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Proposal:

Generic Definitions of Electric Multipoles in Solids
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...many-body invariants for various topological states
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1. Introduction

: Why do you want to care about electric multipoles?



Warm-up: classical multipoles

Input: Charge Distribution p(7°)

Output: Well-defined Multipoles

Ex: P(r) = [ p(ro) (ro — 1) d’ry
» /

Electric Field Lines

3 (p : f{) R — p
47T50R3

Ex: E(R) =




Warm-up: classical multipoles

Multipole expansion

From Wikipedia, the free encyclopedia

N
Qtot = Z di
i=1
N
Pa = Z GiTic

1i=1

N
Qus = Z g (3riarig — 0apT?)
i—1




Classical Multipoles seem to be Done

: Why do | still care about Electric Multipoles?



Difficulties in Crystals [at low temperature].

(1) Quantum-mechanical Electrons
[may well be highly-correlated]

(2) Lattice (Periodicity)




Difficulties in Crystals [at low temperature].

(1) Quantum-mechanical Electrons
[may well be highly-correlated]

(2) Lattice (Periodicity)

Bad: Non-trivial to define multipoles

Good: Links to Topological Band Insulators




Warm-up: Dipole/Polarization
Infinite Lattice (Crystal):

O o Oo Oo Oo O o O

Unit translation

Dipole moment: P, = z xXqy — Z(llilxllli)%c ?



Warm-up: Dipole/Polarization
Infinite Lattice (Crystal):

O o Oo Oo Oo O o O

Unit translation

Dipole moment: P, = z xXqy — Z(llilxllp)%c ?

Position x of Electrons O ?

o Oo Oo Oo Oo O
1 |




Warm-up: Dipole/Polarization

Momentum Space:

and A = (u(k)| idy [u(k))

exp(2miP,) = exp li fTr A, dk

[Berry connection of filled states]

““
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Empty band

|¥), = e¥™*|u(k)), [Bloch function] illed band



Warm-up: Dipole/Polarization

Remarks on exp(2miP,) = exp li 'CﬁTr A, dk

1. Polarization: P, = P,, mod 1 (symmetry-independent)
O o O o O o O o O o O

=




Warm-up: Dipole/Polarization

Remarks on exp(2miP,) = exp li 'CﬁTr A, dk

1. Polarization: P, = P,, mod 1 (symmetry-independent)
O o O o O o O o O o O

=

2.S5ymmetry R,:x - —Xx

P,

0, —mod 1 (discrete values only)

N | =

P, - —P,

3. Not clear how to write in real space (later)

4. Not clear how to apply to interacting electrons (later)



Warm-up: Dipole/Polarization

5. Topology: R,:x —» —x
P, =0, -~mod 1 (discrete values only)

P, - —P,

#NI)—\

“Symmetry-protected Topology”

Relevant for, e.g., Su-Schrieffer-Heeger model

[
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Warm-up: Dipole/Polarization

6. Boundary Charge (Physical Consequence of Polarization)

Vacuum Insulator (P, # 0 mod 1) Vacuum

\ J \ J
| |

Q.mod1 =-P, Q.mod1 =P,

...consistent with Qpq,y = P 1 (classical electromagnetism)



Warm-up: Dipole/Polarization

7. Many-body real-space formula (Resta’s formula)

VOLUME 80, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MARCH 1998

Quantum-Mechanical Position Operator in Extended Systems

Raftaele Resta

Consider... If band Insulator

!

211 _
Uy = exp (T z x N (x>> “— (GS|U,|GS) = exp(2miP,) = exp li ngrAk dic

| GS) — Generic many-body ground state in of size L

[Periodic Boundary Condition]



Warm-up: Dipole/Polarization

If band Insulator

!

21i —~
U; = exp (% ZxN(x)) <«—> (GS|U1|GS) = exp(2miP,) = exp [i fTrAk dk

[1. Many-body invariant] ﬁ [2. Band Index]

\hich agree each otV

[3. Edge Charge]

Vacuum Insulator (P, #+# 0 mod 1) Vacuum

\ J \ J
| |

Q.mod1 =-P, Q. mod1 =P,



Recent Progresses: Electric Multipoles
Quantized electric multipole insulators

Wiladimir A. Benalcazar,' B. Andrei Bernevig,” Taylor L. Hughes"*

Dipolar Insulators Quadrupolar Insulators Octupolar Insulators

O

O

(

-

O

Boundary Charge Corner Charge Corner Charge




Focus: Two Primary Higher-Order Tls:

Quadrupolar Insulators Octupolar Insulators

[Ref. Benalcazar-Bernevig-Hughes, Science, 2017] suggested...
P,=P,=0 Po=PF, =0
Qxy:"l:OInOd1 QaszbaZO

Oy, # 0 mod 1

...Which can be shown only when “discrete”, e.g., Q,, = % Omod1



Quantized electric multipole insulators

Wiladimir A. Benalcazar," B. Andrei Bernevig,” Taylor L. Hughes*

[Science 2017]

...found insulators with quantized (discrete) electric multipoles

1 1
Qxy=§mod1 & Oxyz=imod1

+ “Symmetry-Protected” Band Indices [“Nested Wilson Loops”]



Quantized electric multipole insulators

Wiladimir A. Benalcazar," B. Andrei Bernevig,” Taylor L. Hughes*

[Science 2017]

...found insulators with quantized (discrete) electric multipoles

1 1
Qxy=§mod1 & Oxyz=imod1

+ “Symmetry-Protected” Band Indices [“Nested Wilson Loops”]

T

Not Generic Measure of Multipoles




What is done? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

E.g., for the quadrupoles: symmetry [1. C4] or [2. M, X M, two mirrors]
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What is done? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

E.g., for the quadrupoles: symmetry [1. C4] or [2. M, X M, two mirrors]
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What is done? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

“Nested Wilson Loop Approach” = Capturing Boundary Polarization

Consider a Wilson line:
1.0

...and investigate its polarization

[i.e., Wilson of Wilson = Nested Wilson]

. ;]
W(j?k — EEHWC“{)
k




What is done? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

“Nested Wilson Loop Approach” = Capturing Boundary Polarization

Consider a Wilson line: .
1.0
. P gia
WC,]{ — EEHWC (k) 0.5
..and investigate its polarization k
4 k"'
[i.e., Wilson of Wilson = Nested Wilson] ? = "
k Ve k
: / A
. - 0.5 1.0 v\
Reasoning: 5 \ /
Hy (k) = H.q4.(k) [adiabatic equivalence] ' I

» Polarization of Hy,_(k) = Polarization of H,44.(k) [when C4 or mirrors present]

By definition, nested Wilson loop is not a generic measure!



For example, when the symmetries are relaxed...

Disagreement with the physical quadrupole moment

[Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

0 /2 T
O edge polarization (EP)
. topological EP e
NOoN-tc PHI EP .°.
o?(.). \
QQQ- Nested Wilson Loop
0.5
660
.‘O
SO ——— Quadrupole moment
0 <t T R Mg

adiabatic parameter t

A (successful) “topological band index” but not a physical measure.



So, what is missing? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

1. Generic momentum-space invariants (for free fermion!) for multipoles

[i.e., Nested Wilson loop seems fundamentally different from P, = %T ¢ A in 1d]

2. Generic many-body & real-space invariant for multipoles

[i.e., No analogue of U; = exp (% Y x N(x)) for multipoles]

3. Of course, no link is given for 1 & 2 (since they are absent)



So, what is missing? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

1. Generic momentum-space invariants (for free fermion!) for multipoles

[i.e., Nested Wilson loop seems fundamentally different from P, = %T ¢ A in 1d]

2. Generic many-body & real-space invariant for multipoles

[i.e., No analogue of U; = exp (% Y x N(x)) for multipoles]

3. Of course, no link is given for 1 & 2 (since they are absent)

Our progress



In short,

We look for Generic Definitions of Electric Multipoles in Crystals

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

See also: William Wheeler, Lucas Wagner, and Taylor Hughes, arxiv:1812.06990 (2018)



2. Multipoles in Crystals

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

See also: William Wheeler, Lucas Wagner, and Taylor Hughes, arxiv:1812.06990 (2018)



We propose:

[1] Quadrupole in a crystal is defined by:

1 .
Qxy = Tl’lm log (GS| U,|GS) with U, = exp(znl ny p(x))

2 LyL,

[2] Octupole in a crystal is defined by:

1 2i
Oy, = ﬂlm log (GS| U3|GS) with U3 = exp (LxLyLz nyz p(x))

Here: |GS) = many-body states on Torus (we will generalize later)

(Uz) = [(U3)| Exp (2miQ,,)

(Uz) = [{U3)| Exp (Znioxyz)

Essentially,

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)




Data first and then Proof

Q. If | perform the explicit computation on my computer:

1 .
Qyy = Tl’lm log (GS| U, |GS) with U, = exp(zm nyp(x))

2 L,L,

...on the models in literature, do | find:

Topological state: (., = % mod 1 " tor?
...from computers:

Trivial state: Q,,, = O mod 1




Symmetry-Protected Quadrupoles 1.

%Im[log(ﬁg)]
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Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Symmetry-Protected Quadrupoles 2.

An anomalous higher-order topological insulator

S. Franca,! J. van den Brink,"? and 1. C. Fulga'

! Institute for Theoretical Solid State Physics, IFW Dresden, 01171 Dresden, Germany
2 Institute for Theoretical Physics, TU Dresden, 01069 Dresden, Germany

(Dated: November 30, 2018)

despite having a trivial topological invariant. We introduce a concrete example of an anomalous

HOTI, which has a

nested Wilson loop index.

uantized bulk quadrupole moment and fractional corner charces. but a vanishin

A new invariant able to capture the topology of this phase is then

constructed. Our work shows that anomalous topological phases, previously thought to be unique
to periodically driven systems, can occur and be used to understand purely time-independent HOTIs.

1 . -
—Im [log{b’g}
2 . Anomalous TQI
o5 —o—o0 0o o 000000
|
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| V.
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[Note: there is a modified index from nested Wilson loops]

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



So far, consistent with nested Wilson loop indices

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



So far, consistent with nested Wilson loop indices

Can | go beyond nested Wilson approaches?

|.E., regime where quantizing symmetries are relaxed

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Remind: Corner charge Q. = Q phy5|cal Quadrupole moments

_q@m S

When this is uniformly stacked,

O O

O—+(0O
* bidid @

Ypmenn?

O O

Only the boundary is left

Inside is cancelled (9 — g = 0) !



So we compare the following two:

1. Periodic BC on Torus 2. Open BC

y A

2 25 o
7} ;
| =
] - = :
o 2|f -
5 .. :
o]
X = A
10 10
X
201

Single-particle Observable

harge d ty

Many-body Calculation

1 Py —_—
0y = 5-1m log (GS| U,[GS) - [ @x(@s1p00 - 5168

2
21l

with U = exp (L 7 zxyﬁ(x)>
xty

Do I find Q. = Q. (= Q%,’)?

= Z(ﬁ(x) o ﬁ)single particle



Beyond nested Wilson loop

-@- U2, L=17
04l -@- Q xy™w, L=14
' —@— corner charge, L=18
0.2F
0.0F
-0.2 F
-0.4F

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Seems working.

But why do they work?

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Path-integral Interpretation of the overlap:

1
(GS|U,|GS) = ~ Tr e PHU, o« exp (iSess [4,])

Applying Dyson’s formula:

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Path-integral Interpretation of the overlap:

1
(GS|U,|GS) = ~ Tr e PHU, o« exp (iSess [4,])

Applying Dyson’s formula:

T 4

(Imaginary) Time evolution
N O B B

T =0 |- . Action of Uy,

Space

21

Here A, is generated by U;, i.e., A, = 6,,06(7) L, Xy

So, whatis S sr[A,] ?

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Effective Responses of Multipoles:

1. Charge (monopole)

Seff = J j j dtd’x q V(x,y)

2. Dipole (1t multipol
ipole (15t multipole) Ses = ff dtdzqu(X;Y)_qV(x-l'd'Y)

:D ~ [|[ atax ad 0, vexy) = [[[ aarx p-E,

3. Quadrupole (2" multipole)

Seff = U dtd’x [qV(x,y) —qV(x+d,y) + -]
- [[f avaex e LOEr > O




T
Xy

For the gauge fields: A, = 6,,56(7) T
Xy

(GS|U2|GS) o exp (iSerr [4,]) o exp (2miQl)) = exp (2miQ.)

-@- U2, L=17
-@- Q xy™w, L=14
—@— corner charge, L=18

0.4F

0.2

0.0

-0.2 F

0.4

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Spins?

[1] B Kang, K Shiozaki, and GYC (2018)

; ] At the exactly-soluble limits:
- /AN)

(1) A # 0 and t = 0: Topological

— - ~ 1
e & @ ¢ 1
: i t | A i - Dangling spin-E’s at the corners
-® oo ®-
_ 1 - / N
(Uz)=-1
] o) (1

| R (2) A = 0 and t = 0 Trivial
[Each dot is spin-1/2]
(U) = +1

Hy=)\'3" (ot08 + 0305 + o5 + ofot)

a=r,Yy

[Ref. Dubinkin-Hughes (2018)]



Other models?

Reviewer 1’s model:

To verify that the value of the order parameter proposed in this
manuscript indeed describes the multipele moments in a more general
setting, | calculated the value of the arder parameter for a model
which is a modification of the model in Eq 4 in that, instead of
threading ‘pi flux per plaguette, only half of that flux is

O QJ";/ ill PB(‘
© (c.)vr_q in OBC

s« Corner Charge




Other models?

Review 1 With Boundary Polarizations

To verify that the value of the order parameter proposed in this

manuscript indeed describes the multipele moments in a more general bdry

setting, | calculated the value of the order parameter for a model QC = Px -|— P
which is a modification of the model in Eq 4 in that, instead of

threading ‘pi flux per plaguette, only half of that flux is

bdry
y — Qxy

(b) Thouless pumping (z/2-flux model)

0.4

0.2

¢ Q. in PBC
o @, in OBC

U_2 (PBEC), L=30

p x"edge + p y™edge-g ¢, L=30
U 2 (OBC), L=30

corner charge, L=30

s+ Corner Charge

3 ‘4 5 6

0

0/n Good agreement within numeric errors




Other models?

Higher Order Topological Insulators in Amorphous Solids

Adhip Agarwala,"»?* Vladimir Jurici¢,* T and Bitan Roy? 1

[Amorphous, Disordered Fermionic (2019 Feb)]

Nonsymmorphic Topological Quadrupole Insulator in Sonic Crystals

Zhi-Kang Lin,'! Hai-Xiao Wang. %! Ming-Hui Lu,” and Jian-Hua Jiang" *
[Nonsymmorphic, Bosonic (2019 Mar)]

Higher-order topological insulator out of equilibrium: Floquet engineering and quench
dynamics

o - N . 2
Tanay Nag,?* Vladimir Juri¢i¢,® 1 and Bitan Roy? !

[Nonequilibrium, Floquet-driven (2019 April)]

So far so good if there is a Wannier gap.

Cf. S Ono, L Trifunovic, and H Watanabe (2019)



In short,

We found working definitions of electric multipoles in Crystals

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

See also: William Wheeler, Lucas Wagner, and Taylor Hughes, arxiv:1812.06990 (2018)



Beyond Multipoles:

Byungmin Kang, and GYC, in preparation
For U(1) symmetric states:

Stop = IM [S.¢r] can be gradient expanded by 4,

We find a unitary U with spatial geometry M:

Byungmin Kang (KIAS)



Beyond Multipoles:

Byungmin Kang, and GYC, in preparation
For U(1) symmetric states:

Stop = IM [S.¢r] can be gradient expanded by 4,
We find a unitary U with spatial geometry M:

1: Phase of (GS(M)|U|GS(M)) detects the topology

Ex: bulk dipole, bulk quadrupole, bulk octupole etc
Resta (1999); Kang, Shiozaki, and GYC (2018)

Ex: boundary polarizations, Chern numbers
Byungmin Kang (KIAS)
Byungmin Kang, and GYC, in preparation



Beyond Multipoles:

Byungmin Kang, and GYC, in preparation
For U(1) symmetric states:

Stop = IM [S.¢r] can be gradient expanded by 4,
We find a unitary U with spatial geometry M:
1: Phase of (GS(M)|U|GS(M)) detects the topology

Ex: bulk dipole, bulk quadrupole, bulk octupole etc
Resta (1999); Kang, Shiozaki, and GYC (2018)

Ex: boundary polarizations, Chern numbers

Byungmin Kang (KIAS)
Byungmin Kang, and GYC, in preparation

2: [(GS(M)|U|GS(M))| detects “metallicity/gap” of the excitation

Ex: Resta’s conjecture, Wannier gap for multipoles

Resta (1999), Kang, Shiozaki, and GYC (2018); Dubinkin, May-mann, and Hughes (2019)



3. Conclusions & Outlooks



Conclusions
1. Proposed (definition of) many-body invariants for multipoles

2. Numerically confirmed the invariants
3. Analytic Supports from Effective QFT

4. Generalization to other topological states

Outlooks

1. Momentum-Space Indices of Our Many-Body Invariants

2. Cases without Wannier gap

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)
Byungmin Kang, and GYC, in preparation



Thanks for your attention!



Remarks on the modulus of Unitaries 1.

21T
1. Resta’s conjecture on U; = exp( 7 z xp(x))
X

[{U1)| = 0 as Agqpy— 0 (“metal”)

...s0 that P, as the phase of (U, ) ill-defined.

[Ref. Resta (1998); more precise statement in Kobayashi-Nakagawa-Fukusumi-Oshikawa (2018)]

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Remarks on the modulus of Unitaries 1.

. 21l
1. Resta’s conjecture on U; = exp( 7 z xp(x))
[{U1)| = 0 as Agqpy— 0 (“metal”)

...s0 that P, as the phase of (U, ) ill-defined.

[Ref. Resta (1998); more precise statement in Kobayashi-Nakagawa-Fukusumi-Oshikawa (2018)]

: 2i
2. Our conjecture on U, = exp (L T Z Xy p(x))
x=y

|(U2)| — 0 as AW—gap_) 0 [“dipolar metal” but “charge insulator”?]

Note: Ay, _,4p# 0 is necessary to define quadrupoles in nested Wilson loops

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Remarks on the modulus of Unitaries 2.

We plot...

A v"v

1.0
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_
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[(U2)]



Remarks on the modulus of Unitaries 3.

(a) A\«Vaunicr (b) 10g [|<(:2>|]

0,15

\/ 7l
U‘GU C 1 L 1 1 1 e L ! L
0.2 -0,1 0,0 0.1 0,2 -0.2 -0.1 0.0 0.1 0.2

[{U2)| = 0 as Ay _gqp— 0 (“Dipole Metal”)

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



In short,

We found generic definitions of electric multipoles in Crystals
[phase part of unitary]

+ many-body measure of Wannier gap closing

[modulus of unitary]

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Higher-Order Topology = Non-Trivial at “Boundary of Boundary”

Ex: In 2D,

Quadrupolar Insulators

a

»
»

2D Topological Insulators Corner States

E.g. QHEs or HgTe E.g.,?



Higher-Order Topology = Non-Trivial at “Boundary of Boundary”

Ex: In 3D,

Octupolar Insulators

|

O
O e

3D Topological Insulators Hinge States Corner States

)

E.g. Bi,Ses E.g. Bismuth E.g.,?



