
ing of n̂. To see this, we note that in the ground state,
they only take on three di↵erent values [47]: WA = ⇣a

6

for hexagons whose ⌘ is associated with component a,
and similarly WB = ⇣b

6 and WC = ⇣c

6 for the other
two sets of hexagons, where ⇣ = �sgn(�) As the vec-
tor n̂ freezes to one of the cubic directions, 2/3 of the
fluxes also vanish. Since hexagons of a given type form
an enlarged triangular lattice, the flux patten of the low-
T phase, e.g. W

A

⇡ 1, and W

B

⇡ W

C

⇡ 0, corresponds
to a broken translation symmetry; see Fig. 4. Impor-
tantly, the uncorrelated ⌘

↵

on hexagons with nonzero W

give rise to a disordered spin configuration. We note in
passing that plaquette orders with similar spatial pattern
also exist as ground state in J1-J2 quantum S = 1/2 and
S = 1 honeycomb Heisenberg model [52–55]. Our find-
ing shows a rare example of plaqutte ordering hidden in
a classical spin liquid on honeycomb lattice.

The
p

3⇥
p

3 arrangement of hexagons with nonzero W

shown in Fig. 4 suggests an order parameter

W̃ (Q) =
1

N

X

↵

W

↵

e

iQ·r↵
, (3)

which is the Fourier transform at wavevector Q =
(4⇡/3, 0), for characterizing the broken translation sym-
metry. We then performed extensive large-scale Monte

Spins favor cubic directions !

Phase transition ?  
Order parameter ?



Flux variable

• flux variable on hexagonal plaquettes:

W
↵

= Sx

1 Sy

2 S
z

3 S
x

4 Sy

5 S
z

6 ,

• Integrals of motion in the  
quantum Kitaev model

[W↵,W� ] = 0 [W↵,HKitaev] = 0

where Si denotes the pseudospin 1=2 at site i. The
Hamiltonian describing the off-diagonal exchange reads

H ¼ "Γ
X

hiji∈‘x’
ðSyi Szj þ SziS

y
jÞ " Γ

X

hiji∈‘y’
ðSziSxj þ Sxi S

z
jÞ

þ Γ
X

hiji∈‘z’
ðSxi S

y
j þ Syi S

x
jÞ; ð2Þ

where hiji denotes NN sites and " accounts for the sign
modulation of the couplings on x and y bonds in the 3D
systems [48]. For the 2D case all bonds have the plus sign.
Classical limit.—Let us consider the classical limit

where Si are vectors of length S and begin with the 2D
honeycomb case. The highly frustrated nature of this model
is first revealed by the fact that the lowest eigenvalue of
the 6 × 6 interaction matrix Λk in momentum space [49]
is completely flat. In fact, this holds for all six bands,
with λ1 ¼ −jΓj, λ2 ¼ λ3 ¼ −jΓj=2, λ4 ¼ λ5 ¼ jΓj=2, and
λ6 ¼ jΓj, see Fig. 1.
To understand the nature of the ground states and why

there is an infinite number of them, we search for states that
saturate the lower bound of the energy per site λ1S2 [49].
Consider a pair of spins, say S0 and S1 of (1), which
interact via ΓðSx0S

y
1 þ Sy0S

x
1Þ. If these spins were isolated

from the rest, then their energy would be minimized by
placing the spins on the xy plane with Sx1 ¼ ζSy0, S

y
1 ¼ ζSx0,

ζ ¼ −sgnðΓÞ. Similarly, for the x bond of (1), we would get
Sy3 ¼ ζSz0, S

z
3 ¼ ζSy0, and for the y bond of (1), Sx2 ¼ ζSz0,

Sz2 ¼ ζSx0. Returning to the lattice problem, the idea is to
require that the two components involved in each Γ term
satisfy the respective relations above, without specifying
the third component for the moment. This is done as
follows: (i) We choose a direction for the central spin of (1)
and parametrize it as

S0 ¼ ðη1a; η2b; η3cÞ; ð3Þ

where a ¼ jSx0j, b ¼ jSy0j, c ¼ jSz0j, η1 ¼ sgnðSx0Þ, η2 ¼
sgnðSy0Þ, and η3 ¼ sgnðSz0Þ. (ii) Then, we fix two compo-
nents of the three neighbors as

S1 ¼ ðζη2b; ζη1a; Sz1Þ; S2 ¼ ðζη3c; S
y
2; ζη1aÞ;

S3 ¼ ðSx3; ζη3c; ζη2bÞ:
ð4Þ

(iii) Then, we fix accordingly two components of the
neighbors of S1;2;3, etc., until we cover the whole lattice.
The total energy of the generated configurations saturates
the lower energy bound, and are therefore ground states.
Indeed, the energy contribution from the cluster (1) is

, and this holds for
any such cluster in the lattice. Since each bond is shared by
two sites, the total energy per site is E=N ¼ −jΓjS2, which
saturates the lower bound.
Now, the reason why there are infinite ground states lies

in the freedom to choose the third component of the spins,
i.e., Sz1, S

y
2, S

x
3, etc. Imposing the spin length constraint

shows that this freedom is associated with the overall signs,

Sz1 ¼ ζη4c; Sy2 ¼ ζη5b; Sx3 ¼ ζη6a; ð5Þ

where ηi ¼ "1 are Ising variables. The choice of signs in
front of the ηs give the simplest representation of the state
as we see below, but is otherwise arbitrary. To see how
many independent ηs exist, we look closely what happens
around the central cluster (1), see Fig. 2. We see that each ηi
appears only around a single hexagon; i.e., we can label the
states by assigning the ηs to the hexagons. This para-
metrization in terms of local Ising variables gives a total of
2N=2 states for fixed fa; b; cg. Note that if two (one) of
fa; b; cg vanish then 2=3 (1=3) of the ηs are idle and we get
2N=6 (2N=3) states instead. On top, there is the degeneracy
associated to fa; b; cg.
The η parametrization reveals that the local zero-energy

modes responsible for the extensive degeneracy correspond
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FIG. 1. Spectrum λ1−6=jΓj of the matrix Λk entering the Fourier
transform of the classical energy, see Supplemental Material [49].

FIG. 2. Classical ground states of the Γ model on the 2D
honeycomb lattice, where a2 þ b2 þ c2 ¼ S2 and ηi ¼ "1.
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• In the classical ground states  
of the Gamma model:

to flipping one particular component for each of the six
spins of a hexagon. For the η1 hexagon of Fig. 2, for
example, the zero mode amounts to flipping the signs of Sx0,
Sy1, S

z
4, S

x
5, S

y
10, and S

z
2. This operation is in fact a symmetry

of the classical Hamiltonian, so the degeneracy associated
with the ηs is not accidental but symmetry related.
Inspecting the form of the Γ terms, these symmetries
involve strings of alternating x − y − z bonds which happen
to be hexagons in the 2D honeycomb case. We shall come
back to this for the 3D cases below.
Another key aspect of the η variables is that they split

into three inequivalent types that occupy the vertices of
three interpenetrating triangular sublattices A, B, and C
(red, green, and blue in Fig. 2). Type-A (respectively, B and
C) variables appear together with a (respectively, b and c).
This structure is reflected directly in the so-called fluxes
fWhg, known from the quantum Kitaev model [5]. Indeed,
from Fig. 2,

Wh∈A ¼ Wη1 ¼ Sx0S
y
1S

z
4S

x
5S

y
10S

z
2=S

6 ¼ ζ ~a6; ð6Þ

Wh∈B ¼ Wη2 ¼ Sx8S
y
9S

z
12S

x
1S

y
0S

z
3=S

6 ¼ ζ ~b6; ð7Þ

Wh∈C ¼ Wη3 ¼ Sx11S
y
3S

z
0S

x
2S

y
6S

z
7=S

6 ¼ ζ ~c6; ð8Þ

where ~a ¼ a=S, ~b ¼ b=S, and ~c ¼ c=S [51]. The most
striking manifestation of the three-sublattice structure of the

ηs, however, appears when we include quantum fluctua-
tions below.
The above steps can be repeated for both β-Li2IrO3 and

γ-Li2IrO3, see Fig. 3. There are again infinite ground states
characterized by Ising variables η of three types, as in 2D.
There is, however, one qualitative difference in the nature
of the zero-energy modes, which stems from the way
alternating x − y − z bonds propagate in the lattice. In
β-Li2IrO3, they form infinite strings, so all ηs are nonlocal
[see, e.g., the η2 string in Fig. 3(a)] and the degeneracy is
subextensive. In γ-Li2IrO3, the alternating x − y − z bonds
form either closed hexagons or infinite strings. Hence,
some ηs are local (giving an extensive degeneracy), like η1,
η12, η2, η8, η5, and η9 in Fig. 3(b), but the rest live on open
strings, like η3.
Quantum order by disorder.—The 0D and 1D gauge

symmetries that are responsible for the zero-energy modes
are very common in compasslike models and act to
suppress local order by virtue of a generalized Elitzur’s
theorem [52–54]. Here, however, these symmetries exist
only for classical spins, because they involve time reversal
and affect only part of the system (a hexagon or an open
string). So, for quantum spins the degeneracy is lifted and
local order is still possible. This leads us to the important
question of order-by-disorder, which we address here by
real space perturbation theory (RSPT) [55–58]. In this
approach, one introduces local axes ezi along the classical
spin directions, and then splits H into a diagonal part

FIG. 3. Classical ground states of the Γ model on (a) β-Li2IrO3 (hyperhoneycomb) and (b) γ-Li2IrO3 (stripy honeycomb), for Γ > 0.
The$ signs labeling the x or y bonds denote the signs of the associated Γ coupling relative to that on the z bonds [48]. The dotted strings
show the open strings where (a) η2 and (b) η3 live.
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Phase transition: Plaquette ordering

• Flux variables in the “cubic” phase (a, b, c) ~ (1, 0, 0):

WA = a6 ⇠ 1

WB = b6 ⇠ 0

WC = c6 ⇠ 0

3

(a) (b)

FIG. 3. (Color online) Snapshots of spin configurations above
and below T

c

= 0.0401|�|: (a) T = 0.05 and (b) T = 0.03.
In the low-T phase, spins predominately point toward the six
cubic directions.

the ground-state manifold. Without this feature, di↵er-
ent {⌘

↵

} becomes disjoint from each other. Interestingly,
our MC simulations find a freezing phenomenon of the
vector n̂ at a very low temperature T

c

⇡ 0.04 |�|. This
is illustrated by snapshots of spins above and below this
critical temperature; see Fig. 3. At T > T

c

, the spins and
the directional vector n̂ exhibit an emergent spherical
symmetry even at temperatures well below the exchange
energy scale |�|. This rotational symmetry is lost at
the critical temperature, and spins mainly point toward
the six cubic axes, or equivalently the directional vector
freezes to one of the cubic directions, i.e. n̂ ⇠ (1, 0, 0),
(0, 1, 0), or (0, 0, 1) at T < T

c

. As states parameter-
ized by di↵erent n̂ are degenerate at the mean-field level,
the cubic directions are selected by thermal fluctuations
through the order-by-disorder mechanism. Equivalently,
this can also be viewed as the entropic selection, result-
ing from an e↵ective free energy Fani / �(a4 + b

4 + c

4).
Indeed, simple analysis shows that these cubic directions
allow for the largest number of zero modes at the har-
monic level. We note that similar cubic anisotropy is also
generated by quantum fluctuations [47].

It is crucial to note that although the spin-symmetry is
seemingly reduced from spherical to cubic when crossing
T

c

, this cannot be viewed as a true reduction of sym-
metries as the � model itself is already cubic-symmetric.
The apparent spherical symmetry at T

c

< T < |�| is
an emergent property of the phase, which is due to the
spatial fluctuations of directional vector n̂(r). Another
important observation is that while the degeneracy asso-
ciated with vector n̂ is lifted by thermal fluctuation, a
discrete macroscopic degeneracy persists due to the Ising
gauge symmetry of {⌘

↵

}, especially for classical spins.
Consequently, spins remain disordered at T < T

c

.

To resolve this issue and investigate the nature of the
low-T phase, we first note that the cubic spin-orbital
symmetry of the � model is indeed broken below T

c

, yet
in a complicated pattern: local spins have to pick one of
the six cubic directions in a coordinated way while pre-
serving the gauge symmetry of {⌘

↵

}. A convenient local
quantity to characterize the broken symmetry is the flux

x

y

z

⌘ = +1

⌘ = �1

⌘1

⌘2

⌘3

⌘4
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FIG. 4. (Color online) Plaquette order of hexagonal fluxes
on honeycomb lattice. Shaded hexagons have nonzero flux
W ⇠ 1, while empty hexagons have a vanishing W . Spins are
orthogonal to each other (with left handedness for ⇣ = �1)
on each shaded hexagon; their specific directions depend on
the local ⌘, as specified in the insets. The arrangement of
hexagons with finite W corresponds to the famous

p
3 ⇥

p
3

long-range order. Spins remain disordered due to uncorre-
lated ⌘

↵

on the shaded hexagons.

variable defined on each hexagon [10]:

W

↵

= S

x

1 S

y

2 S

z

3 S

x

4 S

y

5 S

z

6 , (2)

where S1,··· ,6 are the six spins around the ↵ hexagon.
These fluxes play an important role in the spin-1/2 Ki-
taev model as they are “integrals of motion” of the Kitaev
Hamiltonian [10]. In our case, the flux W

↵

is similarly a
gauge-invariant variable, that is independent of ⌘

↵

. On
the other hand, it can be used to characterize the order-
ing of n̂. To see this, we note that in the ground state,
they only take on three di↵erent values [47]: WA = ⇣a

6

for hexagons whose ⌘ is associated with component a,
and similarly WB = ⇣b

6 and WC = ⇣c

6 for the other
two sets of hexagons, where ⇣ = �sgn(�) As the vec-
tor n̂ freezes to one of the cubic directions, 2/3 of the
fluxes also vanish. Since hexagons of a given type form
an enlarged triangular lattice, the flux patten of the low-
T phase, e.g. W

A

⇡ 1, and W

B

⇡ W

C

⇡ 0, corresponds
to a broken translation symmetry; see Fig. 4. Impor-
tantly, the uncorrelated ⌘

↵

on hexagons with nonzero W

give rise to a disordered spin configuration. We note in
passing that plaquette orders with similar spatial pattern
also exist as ground state in J1-J2 quantum S = 1/2 and
S = 1 honeycomb Heisenberg model [52–55]. Our find-
ing shows a rare example of plaqutte ordering hidden in
a classical spin liquid on honeycomb lattice.

The
p

3⇥
p

3 arrangement of hexagons with nonzero W

shown in Fig. 4 suggests an order parameter

W̃ (Q) =
1

N

X

↵

W

↵

e

iQ·r↵
, (3)

which is the Fourier transform at wavevector Q =
(4⇡/3, 0), for characterizing the broken translation sym-
metry. We then performed extensive large-scale Monte

• the flux variables break translation  
symmetry:

arrangement of the nonzero fluxesp
3⇥

p
3
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FIG. 3. (Color online) Snapshots of spin configurations above
and below T

c

= 0.0401|�|: (a) T = 0.05 and (b) T = 0.03.
In the low-T phase, spins predominately point toward the six
cubic directions.

the ground-state manifold. Without this feature, di↵er-
ent {⌘

↵

} becomes disjoint from each other. Interestingly,
our MC simulations find a freezing phenomenon of the
vector n̂ at a very low temperature T

c

⇡ 0.04 |�|. This
is illustrated by snapshots of spins above and below this
critical temperature; see Fig. 3. At T > T

c

, the spins and
the directional vector n̂ exhibit an emergent spherical
symmetry even at temperatures well below the exchange
energy scale |�|. This rotational symmetry is lost at
the critical temperature, and spins mainly point toward
the six cubic axes, or equivalently the directional vector
freezes to one of the cubic directions, i.e. n̂ ⇠ (1, 0, 0),
(0, 1, 0), or (0, 0, 1) at T < T

c

. As states parameter-
ized by di↵erent n̂ are degenerate at the mean-field level,
the cubic directions are selected by thermal fluctuations
through the order-by-disorder mechanism. Equivalently,
this can also be viewed as the entropic selection, result-
ing from an e↵ective free energy Fani / �(a4 + b

4 + c

4).
Indeed, simple analysis shows that these cubic directions
allow for the largest number of zero modes at the har-
monic level. We note that similar cubic anisotropy is also
generated by quantum fluctuations [47].

It is crucial to note that although the spin-symmetry is
seemingly reduced from spherical to cubic when crossing
T

c

, this cannot be viewed as a true reduction of sym-
metries as the � model itself is already cubic-symmetric.
The apparent spherical symmetry at T

c

< T < |�| is
an emergent property of the phase, which is due to the
spatial fluctuations of directional vector n̂(r). Another
important observation is that while the degeneracy asso-
ciated with vector n̂ is lifted by thermal fluctuation, a
discrete macroscopic degeneracy persists due to the Ising
gauge symmetry of {⌘

↵

}, especially for classical spins.
Consequently, spins remain disordered at T < T

c

.

To resolve this issue and investigate the nature of the
low-T phase, we first note that the cubic spin-orbital
symmetry of the � model is indeed broken below T

c

, yet
in a complicated pattern: local spins have to pick one of
the six cubic directions in a coordinated way while pre-
serving the gauge symmetry of {⌘

↵

}. A convenient local
quantity to characterize the broken symmetry is the flux
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FIG. 4. (Color online) Plaquette order of hexagonal fluxes
on honeycomb lattice. Shaded hexagons have nonzero flux
W ⇠ 1, while empty hexagons have a vanishing W . Spins are
orthogonal to each other (with left handedness for ⇣ = �1)
on each shaded hexagon; their specific directions depend on
the local ⌘, as specified in the insets. The arrangement of
hexagons with finite W corresponds to the famous
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long-range order. Spins remain disordered due to uncorre-
lated ⌘
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on the shaded hexagons.

variable defined on each hexagon [10]:

W

↵

= S
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1 S

y

2 S

z
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z

6 , (2)

where S1,··· ,6 are the six spins around the ↵ hexagon.
These fluxes play an important role in the spin-1/2 Ki-
taev model as they are “integrals of motion” of the Kitaev
Hamiltonian [10]. In our case, the flux W

↵

is similarly a
gauge-invariant variable, that is independent of ⌘

↵

. On
the other hand, it can be used to characterize the order-
ing of n̂. To see this, we note that in the ground state,
they only take on three di↵erent values [47]: WA = ⇣a

6

for hexagons whose ⌘ is associated with component a,
and similarly WB = ⇣b

6 and WC = ⇣c

6 for the other
two sets of hexagons, where ⇣ = �sgn(�) As the vec-
tor n̂ freezes to one of the cubic directions, 2/3 of the
fluxes also vanish. Since hexagons of a given type form
an enlarged triangular lattice, the flux patten of the low-
T phase, e.g. W

A

⇡ 1, and W

B

⇡ W

C

⇡ 0, corresponds
to a broken translation symmetry; see Fig. 4. Impor-
tantly, the uncorrelated ⌘

↵

on hexagons with nonzero W

give rise to a disordered spin configuration. We note in
passing that plaquette orders with similar spatial pattern
also exist as ground state in J1-J2 quantum S = 1/2 and
S = 1 honeycomb Heisenberg model [52–55]. Our find-
ing shows a rare example of plaqutte ordering hidden in
a classical spin liquid on honeycomb lattice.

The
p

3⇥
p

3 arrangement of hexagons with nonzero W

shown in Fig. 4 suggests an order parameter

W̃ (Q) =
1

N

X

↵

W

↵

e

iQ·r↵
, (3)

which is the Fourier transform at wavevector Q =
(4⇡/3, 0), for characterizing the broken translation sym-
metry. We then performed extensive large-scale Monte

• Order-parameter:
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Monte Carlo simulations of plaquette ordering
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FIG. 5. (Color online) Monte Carlo simulation of the transla-
tion symmetry breaking of flux variables. (a) specific heat, (b)
order parameter � = h|W̃ (Q)|i, (c) the corresponding Binder
cumulant B4 ⌘ 1 � h|W̃ (Q)|4i/3h|W̃ (Q)|2i2 as functions of
temperature. The crossing point of the Binder curves gives an
estimate of T

c

⇡ 0.0402. Critical exponents of the transition
are obtained from finite-size scaling: ↵ = 0.167, � = 0.177,
� = 1.47, and ⌫ = 0.863. For example, panel (d) shows the
data collapsing of scaled order parameter and temperature.

Carlo simulations at temperatures around the critical T

c

;
the results are summarized in Fig. 5. The specific heat
shows clear finite-size e↵ect, as the peak in C grows
with increasing lattice size. Moreover, the order pa-
rameter defined as � ⌘ h|W̃ (Q)|i exhibits characteris-
tics of a second-order phase transition. For example, the
growth of � below T

c

becomes sharper as L is increased.
More evidence of a continuous phase transition is pro-
vided by the temperature dependence of Binder cumu-
lant B4 ⌘ 1�h|W̃ (Q)|4i/3h|W̃ (Q)|2i2 shown in Fig. 5(c).
The various B4 curves from di↵erent lattice sizes cross at
a critical point T

c

⇡ 0.0402|�|.
Finally, we also conducted detailed finite-size scaling

analysis on various thermodynamics quantities to extract
the critical exponents of the phase transition. For exam-
ple, fair data points collapsing is obtained for the order-
parameter curves; see Fig. 5(d). Our results demon-
strate a clear second-order transition caused by thermal
order-by-disorder, in stark contrast to the famous copla-
nar order-by-disorder in kagome antiferromagnet [7, 51].
Since coplanar spins are characterized by a vector or-
der parameter, which cannot be spontaneously broken in
2D, the coplanar spin-ordering in kagome ends up in a
crossover. On the other hand, the flux-ordering in our
case corresponds to a broken Z3 symmetry, i.e. which
cubic direction is selected for the vector n̂. Some of the
critical exponents, e.g. ⌫ and �, obtained from finite-size
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FIG. 6. (Color online) Dynamical structure factor S(q,!)
computed from LL simulations for antiferromagnetic (top)
and ferromagnetic (bottom) � model. The results below T

c

are shown in panels (a) and (c), while those above T
c

are
shown in (b) and (d).

scaling, shown in caption of Fig. 5, are consistent with
the 2D 3-state Potts universality class, although others
show noticeable deviations. This discrepancy could be
due to the gauge degrees of freedom {⌘

↵

}, which might
have nontrivial e↵ects on the critical behavior.

We next investigate the dynamical behaviors of the
spin liquids above and below the critical T

c

. To this
end, we employ the semiclassical Landau-Lifshitz (LL)
dynamics simulation, which has been successfully ap-
plied to compute the dynamical structure factor S(q, !)
of various classical spin liquids [8, 56, 57]. For T > T

c

,
MC simulations are used to prepare initial states sam-
pled from the Boltzmann distribution. We then perform
energy-conserving LL simulation to obtain trajectories
of spins S

i

(t). The dynamical structure factor is com-
puted from the Fourier transform of the real-space cor-
relator hS

i

(t) ·S
j

(0)i averaged over the initial states. As
discussed above, since ground states parameterized by
di↵erent {⌘

↵

} are disconnected below T

c

, an additional
average over random {⌘

↵

} is introduced manually to im-
prove the e�ciency. It is worth noting that the depen-
dence of S(q, !) on temperature mainly comes from dif-
ferent initial state sampling.

The dynamical structure factor in the two spin liquid
phases are shown in Fig. 6 for both signs of �. The
S(q, !) at T > T

c

shows broad continuum over a wide
energy range in both cases. On the other hand, struc-
tures of coherent quasi-particle dispersion can be seen at
high energies for S(q, !) in the low-T phase. These co-
herent excitations in a liquid phase are reminiscent of the
electron pseudo-bands observed in liquid metals [58, 59].
Their origin can be traced to the robust local ordering in
a liquid state. Interestingly, the overall results are simi-
lar to those observed in the kagome Heisenberg antiferro-
magnet [56], in which thermal order-by-disorder induces
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cumulant B4 ⌘ 1 � h|W̃ (Q)|4i/3h|W̃ (Q)|2i2 as functions of
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estimate of T
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⇡ 0.0402. Critical exponents of the transition
are obtained from finite-size scaling: ↵ = 0.167, � = 0.177,
� = 1.47, and ⌫ = 0.863. For example, panel (d) shows the
data collapsing of scaled order parameter and temperature.

Carlo simulations at temperatures around the critical T

c

;
the results are summarized in Fig. 5. The specific heat
shows clear finite-size e↵ect, as the peak in C grows
with increasing lattice size. Moreover, the order pa-
rameter defined as � ⌘ h|W̃ (Q)|i exhibits characteris-
tics of a second-order phase transition. For example, the
growth of � below T

c

becomes sharper as L is increased.
More evidence of a continuous phase transition is pro-
vided by the temperature dependence of Binder cumu-
lant B4 ⌘ 1�h|W̃ (Q)|4i/3h|W̃ (Q)|2i2 shown in Fig. 5(c).
The various B4 curves from di↵erent lattice sizes cross at
a critical point T

c

⇡ 0.0402|�|.
Finally, we also conducted detailed finite-size scaling

analysis on various thermodynamics quantities to extract
the critical exponents of the phase transition. For exam-
ple, fair data points collapsing is obtained for the order-
parameter curves; see Fig. 5(d). Our results demon-
strate a clear second-order transition caused by thermal
order-by-disorder, in stark contrast to the famous copla-
nar order-by-disorder in kagome antiferromagnet [7, 51].
Since coplanar spins are characterized by a vector or-
der parameter, which cannot be spontaneously broken in
2D, the coplanar spin-ordering in kagome ends up in a
crossover. On the other hand, the flux-ordering in our
case corresponds to a broken Z3 symmetry, i.e. which
cubic direction is selected for the vector n̂. Some of the
critical exponents, e.g. ⌫ and �, obtained from finite-size
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scaling, shown in caption of Fig. 5, are consistent with
the 2D 3-state Potts universality class, although others
show noticeable deviations. This discrepancy could be
due to the gauge degrees of freedom {⌘
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}, which might
have nontrivial e↵ects on the critical behavior.

We next investigate the dynamical behaviors of the
spin liquids above and below the critical T
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. To this
end, we employ the semiclassical Landau-Lifshitz (LL)
dynamics simulation, which has been successfully ap-
plied to compute the dynamical structure factor S(q, !)
of various classical spin liquids [8, 56, 57]. For T > T
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,
MC simulations are used to prepare initial states sam-
pled from the Boltzmann distribution. We then perform
energy-conserving LL simulation to obtain trajectories
of spins S
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(t). The dynamical structure factor is com-
puted from the Fourier transform of the real-space cor-
relator hS
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(0)i averaged over the initial states. As
discussed above, since ground states parameterized by
di↵erent {⌘
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} are disconnected below T
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, an additional
average over random {⌘
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} is introduced manually to im-
prove the e�ciency. It is worth noting that the depen-
dence of S(q, !) on temperature mainly comes from dif-
ferent initial state sampling.

The dynamical structure factor in the two spin liquid
phases are shown in Fig. 6 for both signs of �. The
S(q, !) at T > T

c

shows broad continuum over a wide
energy range in both cases. On the other hand, struc-
tures of coherent quasi-particle dispersion can be seen at
high energies for S(q, !) in the low-T phase. These co-
herent excitations in a liquid phase are reminiscent of the
electron pseudo-bands observed in liquid metals [58, 59].
Their origin can be traced to the robust local ordering in
a liquid state. Interestingly, the overall results are simi-
lar to those observed in the kagome Heisenberg antiferro-
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= 2/3. This was confirmed by our simulation at low
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� exhibit finite size e↵ects, where the peaks grow with
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becomes sharper for large L systems,
characteristic of a second-order phase transition. The
crossing point of the Binder cumulant curves indicates
that T

c

' 0.0402, which further confirms a continuous
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(b)) the minimum spectral weight lies at the � point in
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opment of dark nearly circular patches at the centers of
the extended BZ especially at temperatures greater than
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. Intensity starts to concentrate on the boundaries
of the BZ. For T < T
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spectral intensity outside the �
point dark circular patch looks uniform for rest of the
BZ. For T > T

C

focusing on the bright BZ boundary
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When T ! 0, cubic axes are preferred, N
0

= 2 + 2N�6
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,
thus C/k
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= 11
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⇡ 0.917, which is consistent with the
simulated value, 0.918 at T = 0.001 (Fig. 2).

MONTE CARLO SIMULATIONS

We use Monte Carlo simulation to investigate the ther-
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local updates is used to sample spin configurations in
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Here time t is measured in Monte Caro sweeps. Fig. 3
shows the auto-correlation function obtained from Monte
Carlo simulations at various temperatures. At small t,
the auto-correlation function A(t) decays exponentially.
We then fit the di↵erent auto-correlation curves with the
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tions for the phase transition at T
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= 0.04�. Monte

FIG. 3: Auto-correlation function A(t) obtained from Monte
Carlo simulations at di↵erent temperatures. A1 represents
the steady-state value at large t, which corresponds to 20,000
Monte Carlo sweeps numerically.

FIG. 4: Temperature dependence of A1 (See in Fig:3). The
finite value A1 decreases with increasing temperature and
goes to zero at the transition temperature TC .

Carlo simulations were performed on systems with di↵er-
ent size L = 30, 60, 90, 120, 150. The results summarized
in FIG. 5 reveal a clear phase transition. Here the spe-
cific heat is computed according to the variance of energy
H obtained from Eq. 1.

C =
hH2i � hHi2

NT

2

(6)

The bracket h...i donates the Monte Carlo average.
The order-parameter of the plaquette pattern is de-

fined as the Fourier transform of the hexagonal fluxes
W
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at the characteristic wavevector of the
p
3⇥p
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3

 1

 1.2

 1.4

 1.6

 0.038  0.04  0.042  0.044

C

T

L=30
60
90

120
150

(a)

 0

 0.04

 0.08

 0.12

 0.036  0.04  0.044  0.048

Φ

T

L=30
60
90

120
150

(b)

 0

 50

 100

 150

 0.04  0.044

χ

T

L=30
60
90

120
150

(c)

 0.4

 0.5

 0.6

 0.7

 0.038  0.04  0.042

B4

T

L=30
60
90

120
150

(d)

FIG. 5: Low temperature Monte Carlo simulation of the
Gamma model. (a) specific heat C, (b) order parameter �
(c) the corresponding susceptibility �, (d) Binder cumulant
B4 as functions of temperature.

tern given by Q = (4⇡/3, 0), i.e.

W̃ (Q) =
1

N

X

↵

W

↵

e

iQ·r↵
. (7)

A scalar order parameter is computed from the Monte
Carlo average of the Fourier component Q̃(Q):

� = h|W̃ (Q)|i, (8)

The susceptibility and Binder cumulant of the order pa-
rameter are defined as

� = N

h|W̃ (Q)|2i � h|W̃ (Q)|i2
T

(9)

B

4

= 1� h|W̃ (Q)|4i
3h|W̃ (Q)|2i2 (10)

In the ground state, it is expected that � = 1/3 and
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= 2/3. This was confirmed by our simulation at low
temperature. The specific heat C and the susceptibility
� exhibit finite size e↵ects, where the peaks grow with
increasing lattice size L. The growth of the order param-
eter � below T

c

becomes sharper for large L systems,
characteristic of a second-order phase transition. The
crossing point of the Binder cumulant curves indicates
that T
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' 0.0402, which further confirms a continuous
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dard procedures. Results of the scaled data are shown in
Fig. 6. For example, the exponent ⌫ can be determined

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

-0.2  0  0.2  0.4  0.6

C
L

-α
/v

(T-Tc)L
1/v

L=60
90

120
150

(a)

 0

 0.1

 0.2

 0.3

-1 -0.5  0  0.5  1

Φ
L

β
/v

(T-Tc)L
1/v

L=30
60
90

120
150

(b)

 0

 0.01

 0.02

 0.03

 0.04

-0.4  0  0.4  0.8

χ
L

-γ
/v

(T-Tc)L
1/v

L=30
60
90

120
150

(c)

 0.3

 0.4

 0.5

 0.6

 0.7

-0.4 -0.2  0  0.2

B
4

(T-Tc)L
1/v

L=30
60
90

120
150

(d)

FIG. 6: Collapsing of the finite size scaled data. (a) specific
heat C, (b) order parameter � (c) the corresponding sus-
ceptibility �, (d) Binder cumulant B4 as functions of scaled
temperature.

from the data collapsing of B
4

versus scaled temperature
L

1/⌫(T � T

c

). The slope of linear fitting the maximum
values of specific heat C

max

as a function of lattice size
L gives the value of ↵/⌫. The ratios �/⌫ and �/⌫ are
obtained similarly from the � and � curves. We obtain
the following critical exponents: ↵ = 0.167, � = 0.177,
� = 1.47, ⌫ = 0.863. These exponents also satisfy the
hyperscaling relation ↵+2�+� = 2. As shown in Fig. 6,
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Fig. 7 shows the static structure factor S(q) of the
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and ferromagnetic �. The structure factor is computed
from the Fourier transform of the spin configuration, i.e.
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)|2. Importantly, the sys-
tem exhibits rather distinct structure factors above and
below the critical T
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for both signs of �. We can see
for the antiferromagnetic case i.e. � > 0 (Fig. 7(a) and
(b)) the minimum spectral weight lies at the � point in
the brillioun zone(BZ). We see the characteristic devel-
opment of dark nearly circular patches at the centers of
the extended BZ especially at temperatures greater than
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. Intensity starts to concentrate on the boundaries
of the BZ. For T < T
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spectral intensity outside the �
point dark circular patch looks uniform for rest of the
BZ. For T > T
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characteristic of a second-order phase transition. The
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values of specific heat C

max

as a function of lattice size
L gives the value of ↵/⌫. The ratios �/⌫ and �/⌫ are
obtained similarly from the � and � curves. We obtain
the following critical exponents: ↵ = 0.167, � = 0.177,
� = 1.47, ⌫ = 0.863. These exponents also satisfy the
hyperscaling relation ↵+2�+� = 2. As shown in Fig. 6,
fairly nice data collapsing is obtained using this set of
critical exponents.

Fig. 7 shows the static structure factor S(q) of the
� model at low temperatures for both antiferromagnetic
and ferromagnetic �. The structure factor is computed
from the Fourier transform of the spin configuration, i.e.
S(q) = | 1

N

P
i

S(q) exp(iq · r
i

)|2. Importantly, the sys-
tem exhibits rather distinct structure factors above and
below the critical T

c

for both signs of �. We can see
for the antiferromagnetic case i.e. � > 0 (Fig. 7(a) and
(b)) the minimum spectral weight lies at the � point in
the brillioun zone(BZ). We see the characteristic devel-
opment of dark nearly circular patches at the centers of
the extended BZ especially at temperatures greater than
T

C

. Intensity starts to concentrate on the boundaries
of the BZ. For T < T

C

spectral intensity outside the �
point dark circular patch looks uniform for rest of the
BZ. For T > T

C

focusing on the bright BZ boundary
regions, the maximum spectral weight is found at the Y
point, with a decrease in magnitude as we move towards
the X point, and a uniform drop-o↵ as we move from
the Y point to the � point origin of BZ. Static structure

• specific heat

• Order-parameter

• Susceptibility

• Binder’s cumulant



Finite size scaling analysis
3

 1

 1.2

 1.4

 1.6

 0.038  0.04  0.042  0.044

C

T

L=30
60
90

120
150

(a)

 0

 0.04

 0.08

 0.12

 0.036  0.04  0.044  0.048

Φ

T

L=30
60
90

120
150

(b)

 0

 50

 100

 150

 0.04  0.044

χ

T

L=30
60
90

120
150

(c)

 0.4

 0.5

 0.6

 0.7

 0.038  0.04  0.042

B4

T

L=30
60
90

120
150

(d)

FIG. 5: Low temperature Monte Carlo simulation of the
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B4 as functions of temperature.

tern given by Q = (4⇡/3, 0), i.e.

W̃ (Q) =
1

N

X

↵

W

↵

e

iQ·r↵
. (7)

A scalar order parameter is computed from the Monte
Carlo average of the Fourier component Q̃(Q):

� = h|W̃ (Q)|i, (8)

The susceptibility and Binder cumulant of the order pa-
rameter are defined as

� = N

h|W̃ (Q)|2i � h|W̃ (Q)|i2
T

(9)

B

4

= 1� h|W̃ (Q)|4i
3h|W̃ (Q)|2i2 (10)

In the ground state, it is expected that � = 1/3 and
B

4

= 2/3. This was confirmed by our simulation at low
temperature. The specific heat C and the susceptibility
� exhibit finite size e↵ects, where the peaks grow with
increasing lattice size L. The growth of the order param-
eter � below T

c

becomes sharper for large L systems,
characteristic of a second-order phase transition. The
crossing point of the Binder cumulant curves indicates
that T

c

' 0.0402, which further confirms a continuous
phase transition.

Critical exponents of this phase transition are deter-
mined from finite size scaling analysis by following stan-
dard procedures. Results of the scaled data are shown in
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Plaquette ordering in quantum models

• J1-J2 antiferromagnetic Heisenberg model on honeycomb lattice:
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Using the density matrix renormalization group, we determine the phase diagram of the spin-1=2
Heisenberg antiferromagnet on a honeycomb lattice with a nearest-neighbor interaction J1 and a

frustrating, next-nearest-neighbor exchange J2. As frustration increases, the ground state exhibits Néel,

plaquette, and dimer orders, with critical points at J2=J1 ¼ 0:22 and 0.35. We observe that both the spin

gap and the corresponding order parameters vanish continuously at both the critical points, indicating the

presence of deconfined quantum criticality.
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Introduction.—Frustrated magnetism on the honeycomb
lattice has lately received tremendous interest. This interest
stems from sign-problem-free quantum Monte Carlo stud-
ies suggesting the presence of a spin-liquid phase in the
honeycomb Hubbard model [1,2]. Approaching from the
strong coupling side, the physics for some intermediate
values of the Hubbard interaction U can be described by
the spin-1=2 Heisenberg model characterized by an anti-
ferromagnetic interaction J1 between neighboring spins and
a frustrating, next-nearest-neighbor exchange J2 [3]. This
J1-J2 model has emerged as an interesting Hamiltonian in
its own right and as relevant to the physics of honeycomb
lattice materials such as Bi3Mn4O12ðNO3Þ [4–6]. In this
model, when the frustrating coupling J2 is small, the well-
knownNéel ordered state is stable. But, at a critical value of
! ¼ J2=J1, it gives way to another, possibly liquid, phase.
While all studies so far agree upon the presence of a phase
transition, the nature of this intermediate phase that is
reached by the transition out of the Néel state is heavily
debated. The intermediate phase has been identified as a Z2

spin liquid by some [7–9] and as a plaquette resonating
valence bond (pRVB) state, breaking translational symme-
try, by others [10–12]. A recent variational calculation
argues instead that the intermediate state does not have
plaquette order [13]. Upon further increasing the frustration
parameter !, all studies show a second transition into a
ground state that breaks lattice rotational symmetry butmay
or may not have magnetic order.

We analyze this complex situation by formulating and
answering four succinct fundamental questions on the
J1-J2 honeycomb Heisenberg model. (i) As to the Néel
state, do quantum fluctuations tend to stabilize or destroy
it? In other words, does Néel order vanish above or below
the classical threshold of ! ¼ 1=6? (ii) What is the nature
of the intermediate state? Is it a liquid state or does it have
plaquette order? (iii) What is the ground state for large !?
Does it have magnetic order? (iv) What is the nature of the
two phase transitions? Do the order parameters develop

discontinuously or continuously across the quantum criti-
cal points?
We use nominally exact two-dimensional density matrix

renormalization group (DMRG) calculations to settle these
issues and establish that (i) Néel order is stabilized beyond
the classical limit, up to !c1 ¼ 0:22, (ii) the intermediate
state has weak plaquette order with f-wave symmetry, and
(iii), for !c2 > 0:35, the ground state has dimer order and
breaks lattice rotational symmetry. These results are sum-
marized in the phase diagram shown in Fig. 1. Moreover,
we find that, within numerical precision, (iv) both the spin
gap and the relevant order parameters vanish continuously,
at both critical points!c1 and!c2. This implies that, even if
two different symmetries are broken on either side of !c,
the transition is not first order, as one would expect from a
Ginzburg-Landau-type theory. We have two second-order
transitions involving Néel, plaquette, and dimer phases; the
critical theories for these transitions must be unusual and
not described in terms of order parameter fields. This
indicates instead the presence of two deconfined quantum
critical points [14,15].
Frustrated honeycomb heisenberg model.—The

Hamiltonian corresponding to the J1-J2 Heisenberg model
on a honeycomb lattice is

Néel pRVB Dimer

~ -

0.22
2 1

0.35

FIG. 1 (color online). Phase diagram of the spin-1=2
Heisenberg antiferromagnet on the honeycomb lattice with a
nearest-neighbor interaction J1 and a frustrating, next-nearest-
neighbor exchange J2 as obtained from DMRG calculations.
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• Phase diagram S = 1/2:

(Ganesh, van den Brink, Nishimoto, PRL 2013)
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FIG. 1. (Color online) Quantum phase diagram of the spin-
1 J1-J2 Heisenberg model on the honeycomb lattice. With increasing
J2 coupling, the system has a Néel AFM phase for J2 < 0.26, a stripe
AFM phase for J2 ! 0.32, and an intermediate non-magnetic phase
with a plaquette valence-bond order in our DMRG calculations. As the
finite-size effects on different cylinder geometries, the first transition
point is estimated at 0.26 ∼ 0.28.

magnetic ordered state rather than the staggered dimer state.
In this region, the obtained magnetic order state depends
on the cylinder geometry in our finite-size calculations. By
comparing the ground-state bulk energy on different cylinder
geometries, we find that the stripe AFM state always possesses
the lower energy and thus appears to be the ground state in the
thermodynamic limit. Between the two magnetic order phases
0.27 " J2 " 0.32, the system has a narrow nonmagnetic
region with nonuniform bond energy on wide cylinders.
During the increase of the kept states from 2000 to 8000 SU (2)
states, a PVB dimer order is found stabilized on the studied
cylinder systems, which suggests that the PVB state is a
strong candidate for this intermediate phase region. Finally,
we discuss the nature of the quantum phase transitions in the
system with the help of the bipartite entanglement entropy.

In our DMRG calculations, we study the cylinder systems
with widths up to 8 (6) unit cells in the magnetic ordered phases
(intermediate phase), by keeping up to 8000 SU (2) states
to ensure the convergence. The truncation error is controlled
below 10−6 for the Ly = 4 (Ly is the number of unit cells in the
y direction) cylinder and below 10−5 for the other calculations.
The cylinder geometries are shown in Fig. 2. The first cylinder
ACm-n has the armchair open edges, where m is the number
of two-site unit cells along the y direction and n is the number
of columns along the x direction. The second cylinder has the
zigzag open edges and is denoted as the ZCm-n cylinder.

FIG. 2. (Color online) Cylinder geometries used in the DMRG
calculations. (a) is an AC4-6 cylinder and (b) is a ZC4-6 cylinder.

II. NÉEL AFM PHASE

First of all, we study the Néel AFM phase in the small
J2 side. Due to the limit of system width in the DMRG
calculations for the spin-1 system, we do not have enough data
of magnetization on different system widths to estimate the
result in thermodynamic limit through extrapolation. Instead,
on the finite-width cylinders, we calculate the spin correlation
functions along the cylinder axis direction (the x direction)
and study their decay behaviors with increasing J2.

In Fig. 3, we demonstrate the spin correlation functions in
real space for J2 = 0.0 on the AC4-24 and ZC4-24 cylinders.
Clearly, the spin correlations exhibit a Néel AFM pattern with
two magnetic sublattices. We follow the J2 dependence of the
spin correlation decaying to detect the vanishing of Néel order.
On the AC4-24 cylinder in Fig. 4(a), we find that the spin
correlation length keeps decreasing with growing J2, which
reaches a minimum at J2 ≃ 0.25. Slightly above J2 = 0.25,
such as J2 = 0.27 as shown in Fig. 4(a), the Néel AFM pattern
of correlations is destructed, which signals a phase transition
with vanishing the Néel order. On the ZC4-24 cylinder as
shown in Fig. 4(b), we find that the spin correlations decay
much slower than those on the AC4-24 cylinder near the
transition point, which indicates the finite-size effects of the
system when approching phase boundary. Beyond J2 ∼ 0.28,
the spin correlations decay fast as shown in Fig. 4(b) at
J2 = 0.29. Based on the spin correlations on both AC4 and
ZC4 cylinders, we estimate the Néel order vanishing at
J2 ∼ 0.26–0.28.

Based on the decay behaviors of spin correlations, we
plot the J2 dependence of the long-distance spin correlations
Sd ≡

√
|⟨S0Sd⟩| [d is the longest distance in Figs. 4(a)

and 4(b)] as shown in Figs. 4(c) and 4(d). We find that the
vanishing of Sd and the destruction of the Néel AFM pattern
on both geometries are consistent with a phase transition at

FIG. 3. (Color online) Spin correlation functions in real space for
J2 = 0.0 on the (a) AC4-24 cylinder and (b) ZC4-24 cylinder. The
green site is the reference site in the middle of the cylinder, and the
blue solid and red shaded circles denote the positive and negative
correlations, respectively. The radius of the circle is proportional
to the magnitude of correlations. Here, we only show the left half
2 × 4 × 12 sites.
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Dynamical Structure Factor:

5

FIG. 8: Panels (a)-(d) show dynamical structure factors S(q,!) for � < 0 FM regime plotted for T = 0.03, 0.05, 0.08, 0.1
(from left to right). Panels (e)-(h) show the S(q,!) for � > 0 AFM regime plotted for same temperature values T = 0.03, 0.05,
0.08, 0.1 (from left to right).

Next we examine dynamical structure factors of low-T
states that arise from possible quantum order by disorder
on the ⌘ degrees of freedom. As discussed in Ref. [3], real-
space perturbation calculation gives rise to an e↵ective
interaction among the Ising variables ⌘

↵

:

H
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0
⌘

↵

⌘
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(13)

Here ✏ is a positive numeric constant, the prime indicates
that the summation is over hexagons with nonzero aver-
age flux, i.e. hW

↵

i 6= 0, which form an enlarged trian-
gular lattice, and h↵�i denotes nearest-neighbor pair on
the triangular lattice. As discussed in the main text, the
triangular lattice formed by hexagons with nonzero W

corresponds to the
p
3⇥p

3 pattern. The above Hamil-
tonian Eq. (13) thus describes an triangular Ising model
with e↵ective nearest-neighbor interaction J

e↵

= ✏�.
In the case of ferromagnetic � < 0 , the e↵ective in-

teraction in Eq. (13) leads to a uniform ordering of the
⌘ variables, namely all ⌘

↵

= +1 or ⌘

↵

= �1. The long-
range ordering of the Ising variables combined with the
plaquette ordering of the fluxes, which is equivalent to the
ordering of the directional vector n̂ = (a, b, c), give rise to
a long-range spin order of the

p
3⇥p

3 type. Fig. 9 shows
the dynamical structure factor S(q,!) of this

p
3 ⇥ p

3
spin order with FM �-interaction, obtained from our LL
dynamical simulations. Small deviations are introduced
to the perfect

p
3⇥p

3 order through Monte Carlo sim-
ulations at T = 10�4. As expected for a state with long-
range spin order, the S(q,!) shows clear dispersions for
the magnon quasiparticle excitations.

On the other hand, the e↵ective Ising model Eq. (13)
with antiferromagnetic � > 0 is a highly frustrated sys-

FIG. 9: Dynamical structure factor at very low temperature
T = 10�4 of the

p
3 ⇥

p
3 state with uniform ⌘↵ = +1. As

discussed in the text, this state is the ground state selected by
quantum order by disorder in the case of ferromagnetic � < 0.

tem, which is in fact one of the first studied geometri-
cally frustrated magnets [4]. Essentially, since the AFM
interaction between three Ising spins of an elementary
triangle cannot be simultaneously satisfied, there is at
least a frustrated bond with parallel Ising spins on every

triangle. The number of degenerate ground states can be
exactly computed using the transfer-matrix method [4];
it grows exponentially with the system size, giving rise
to a nonzero entropy density of the degenerate ground
states.

In order to compute the dynamical structure factor
of the AFM � model, we perform Monte Carlo simula-
tions on the e↵ective Ising model (13) to sample degen-
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tions on the e↵ective Ising model (13) to sample degen-

• Landau-Lifshitz dynamics:

4

(a) (b) (c) (d)

FIG. 7: Static structure factor S(q) in the extended Brillioun zone for the � model at low temperatures obtained from Monte
Carlo simulations. Panels (a) and (b) are computed at T = 0.03 and T = 0.05 respectively for antiferromagnetic � > 0. Similar
results for ferromagnetic � < 0 are shown in (c) T = 0.03, (d) T = 0.05.

factors for ferromagnetic interaction(� < 0) exhibit com-
plete antipodal characteristics from its antiferromagnetic
counterpart. We see in Fig. 7(c) and (d) spectral inten-
sity has its maxima at the BZ centers. Intensity decreases
as we move closer to the edges of the extended BZ. For
T > T

C

it is clearly visible that towards the edge of the
BZ, intensity decreases when we move from X point to Y
point.

DYNAMICAL STRUCTURE FACTOR AND
LANDAU-LIFSHITZ DYNAMICS

In this section, we discuss details of the Landau-
Lifshitz (LL) dynamics simulations, and the numerical
calculation of the dynamical structure factor S(q,!).
The dynamics of classical spins is well described by the
LL equation:

dS
i

dt

= �S
i

⇥ @H
@S

i

, (11)

where H is the Hamiltonian of the � model. Here we do
not include dissipation terms such as the Gilbert damping
in our dynamical simulations, since we are interested in
the un-damped oscillations of the excited states. The ex-
citation energies can be extracted from these oscillations
through simple time-domain Fourier transform. An e�-
cient semi-implicit algorithm [2] is employed to integrate
the above LL equation. The high e�ciency of the algo-
rithm comes from fact that it preserves the spin length at
every time step and the energy values are well conserved
with time irrespective of the time length or time step
size in the simulation. In our computations of the struc-
ture factor, we consider a honeycomb lattice with 2⇥302

spins. A time step �t = 0.005 is used (with |�| = 1).
To compute the S(q,!) at a given temperature T , we

first perform Monte Carlo simulations to sample equi-
librium spin configuration at T . These spin states are
then used as the initial condition for the LL dynami-

cal simulations, i.e. S
i

(t = 0) = S(eq)

i

(T ). Next, we
perform dynamical simulations based on LL equation to
generate snapshots of the system S

i

(t
n

) at di↵erent times
t

n

= n�t, where �t = 10�t is used. From these spin
configurations, we compute the space-time Fourier trans-
form:

S(q,!) =
1

N

X

i

Z
T

0

S
i

(t)eiq·ri e�i!t

dt (12)

Here the integral over time is approximated by the dis-
crete Riemann summation, and the upper limit T = 500
is used. Due to periodic boundary condition used in
our finite size simulations, we consider only wavevectors
q = m

L

b
1

+ n

L

b
2

, where m,n are integers and b
1

, b
2

are
the primitive vectors of the reciprocal lattice.
The dynamical structure factor given by S(q,!) =

|S(q,!)|2 for both ferromagnetic and antiferromagnetic
interactions in di↵erent temperature regimes are shown
in Fig. 8 along a few high-symmetry directions in the
Brillouin zone. In each figure we have averaged over 100
di↵erent initial states for a 30⇥30 unit cells (1800 spins).
It is expected that like the static structure factor graphs
which are analogous to ! = 0 we see a minima in spectral
weight at � point in the BZ for AFM case and a maxima
for the FM case. We also see sharp band structure like
features at low temperatures which fade away at higher
temperatures. For both AFM and FM dynamical struc-
ture factors, the intensity accumulates most prominently
around the � point, and the line towards the K and M
from � point holds equivalent spectral weight intensity
for lower frequency region (! < 1). For temperatures
lower than T = 0.05 the spectral intensity rapidly de-
creases in higher frequency region.

• Dynamical Structure factor: S(q,!) =

Z
hS(q, t) · S(�q, 0)ie�i!t dt



are disconnected below Tc, an additional average over
random fηαg is introduced manually to improve the
efficiency [63,64].
The diagonal part of the dynamical structure factor

Sðq;ωÞ≡P
αS

ααðq;ωÞ are shown in Fig. 5 for the two
spin liquid phases. The Sðq;ωÞ at T > Tc shows broad
continuum over a wide energy range in both cases. On the
other hand, structures of coherent quasiparticle dispersion
can be seen at high energies for Sðq;ωÞ in the low-T phase.
These coherent excitations in a liquid phase are reminiscent
of the electron pseudo-bands observed in liquid metals
[65,66]. Their origin can be traced to the robust local or
short-range ordering in a liquid state.
Interestingly, the off-diagonal Sxyðq;ωÞ, shown in

Fig. 6(a), exhibits intriguing excitations associated with
the high-symmetry points of the BZ. It is important to note
that a large signal also exists at the same high-symmetry
points in the static structure factor. These quasi-q-
independent features thus seem to derive from coherent
oscillations of the underlying plaquette pattern. To further
investigate the source of these excitations, we compute the
dynamical structure factor of fluxes Wðq;ωÞ, which is
defined as the space-time Fourier transform of the corre-
lation function hWαðtÞWβð0Þi. Interestingly, as shown in
Fig. 6(b), similar momentum-specific excitations are
observed in the dynamical structure factor Wðq;ωÞ. In
addition to the long-range order at the K point, the finite
excitations associated with the Γ and Y points result from
the nonzero average hWi ≈ 1=3 of the
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patterns, e.g., WA ≈ 1, and WB ≈WC ≈ 0.
Figure 6(c) and its inset show the ω dependence of the

dynamical excitations WðQ;ωÞ with momentum fixed at
Q ¼ ð4π=3; 0Þ, corresponding to the K point. Significant
differences in the overall behavior can be seen at temper-
atures above and below the critical Tc, in particular see the

inset semilog plot. Importantly, we find distinct power-law
behaviors WðQ;ωÞ ∼ 1=ωa in the two spin-liquid phases,
with the exponent a ≈ 1.5 at high temperatures, and
a ≈ 1.22 in the flux-ordered phase. These exponents might
be related to the critical behavior of the disorder-induced
localization of the low-energy spin-excitations [67,68].
These finite energy excitations at the ordering wave vector
Q reflect the composite nature of the flux variables that
develop a long range order below Tc. Notably, they are in
stark contrast to the dispersive Goldstone modes of simple
long-range magnetically ordered states.
Discussion and outlook.—We have demonstrated that

thermal order-by-disorder in honeycomb Γ model drives a
phase transition into a new spin liquid phase with a hidden
flux long-range order. In the presence of other perturba-
tions, the degeneracy of the plaquette-ordered states is
lifted. Specifically, the antiferro-Kitaev exchange preserves
the continuous degeneracy of n̂ ¼ ða; b; cÞ, while lifting
the discrete η degeneracy by selecting the uniform con-
figuration. Interestingly, the discrete degeneracy remains in
the case of ferromagnetic Kitaev exchange. On the other
hand, Heisenberg interactions favors a ground state with
n̂ ¼ ð1; 1; 1Þ. However, the flux-ordered spin liquid is
expected to survive in a finite temperature window when
these perturbations are small compared with the dominant
Γ term. In the presence of a magnetic field along the [111]
direction, the flux-ordered liquid phase also survives up to
Hc ∼ 0.3jΓj, above which a distinct intermediate phase sets
in as the ground state. Experimentally, through coupling to
other d.o.f. in crystal, e.g., spin-lattice coupling, the trans-
lation-symmetry breaking could produce Bragg peaks in
neutron or x-ray scattering.
The effects of quantum fluctuations have been exten-

sively discussed in Ref. [50]. The relevant energy scale of

FIG. 5. The diagonal part of the dynamical structure factor
Sðq;ωÞ ¼ Sxxðq;ωÞ þ Syyðq;ωÞ þ Szzðq;ωÞ computed from
LL simulations for antiferromagnetic (top) and ferromagnetic
(bottom) Γ model. The results below Tc are shown in panels (a)
and (c), while those above Tc are shown in (b) and (d).

FIG. 6. (a) Off-diagonal dynamical structure factor Sxyðq;ωÞ in
logarithmic scale, and (b) dynamical structure factor of flux
variablesWðq;ωÞ in logarithmic scale at T ¼ 0.01. Also note the
log scale for the ω axis. (c) The ω dependence of the flux
dynamical structure factor WðQ;ωÞ at the
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Quantum order by disorder 
(Rousochatzakis & Perkins, PRL 2017)

• The degenerate ground states are characterized by 
continuous variables                     and  
a set of discrete Ising variables 

n̂ = (a, b, c)

{⌘i}

where Si denotes the pseudospin 1=2 at site i. The
Hamiltonian describing the off-diagonal exchange reads

H ¼ "Γ
X

hiji∈‘x’
ðSyi Szj þ SziS

y
jÞ " Γ

X

hiji∈‘y’
ðSziSxj þ Sxi S

z
jÞ

þ Γ
X

hiji∈‘z’
ðSxi S

y
j þ Syi S

x
jÞ; ð2Þ

where hiji denotes NN sites and " accounts for the sign
modulation of the couplings on x and y bonds in the 3D
systems [48]. For the 2D case all bonds have the plus sign.
Classical limit.—Let us consider the classical limit

where Si are vectors of length S and begin with the 2D
honeycomb case. The highly frustrated nature of this model
is first revealed by the fact that the lowest eigenvalue of
the 6 × 6 interaction matrix Λk in momentum space [49]
is completely flat. In fact, this holds for all six bands,
with λ1 ¼ −jΓj, λ2 ¼ λ3 ¼ −jΓj=2, λ4 ¼ λ5 ¼ jΓj=2, and
λ6 ¼ jΓj, see Fig. 1.
To understand the nature of the ground states and why

there is an infinite number of them, we search for states that
saturate the lower bound of the energy per site λ1S2 [49].
Consider a pair of spins, say S0 and S1 of (1), which
interact via ΓðSx0S

y
1 þ Sy0S

x
1Þ. If these spins were isolated

from the rest, then their energy would be minimized by
placing the spins on the xy plane with Sx1 ¼ ζSy0, S

y
1 ¼ ζSx0,

ζ ¼ −sgnðΓÞ. Similarly, for the x bond of (1), we would get
Sy3 ¼ ζSz0, S

z
3 ¼ ζSy0, and for the y bond of (1), Sx2 ¼ ζSz0,

Sz2 ¼ ζSx0. Returning to the lattice problem, the idea is to
require that the two components involved in each Γ term
satisfy the respective relations above, without specifying
the third component for the moment. This is done as
follows: (i) We choose a direction for the central spin of (1)
and parametrize it as

S0 ¼ ðη1a; η2b; η3cÞ; ð3Þ

where a ¼ jSx0j, b ¼ jSy0j, c ¼ jSz0j, η1 ¼ sgnðSx0Þ, η2 ¼
sgnðSy0Þ, and η3 ¼ sgnðSz0Þ. (ii) Then, we fix two compo-
nents of the three neighbors as

S1 ¼ ðζη2b; ζη1a; Sz1Þ; S2 ¼ ðζη3c; S
y
2; ζη1aÞ;

S3 ¼ ðSx3; ζη3c; ζη2bÞ:
ð4Þ

(iii) Then, we fix accordingly two components of the
neighbors of S1;2;3, etc., until we cover the whole lattice.
The total energy of the generated configurations saturates
the lower energy bound, and are therefore ground states.
Indeed, the energy contribution from the cluster (1) is

, and this holds for
any such cluster in the lattice. Since each bond is shared by
two sites, the total energy per site is E=N ¼ −jΓjS2, which
saturates the lower bound.
Now, the reason why there are infinite ground states lies

in the freedom to choose the third component of the spins,
i.e., Sz1, S

y
2, S

x
3, etc. Imposing the spin length constraint

shows that this freedom is associated with the overall signs,

Sz1 ¼ ζη4c; Sy2 ¼ ζη5b; Sx3 ¼ ζη6a; ð5Þ

where ηi ¼ "1 are Ising variables. The choice of signs in
front of the ηs give the simplest representation of the state
as we see below, but is otherwise arbitrary. To see how
many independent ηs exist, we look closely what happens
around the central cluster (1), see Fig. 2. We see that each ηi
appears only around a single hexagon; i.e., we can label the
states by assigning the ηs to the hexagons. This para-
metrization in terms of local Ising variables gives a total of
2N=2 states for fixed fa; b; cg. Note that if two (one) of
fa; b; cg vanish then 2=3 (1=3) of the ηs are idle and we get
2N=6 (2N=3) states instead. On top, there is the degeneracy
associated to fa; b; cg.
The η parametrization reveals that the local zero-energy

modes responsible for the extensive degeneracy correspond
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FIG. 1. Spectrum λ1−6=jΓj of the matrix Λk entering the Fourier
transform of the classical energy, see Supplemental Material [49].

FIG. 2. Classical ground states of the Γ model on the 2D
honeycomb lattice, where a2 þ b2 þ c2 ¼ S2 and ηi ¼ "1.
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FIG. 10: Dynamical structure factor at very low temperature
T = 10�4 of the

p
3 ⇥

p
3 state with uniform ⌘↵ = +1. As

discussed in the text, this state is the ground state selected by
quantum order by disorder in the case of ferromagnetic � < 0.

with long-range spin order, the S(q, !) shows clear dis-
persions for the magnon quasiparticle excitations.

On the other hand, the e↵ective Ising model Eq. (13)
with antiferromagnetic � > 0 is a highly frustrated sys-
tem, which is in fact one of the first studied geometri-
cally frustrated magnets [4]. Essentially, since the AFM
interaction between three Ising spins of an elementary
triangle cannot be simultaneously satisfied, there is at
least a frustrated bond with parallel Ising spins on every

triangle. The number of degenerate ground states can be
exactly computed using the transfer-matrix method [4];
it grows exponentially with the system size, giving rise
to a nonzero entropy density of the degenerate ground
states.

In order to compute the dynamical structure factor
of the AFM � model, we perform Monte Carlo simula-
tions on the e↵ective Ising model (13) to sample degen-

FIG. 11: Spins have cubic symmetry at low temperature,
the resulting non-zero flux parameter hexagons with W ⇠ 1
(shaded) form an Ising triangular lattice. For each triangle
made of 3 such hexagons, the corresponding ⌘’s are frustrated
i.e. (+ +�) or (��+) .
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FIG. 12: Dynamical structure factor of the Gamma model av-
eraged over 100 di↵erent {⌘↵} configurations that are ground
states of the AF Ising model Eq. (13); see also Fig. 11. Again,
a small perturbation is introduced through Monte Carlo sim-
ulations at low temperature T = 10�4.

erate ground-state configurations of the Ising variables
⌘

↵

. A spin configuration is then constructed from these
Ising variables and a particular choice of the directional
vector, say n̂ = (1, 0, 0); see Fig. 11 for an example.
Next we perform Monte Carlo simulations on the spin
�-model Eq. (1) at T = 10�4 in order to introduce small
deviations to the ground state constructed from the ⌘

variables. Using this slightly perturbed state as the ini-
tial condition, we perform LL dynamics simulations to
compute the dynamical structure factor. The resultant
S(q, !) shown in Fig. 12 is obtained by averaging over
100 di↵erent AFM {⌘

↵

} configurations. We see sharp
band structure and band gap like features along the high
symmetry line. In the ploted range of ! we can see clear
discontinuity (band gap like features) close to ! = 1,
! = 1.5 and ! = 3. These features appear relatively
periodic along the high symmetry line at higher ! values
close to ! 2 (3, 3.5).
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FIG. 9: Panels (a)-(d) show dynamical structure factors S(q,!) for � < 0 FM regime plotted for T = 0.03, 0.05, 0.08, 0.1
(from left to right). Panels (e)-(h) show the S(q,!) for � > 0 AFM regime plotted for same temperature values T = 0.03, 0.05,
0.08, 0.1 (from left to right).

To compute the S(q, !) at a given temperature T , we
first perform Monte Carlo simulations to sample equi-
librium spin configuration at T . These spin states are
then used as the initial condition for the LL dynami-

cal simulations, i.e. S
i

(t = 0) = S(eq)

i

(T ). Next, we
perform dynamical simulations based on LL equation to
generate snapshots of the system S

i

(t
n

) at di↵erent times
t

n

= n �t, where �t = 10�t is used. From these spin
configurations, we compute the space-time Fourier trans-
form:

S(q, !) =
1

N

X

i

Z
T

0

S
i

(t)eiq·ri e

�i!t

dt (12)

Here the integral over time is approximated by the dis-
crete Riemann summation, and the upper limit T = 500
is used. Due to periodic boundary condition used in
our finite size simulations, we consider only wavevectors
q = m

L

b
1

+ n

L

b
2

, where m, n are integers and b
1

, b
2

are
the primitive vectors of the reciprocal lattice.

The dynamical structure factor given by S(q, !) =
|S(q, !)|2 for both ferromagnetic and antiferromagnetic
interactions in di↵erent temperature regimes are shown
in Fig. 9 along a few high-symmetry directions in the
Brillouin zone. In each figure we have averaged over 100
di↵erent initial states for a 30⇥30 unit cells (1800 spins).
It is expected that like the static structure factor graphs
which are analogous to ! = 0 we see a minima in spectral
weight at � point in the BZ for AFM case and a maxima
for the FM case. We also see sharp band structure like
features at low temperatures which fade away at higher
temperatures. For both AFM and FM dynamical struc-
ture factors, the intensity accumulates most prominently
around the � point, and the line towards the K and M

from � point holds equivalent spectral weight intensity
for lower frequency region (! < 1). For temperatures
lower than T = 0.05 the spectral intensity rapidly de-
creases in higher frequency region.

Next we examine dynamical structure factors of low-T
states that arise from possible quantum order by disorder
on the ⌘ degrees of freedom. As discussed in Ref. [3], real-
space perturbation calculation gives rise to an e↵ective
interaction among the Ising variables ⌘

↵

:

H
Ising

= ✏ �
X

h↵�i

0
⌘

↵

⌘

�

(13)

Here ✏ is a positive numeric constant, the prime indicates
that the summation is over hexagons with nonzero aver-
age flux, i.e. hW

↵

i 6= 0, which form an enlarged trian-
gular lattice, and h↵�i denotes nearest-neighbor pair on
the triangular lattice. As discussed in the main text, the
triangular lattice formed by hexagons with nonzero W

corresponds to the
p

3 ⇥p
3 pattern. The above Hamil-

tonian Eq. (13) thus describes an triangular Ising model
with e↵ective nearest-neighbor interaction J

e↵

= ✏�.
In the case of ferromagnetic � < 0 , the e↵ective in-

teraction in Eq. (13) leads to a uniform ordering of the
⌘ variables, namely all ⌘

↵

= +1 or ⌘

↵

= �1. The long-
range ordering of the Ising variables combined with the
plaquette ordering of the fluxes, which is equivalent to
the ordering of the directional vector n̂ = (a, b, c), give
rise to a long-range spin order of the

p
3 ⇥ p

3 type.
Fig. 10 shows the dynamical structure factor S(q, !) of
this

p
3⇥p

3 spin order with FM �-interaction, obtained
from our LL dynamical simulations. Small deviations are
introduced to the perfect

p
3⇥p

3 order through Monte
Carlo simulations at T = 10�4. As expected for a state
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FIG. 10: Dynamical structure factor at very low temperature
T = 10�4 of the
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3 ⇥
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3 state with uniform ⌘↵ = +1. As

discussed in the text, this state is the ground state selected by
quantum order by disorder in the case of ferromagnetic � < 0.

with long-range spin order, the S(q, !) shows clear dis-
persions for the magnon quasiparticle excitations.

On the other hand, the e↵ective Ising model Eq. (13)
with antiferromagnetic � > 0 is a highly frustrated sys-
tem, which is in fact one of the first studied geometri-
cally frustrated magnets [4]. Essentially, since the AFM
interaction between three Ising spins of an elementary
triangle cannot be simultaneously satisfied, there is at
least a frustrated bond with parallel Ising spins on every

triangle. The number of degenerate ground states can be
exactly computed using the transfer-matrix method [4];
it grows exponentially with the system size, giving rise
to a nonzero entropy density of the degenerate ground
states.

In order to compute the dynamical structure factor
of the AFM � model, we perform Monte Carlo simula-
tions on the e↵ective Ising model (13) to sample degen-

FIG. 11: Spins have cubic symmetry at low temperature,
the resulting non-zero flux parameter hexagons with W ⇠ 1
(shaded) form an Ising triangular lattice. For each triangle
made of 3 such hexagons, the corresponding ⌘’s are frustrated
i.e. (+ +�) or (��+) .
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FIG. 12: Dynamical structure factor of the Gamma model av-
eraged over 100 di↵erent {⌘↵} configurations that are ground
states of the AF Ising model Eq. (13); see also Fig. 11. Again,
a small perturbation is introduced through Monte Carlo sim-
ulations at low temperature T = 10�4.

erate ground-state configurations of the Ising variables
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. A spin configuration is then constructed from these
Ising variables and a particular choice of the directional
vector, say n̂ = (1, 0, 0); see Fig. 11 for an example.
Next we perform Monte Carlo simulations on the spin
�-model Eq. (1) at T = 10�4 in order to introduce small
deviations to the ground state constructed from the ⌘

variables. Using this slightly perturbed state as the ini-
tial condition, we perform LL dynamics simulations to
compute the dynamical structure factor. The resultant
S(q, !) shown in Fig. 12 is obtained by averaging over
100 di↵erent AFM {⌘

↵

} configurations. We see sharp
band structure and band gap like features along the high
symmetry line. In the ploted range of ! we can see clear
discontinuity (band gap like features) close to ! = 1,
! = 1.5 and ! = 3. These features appear relatively
periodic along the high symmetry line at higher ! values
close to ! 2 (3, 3.5).
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FIG. 10: Dynamical structure factor at very low temperature
T = 10�4 of the

p
3 ⇥

p
3 state with uniform ⌘↵ = +1. As

discussed in the text, this state is the ground state selected by
quantum order by disorder in the case of ferromagnetic � < 0.

with long-range spin order, the S(q, !) shows clear dis-
persions for the magnon quasiparticle excitations.

On the other hand, the e↵ective Ising model Eq. (13)
with antiferromagnetic � > 0 is a highly frustrated sys-
tem, which is in fact one of the first studied geometri-
cally frustrated magnets [4]. Essentially, since the AFM
interaction between three Ising spins of an elementary
triangle cannot be simultaneously satisfied, there is at
least a frustrated bond with parallel Ising spins on every

triangle. The number of degenerate ground states can be
exactly computed using the transfer-matrix method [4];
it grows exponentially with the system size, giving rise
to a nonzero entropy density of the degenerate ground
states.

In order to compute the dynamical structure factor
of the AFM � model, we perform Monte Carlo simula-
tions on the e↵ective Ising model (13) to sample degen-

FIG. 11: Spins have cubic symmetry at low temperature,
the resulting non-zero flux parameter hexagons with W ⇠ 1
(shaded) form an Ising triangular lattice. For each triangle
made of 3 such hexagons, the corresponding ⌘’s are frustrated
i.e. (+ +�) or (��+) .
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FIG. 12: Dynamical structure factor of the Gamma model av-
eraged over 100 di↵erent {⌘↵} configurations that are ground
states of the AF Ising model Eq. (13); see also Fig. 11. Again,
a small perturbation is introduced through Monte Carlo sim-
ulations at low temperature T = 10�4.

erate ground-state configurations of the Ising variables
⌘

↵

. A spin configuration is then constructed from these
Ising variables and a particular choice of the directional
vector, say n̂ = (1, 0, 0); see Fig. 11 for an example.
Next we perform Monte Carlo simulations on the spin
�-model Eq. (1) at T = 10�4 in order to introduce small
deviations to the ground state constructed from the ⌘

variables. Using this slightly perturbed state as the ini-
tial condition, we perform LL dynamics simulations to
compute the dynamical structure factor. The resultant
S(q, !) shown in Fig. 12 is obtained by averaging over
100 di↵erent AFM {⌘

↵

} configurations. We see sharp
band structure and band gap like features along the high
symmetry line. In the ploted range of ! we can see clear
discontinuity (band gap like features) close to ! = 1,
! = 1.5 and ! = 3. These features appear relatively
periodic along the high symmetry line at higher ! values
close to ! 2 (3, 3.5).
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(a) (b)

FIG. 3. (Color online) Snapshots of spin configurations above
and below T

c

= 0.0401|�|: (a) T = 0.05 and (b) T = 0.03.
In the low-T phase, spins predominately point toward the six
cubic directions.

the ground-state manifold. Without this feature, di↵er-
ent {⌘

↵

} becomes disjoint from each other. Interestingly,
our MC simulations find a freezing phenomenon of the
vector n̂ at a very low temperature T

c

⇡ 0.04 |�|. This
is illustrated by snapshots of spins above and below this
critical temperature; see Fig. 3. At T > T

c

, the spins and
the directional vector n̂ exhibit an emergent spherical
symmetry even at temperatures well below the exchange
energy scale |�|. This rotational symmetry is lost at
the critical temperature, and spins mainly point toward
the six cubic axes, or equivalently the directional vector
freezes to one of the cubic directions, i.e. n̂ ⇠ (1, 0, 0),
(0, 1, 0), or (0, 0, 1) at T < T

c

. As states parameter-
ized by di↵erent n̂ are degenerate at the mean-field level,
the cubic directions are selected by thermal fluctuations
through the order-by-disorder mechanism. Equivalently,
this can also be viewed as the entropic selection, result-
ing from an e↵ective free energy Fani / �(a4 + b

4 + c

4).
Indeed, simple analysis shows that these cubic directions
allow for the largest number of zero modes at the har-
monic level. We note that similar cubic anisotropy is also
generated by quantum fluctuations [47].

It is crucial to note that although the spin-symmetry is
seemingly reduced from spherical to cubic when crossing
T

c

, this cannot be viewed as a true reduction of sym-
metries as the � model itself is already cubic-symmetric.
The apparent spherical symmetry at T

c

< T < |�| is
an emergent property of the phase, which is due to the
spatial fluctuations of directional vector n̂(r). Another
important observation is that while the degeneracy asso-
ciated with vector n̂ is lifted by thermal fluctuation, a
discrete macroscopic degeneracy persists due to the Ising
gauge symmetry of {⌘

↵

}, especially for classical spins.
Consequently, spins remain disordered at T < T

c

.

To resolve this issue and investigate the nature of the
low-T phase, we first note that the cubic spin-orbital
symmetry of the � model is indeed broken below T

c

, yet
in a complicated pattern: local spins have to pick one of
the six cubic directions in a coordinated way while pre-
serving the gauge symmetry of {⌘

↵

}. A convenient local
quantity to characterize the broken symmetry is the flux

x

y

z

⌘ = +1

⌘ = �1

⌘1

⌘2

⌘3

⌘4

⌘5

FIG. 4. (Color online) Plaquette order of hexagonal fluxes
on honeycomb lattice. Shaded hexagons have nonzero flux
W ⇠ 1, while empty hexagons have a vanishing W . Spins are
orthogonal to each other (with left handedness for ⇣ = �1)
on each shaded hexagon; their specific directions depend on
the local ⌘, as specified in the insets. The arrangement of
hexagons with finite W corresponds to the famous

p
3 ⇥

p
3

long-range order. Spins remain disordered due to uncorre-
lated ⌘

↵

on the shaded hexagons.

variable defined on each hexagon [10]:

W

↵

= S

x

1 S

y

2 S

z

3 S

x

4 S

y

5 S

z

6 , (2)

where S1,··· ,6 are the six spins around the ↵ hexagon.
These fluxes play an important role in the spin-1/2 Ki-
taev model as they are “integrals of motion” of the Kitaev
Hamiltonian [10]. In our case, the flux W

↵

is similarly a
gauge-invariant variable, that is independent of ⌘

↵

. On
the other hand, it can be used to characterize the order-
ing of n̂. To see this, we note that in the ground state,
they only take on three di↵erent values [47]: WA = ⇣a

6

for hexagons whose ⌘ is associated with component a,
and similarly WB = ⇣b

6 and WC = ⇣c

6 for the other
two sets of hexagons, where ⇣ = �sgn(�) As the vec-
tor n̂ freezes to one of the cubic directions, 2/3 of the
fluxes also vanish. Since hexagons of a given type form
an enlarged triangular lattice, the flux patten of the low-
T phase, e.g. W

A

⇡ 1, and W

B

⇡ W

C

⇡ 0, corresponds
to a broken translation symmetry; see Fig. 4. Impor-
tantly, the uncorrelated ⌘

↵

on hexagons with nonzero W

give rise to a disordered spin configuration. We note in
passing that plaquette orders with similar spatial pattern
also exist as ground state in J1-J2 quantum S = 1/2 and
S = 1 honeycomb Heisenberg model [52–55]. Our find-
ing shows a rare example of plaqutte ordering hidden in
a classical spin liquid on honeycomb lattice.

The
p

3⇥
p

3 arrangement of hexagons with nonzero W

shown in Fig. 4 suggests an order parameter

W̃ (Q) =
1

N

X

↵

W

↵

e

iQ·r↵
, (3)

which is the Fourier transform at wavevector Q =
(4⇡/3, 0), for characterizing the broken translation sym-
metry. We then performed extensive large-scale Monte

U=8t

2
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FIG. 1: Upper panels: density plots of the on-site electron number n(r
i

) = hc†
i,↵

c
i,↵

i in sample phase-separated states for
filling fractions (a) f = 0.43, (b) f = 0.45, (c) f = 0.465, (d) f = 0.48, (e) f = 0.498, obtained from Langevin dynamics
simulations on a 60 ⇥ 60 lattice with Hund’s coupling J = 6t and temperature T = 5 ⇥ 10�4t. The corresponding dynamical
structure factors S(q,!) averaged over tens of independent initial states are shown in the lower panels. The high-symmetry
points of the Brillouin zone are � = (0, 0), X = (⇡, 0),M = (⇡,⇡).

electron spin and the local magnetic moments S
i

, which
are assumed to be classical spins of length S = 1. The
square-lattice DE model has been extensively studied
theoretically [35–37]. Exactly at half-filling, the local
spins develop a long-range Néel order in the T = 0
insulating ground state. When the electron density is
small, on the other hand, a metallic state with predom-
inantly ferromagnetic (FM) spin correlation emerges as
the ground state. Near half-filling with a small hole dop-
ing, the FM metal becomes unstable against either a non-
collinear magnetic spiral or phase separation [35–38] de-
pending on the strength of the Hund’s coupling J .

In the large-J regime, the instability of the FM phase
leads to phase separation with FM domains coexisting
with a Néel background. Such mixed-phase state has
been observed in Monte Carlo simulations [35]. Because
of the nonlocal electronic degrees of freedom, large-scale
equilibrium simulation of the DE model requires e�cient
algorithms for solving the tight-binding Hamiltonian.
The linear-scaling kernel polynomial method (KPM) is
usually used to solve the electronic structure problem in
simulations of DE model [39–41]. Here we adopt an e�-
cient Langevin dynamics method combined with a gradi-
ent extension of the KPM [42–44] to obtain equilibrium
phase-separated states. A few examples of such mixed-
phase states on a 60 ⇥ 60 square lattice are shown in the
upper panels of Fig. 1. The red region corresponds to
the half-filled insulating background with the antiferro-
magnetic order, while the green and blue regions indicate
metallic FM domains with low electron density. Interest-
ingly, in addition to forming the FM puddles, a fraction
of the doped holes are self-trapped in a composite ob-

ject which can be viewed as the magnetic analog of the
polaron [45–48].

To describe the dynamics of the DE system, one needs
to account for the time evolution of both the local spins
and the electrons. Here we assume the dynamics of local
moments is governed by the Landau-Lifshitz equation

dS
i

dt
= �S

i

⇥ @hHi
@S

i

= JS
i

⇥ �
↵�

⇢
i�,i↵

, (2)

where ⇢
i↵,j�

⌘ hc†
j�

c
i↵

i is the reduced single-particle
electron density matrix. Importantly, the e↵ective local
field h

i

(t) = �@hHi/@S
i

depends on the electron degrees
of freedom which have to be propagated simultaneously.
The evolution of the electronic state is given by a time-
dependent Slater determinant | (t)i =

Q
Ne

m=1  
†
m

(t)|0i,
where the quasi-particle field operator satisfies the
Heisenberg equation @ 

m

/@t = i[H(t), 
m

(t)]. This ap-
proach has been employed to study the photo-induced
dynamics of DE system in recent works [49, 50]. How-
ever, the propagation of the Slater determinant is rather
cumbersome numerically.

Instead of evolving the many-body wavefunction, one
could equally describe the electron dynamics in terms
of the reduced density matrix. An additional advantage
with this formulation is that it can be straightforwardly
generalized to finite-temperature simulations, which are
beyond the description of a single Slater determinant. To
this end, we define a time-dependent “first-quantization”
Hamiltonian H

i↵,j�

(t) = �t
ij

�
↵�

� J �
ij

S
i

(t) · �
↵�

.
The DE model in Eq. (1) can then be expressed as
Ĥ =

P
i,j

P
↵,�

H
i↵,j�

ĉ†
i↵

ĉ
j�

. In terms of H, the re-
duced density matrix satisfies the von Neumann equation

are disconnected below Tc, an additional average over
random fηαg is introduced manually to improve the
efficiency [63,64].
The diagonal part of the dynamical structure factor

Sðq;ωÞ≡P
αS

ααðq;ωÞ are shown in Fig. 5 for the two
spin liquid phases. The Sðq;ωÞ at T > Tc shows broad
continuum over a wide energy range in both cases. On the
other hand, structures of coherent quasiparticle dispersion
can be seen at high energies for Sðq;ωÞ in the low-T phase.
These coherent excitations in a liquid phase are reminiscent
of the electron pseudo-bands observed in liquid metals
[65,66]. Their origin can be traced to the robust local or
short-range ordering in a liquid state.
Interestingly, the off-diagonal Sxyðq;ωÞ, shown in

Fig. 6(a), exhibits intriguing excitations associated with
the high-symmetry points of the BZ. It is important to note
that a large signal also exists at the same high-symmetry
points in the static structure factor. These quasi-q-
independent features thus seem to derive from coherent
oscillations of the underlying plaquette pattern. To further
investigate the source of these excitations, we compute the
dynamical structure factor of fluxes Wðq;ωÞ, which is
defined as the space-time Fourier transform of the corre-
lation function hWαðtÞWβð0Þi. Interestingly, as shown in
Fig. 6(b), similar momentum-specific excitations are
observed in the dynamical structure factor Wðq;ωÞ. In
addition to the long-range order at the K point, the finite
excitations associated with the Γ and Y points result from
the nonzero average hWi ≈ 1=3 of the

ffiffiffi
3

p
×

ffiffiffi
3

p
flux

patterns, e.g., WA ≈ 1, and WB ≈WC ≈ 0.
Figure 6(c) and its inset show the ω dependence of the

dynamical excitations WðQ;ωÞ with momentum fixed at
Q ¼ ð4π=3; 0Þ, corresponding to the K point. Significant
differences in the overall behavior can be seen at temper-
atures above and below the critical Tc, in particular see the

inset semilog plot. Importantly, we find distinct power-law
behaviors WðQ;ωÞ ∼ 1=ωa in the two spin-liquid phases,
with the exponent a ≈ 1.5 at high temperatures, and
a ≈ 1.22 in the flux-ordered phase. These exponents might
be related to the critical behavior of the disorder-induced
localization of the low-energy spin-excitations [67,68].
These finite energy excitations at the ordering wave vector
Q reflect the composite nature of the flux variables that
develop a long range order below Tc. Notably, they are in
stark contrast to the dispersive Goldstone modes of simple
long-range magnetically ordered states.
Discussion and outlook.—We have demonstrated that

thermal order-by-disorder in honeycomb Γ model drives a
phase transition into a new spin liquid phase with a hidden
flux long-range order. In the presence of other perturba-
tions, the degeneracy of the plaquette-ordered states is
lifted. Specifically, the antiferro-Kitaev exchange preserves
the continuous degeneracy of n̂ ¼ ða; b; cÞ, while lifting
the discrete η degeneracy by selecting the uniform con-
figuration. Interestingly, the discrete degeneracy remains in
the case of ferromagnetic Kitaev exchange. On the other
hand, Heisenberg interactions favors a ground state with
n̂ ¼ ð1; 1; 1Þ. However, the flux-ordered spin liquid is
expected to survive in a finite temperature window when
these perturbations are small compared with the dominant
Γ term. In the presence of a magnetic field along the [111]
direction, the flux-ordered liquid phase also survives up to
Hc ∼ 0.3jΓj, above which a distinct intermediate phase sets
in as the ground state. Experimentally, through coupling to
other d.o.f. in crystal, e.g., spin-lattice coupling, the trans-
lation-symmetry breaking could produce Bragg peaks in
neutron or x-ray scattering.
The effects of quantum fluctuations have been exten-

sively discussed in Ref. [50]. The relevant energy scale of

FIG. 5. The diagonal part of the dynamical structure factor
Sðq;ωÞ ¼ Sxxðq;ωÞ þ Syyðq;ωÞ þ Szzðq;ωÞ computed from
LL simulations for antiferromagnetic (top) and ferromagnetic
(bottom) Γ model. The results below Tc are shown in panels (a)
and (c), while those above Tc are shown in (b) and (d).

FIG. 6. (a) Off-diagonal dynamical structure factor Sxyðq;ωÞ in
logarithmic scale, and (b) dynamical structure factor of flux
variablesWðq;ωÞ in logarithmic scale at T ¼ 0.01. Also note the
log scale for the ω axis. (c) The ω dependence of the flux
dynamical structure factor WðQ;ωÞ at the
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wave vector Q for both high and low-T spin liquid phases.
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