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Proposal:

Generic Definitions of Electric Multipoles in Solids

…many-body invariants for various topological states
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1. Introduction

: Why do you want to care about electric multipoles?



Warm-up: classical multipoles

Input: Charge Distribution 𝝆(𝒓)

Output: Well-defined Multipoles 

Ex:

Electric Field Lines

Ex:



Warm-up: classical multipoles

+q +q

-q

-q



Classical Multipoles seem to be Done

: Why do I still care about Electric Multipoles?



Difficulties in Crystals [at low temperature]:

(1) Quantum-mechanical Electrons

(2) Lattice (Periodicity) 

[may well be highly-correlated]



Difficulties in Crystals [at low temperature]:

(1) Quantum-mechanical Electrons

(2) Lattice (Periodicity) 

[may well be highly-correlated]

Bad: Non-trivial to define multipoles

Good: Links to Topological Band Insulators



Warm-up: Dipole/Polarization
Infinite Lattice (Crystal):

Unit translation

Dipole moment: 𝑷𝒙 =෍𝒙𝒒𝒙 →෍〈𝝍|𝒙|𝝍〉𝒒𝒙 ?



Warm-up: Dipole/Polarization
Infinite Lattice (Crystal):

Unit translation

Dipole moment: 𝑷𝒙 =෍𝒙𝒒𝒙 →෍〈𝝍|𝒙|𝝍〉𝒒𝒙 ?

Position 𝒙 of Electrons      ? 

X?



Warm-up: Dipole/Polarization

Momentum Space:

Ψ 𝑎 = 𝑒𝑖𝑘𝑥 𝑢 𝑘 𝑎 [Bloch function]

𝜋
−𝜋

𝐸(𝑘)

Filled band

exp 2𝜋𝑖𝑷𝒙 = exp 𝑖 රTr 𝐴𝑘 𝑑𝑘

Empty band

and 𝐴𝑘 = 𝑢 𝑘 𝑖𝜕𝑘 𝑢 𝑘

[Berry connection of filled states]



Warm-up: Dipole/Polarization

Remarks on exp 2𝜋𝑖𝑷𝒙 = exp 𝑖 රTr 𝐴𝑘 𝑑𝑘

1. Polarization: 𝑷𝒙 = 𝑷𝒙𝐦𝐨𝐝 𝟏 (symmetry-independent)



Warm-up: Dipole/Polarization

Remarks on exp 2𝜋𝑖𝑷𝒙 = exp 𝑖 රTr 𝐴𝑘 𝑑𝑘

1. Polarization: 𝑷𝒙 = 𝑷𝒙𝐦𝐨𝐝 𝟏

3. Not clear how to write in real space (later)

4. Not clear how to apply to interacting electrons (later)

2. Symmetry

(symmetry-independent)

𝑹𝒙: 𝒙 → −𝒙

:𝑷𝒙 → −𝑷𝒙
𝑷𝒙 = 𝟎,

𝟏

𝟐
mod 1 (discrete values only)



Warm-up: Dipole/Polarization

5. Topology: 𝑹𝒙: 𝒙 → −𝒙

:𝑷𝒙 → −𝑷𝒙
𝑷𝒙 = 𝟎,

𝟏

𝟐
mod 1 (discrete values only)

“Symmetry-protected Topology”

Relevant for, e.g., Su-Schrieffer-Heeger model



Warm-up: Dipole/Polarization

6. Boundary Charge (Physical Consequence of Polarization)

VacuumVacuum Insulator (𝑃𝑥 ≠ 0 mod 1)

𝑸𝒄𝐦𝐨𝐝 𝟏 = −𝑷𝒙 𝑸𝒄𝐦𝐨𝐝 𝟏 = 𝑷𝒙

…consistent with 𝑸𝐛𝐝𝐫𝐲 = 𝑷 ⋅ 𝒏 (classical electromagnetism)



Warm-up: Dipole/Polarization

7. Many-body real-space formula (Resta’s formula)

𝑈1 = exp
2𝜋𝑖

𝐿
෍𝑥 ෡𝑁 𝑥 〈𝐆𝐒|𝑼𝟏|𝐆𝐒〉 = 𝐞𝐱𝐩 𝟐𝝅𝒊𝑷𝒙

𝐺𝑆 = of size 𝑳Generic many-body ground state in 

Consider…

[Periodic Boundary Condition]

= exp 𝑖 රTr 𝐴𝑘 𝑑𝑘

If band Insulator



Warm-up: Dipole/Polarization

𝑼𝟏 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳
෍𝒙 ෡𝑵 𝒙 〈𝐆𝐒|𝑼𝟏|𝐆𝐒〉 = 𝐞𝐱𝐩 𝟐𝝅𝒊𝑷𝒙 = exp 𝑖 රTr 𝐴𝑘 𝑑𝑘

If band Insulator

VacuumVacuum Insulator (𝑃𝑥 ≠ 0 mod 1)

𝑸𝒄𝐦𝐨𝐝 𝟏 = −𝑷𝒙 𝑸𝒄 𝐦𝐨𝐝 𝟏 = 𝑷𝒙

[1. Many-body invariant] [2. Band Index]

[3. Edge Charge]

…which agree each other.



Recent Progresses: Electric Multipoles

Corner Charge

Quadrupolar Insulators

Corner Charge

Octupolar InsulatorsDipolar Insulators

Boundary Charge



Focus: Two Primary Higher-Order TIs:

Quadrupolar Insulators Octupolar Insulators

𝑃𝑥 = 𝑃𝑦 = 0

𝑸𝒙𝒚 ≠ 𝟎𝐦𝐨𝐝 𝟏

𝑃𝑥 = 𝑃𝑦 = 0

𝑄𝑎𝑏 = 𝑄𝑏𝑎 = 0

𝑶𝒙𝒚𝒛 ≠ 𝟎𝐦𝐨𝐝 𝟏

[Ref. Benalcazar-Bernevig-Hughes, Science, 2017] suggested… 

…which can be shown only when “discrete”, e.g., 𝑸𝒙𝒚 =
𝟏

𝟐
, 𝟎 mod 1



[Science 2017]

…found insulators with quantized (discrete) electric multipoles

𝑸𝒙𝒚 =
𝟏

𝟐
𝐦𝐨𝐝 𝟏 𝑶𝒙𝒚𝒛 =

𝟏

𝟐
𝐦𝐨𝐝 𝟏&

+ “Symmetry-Protected” Band Indices [“Nested Wilson Loops”]



[Science 2017]

…found insulators with quantized (discrete) electric multipoles

𝑸𝒙𝒚 =
𝟏

𝟐
𝐦𝐨𝐝 𝟏 𝑶𝒙𝒚𝒛 =

𝟏

𝟐
𝐦𝐨𝐝 𝟏&

+ “Symmetry-Protected” Band Indices [“Nested Wilson Loops”]

Not Generic Measure of Multipoles



What is done? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

E.g., for the quadrupoles: symmetry [1. 𝑪𝟒] or [2. 𝑴𝒙 ×𝑴𝒚 two mirrors]

Tight-binding Model (1) Gapped Spectrum (2) Corner Charge 𝑸𝒄 = ±
𝟏

𝟐



What is done? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

E.g., for the quadrupoles: symmetry [1. 𝑪𝟒] or [2. 𝑴𝒙 ×𝑴𝒚 two mirrors]

Tight-binding Model (1) Gapped Spectrum (2) Corner Charge 𝑸𝒄 = ±
𝟏

𝟐

(3) “Su-Schrieffer-Heeger model” with 𝑷𝒙 = 𝑷𝒚 =
𝟏

𝟐
𝐦𝐨𝐝 𝟏

[Boundary Polarization]

Consistent with 𝑸𝒙𝒚 =
𝟏

𝟐
with boundary ⊥ ෝ𝒏: 

𝑷𝒂
𝑩𝒅𝒓𝒚

= ෝ𝒏𝒂𝑸𝒂𝒃 & 𝑸𝒄 = ෝ𝒏𝟏
𝒂 𝑸𝒂𝒃 ෝ𝒏𝟐

𝒃 =
𝟏

𝟐



What is done? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

“Nested Wilson Loop Approach” = Capturing Boundary Polarization

Consider a Wilson line:

…and investigate its polarization

[i.e., Wilson of Wilson = Nested Wilson]



What is done? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

“Nested Wilson Loop Approach” = Capturing Boundary Polarization

Consider a Wilson line:

…and investigate its polarization

[i.e., Wilson of Wilson = Nested Wilson]

Reasoning: 

𝑯𝑾𝒄
𝒌 ≈ 𝑯𝒆𝒅𝒈𝒆(𝒌) [adiabatic equivalence]

Polarization of 𝑯𝑾𝒄
𝒌 = Polarization of 𝑯𝒆𝒅𝒈𝒆(𝒌) [when 𝑪𝟒 or mirrors present]

By definition, nested Wilson loop is not a generic measure!



For example, when the symmetries are relaxed…

Disagreement with the physical quadrupole moment 

A (successful) “topological band index” but not a physical measure.

Nested Wilson Loop

Quadrupole moment

[Ref. Benalcazar-Bernevig-Hughes, Science, 2017]



So, what is missing? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

1. Generic momentum-space invariants (for free fermion!) for multipoles

[i.e., Nested Wilson loop seems fundamentally different from 𝑃𝑥 =
1

2𝜋
𝐴𝑘ׯ in 1d]

2. Generic many-body & real-space invariant for multipoles

3. Of course, no link is given for 1 & 2 (since they are absent)

[i.e., No analogue of 𝑼𝟏 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳
σ𝒙 ෡𝑵 𝒙 for multipoles]



So, what is missing? [Ref. Benalcazar-Bernevig-Hughes, Science, 2017]

1. Generic momentum-space invariants (for free fermion!) for multipoles

[i.e., Nested Wilson loop seems fundamentally different from 𝑃𝑥 =
1

2𝜋
𝐴𝑘ׯ in 1d]

2. Generic many-body & real-space invariant for multipoles

3. Of course, no link is given for 1 & 2 (since they are absent)

[i.e., No analogue of 𝑼𝟏 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳
σ𝒙 ෡𝑵 𝒙 for multipoles]

Our progress



In short, 

We look for Generic Definitions of Electric Multipoles in Crystals

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

See also: William Wheeler, Lucas Wagner, and Taylor Hughes, arxiv:1812.06990 (2018)



2. Multipoles in Crystals 

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

See also: William Wheeler, Lucas Wagner, and Taylor Hughes, arxiv:1812.06990 (2018)



We propose:

[1] Quadrupole in a crystal is defined by:

𝑼𝟐 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳𝒙𝑳𝒚
෍𝒙𝒚 𝝆 𝒙𝑸𝒙𝒚 =

𝟏

𝟐𝝅
𝐈𝐦 𝐥𝐨𝐠 𝑮𝑺| 𝑼𝟐|𝑮𝑺 with

[2] Octupole in a crystal is defined by:

𝑼𝟑 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳𝒙𝑳𝒚𝑳𝒛
෍𝒙𝒚𝒛 𝝆 𝒙𝑶𝒙𝒚𝒛 =

𝟏

𝟐𝝅
𝐈𝐦 𝐥𝐨𝐠 𝑮𝑺| 𝑼𝟑|𝑮𝑺 with

Here: |𝐆𝐒〉 = many-body states on Torus (we will generalize later)

Essentially, 
𝑼𝟐 = 〈𝑼𝟐〉 𝐄𝐱𝐩 𝟐𝝅𝒊𝑸𝒙𝒚

𝑼𝟑 = 〈𝑼𝟑〉 𝐄𝐱𝐩 𝟐𝝅𝒊𝑶𝒙𝒚𝒛

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Data first and then Proof

Q. If I perform the explicit computation on my computer:

𝑼𝟐 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳𝒙𝑳𝒚
෍𝒙𝒚 𝝆 𝒙𝑸𝒙𝒚 =

𝟏

𝟐𝝅
𝐈𝐦 𝐥𝐨𝐠 𝑮𝑺| 𝑼𝟐|𝑮𝑺 with

…on the models in literature, do I find: 

Topological state: 𝑄𝑥𝑦 =
1

2
mod 1

Trivial state: 𝑄𝑥𝑦 = 0 mod 1

…from computer?



Symmetry-Protected Quadrupoles 1.

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

[Phase Diagram]



Symmetry-Protected Quadrupoles 2.

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

[Note: there is a modified index from nested Wilson loops]



So far, consistent with nested Wilson loop indices

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



So far, consistent with nested Wilson loop indices

Can I go beyond nested Wilson approaches?

I.E., regime where quantizing symmetries are relaxed

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Remind: Corner charge 𝑸𝒄 = 𝑸𝒙𝒚
𝒑𝒉

physical Quadrupole moments

𝑄𝑥𝑦
𝑝ℎ

= 𝑞

= +q

= -q

When this is uniformly stacked,

Ex:

Inside is cancelled (𝒒 − 𝒒 = 𝟎) !
Only the boundary is left



So we compare the following two:

1. Periodic BC on Torus 2. Open BC

Many-body Calculation Single-particle Observable

Do I find 𝑸𝒙𝒚 = 𝑸𝒄 = 𝑸𝒙𝒚
𝒑𝒉

?

𝑼𝟐 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳𝒙𝑳𝒚
෍𝒙𝒚 ෝ𝝆 𝒙

𝑸𝒙𝒚 =
𝟏

𝟐𝝅
𝐈𝐦 𝐥𝐨𝐠 𝐆𝐒| 𝑼𝟐|𝐆𝐒

with

𝑸𝒄 = න𝒅𝟐𝒙 𝐆𝐒 ෝ𝝆 𝒙 − ഥ𝝆 |𝐆𝐒〉

x

y

=෍〈ෝ𝝆 𝒙 − ഥ𝝆〉𝐬𝐢𝐧𝐠𝐥𝐞 𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞



Beyond nested Wilson loop

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Seems working.

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

But why do they work?



Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

Path-integral Interpretation of the overlap:

𝐆𝐒 𝐔𝟐 𝐆𝐒 =
𝟏

𝒁
𝐓𝐫 𝐞−𝜷𝑯𝐔𝟐 ∝ 𝐞𝐱𝐩 𝒊𝐒𝐞𝐟𝐟 𝑨𝝁

Applying Dyson’s formula:



Path-integral Interpretation of the overlap:

𝐆𝐒 𝐔𝟐 𝐆𝐒 =
𝟏

𝒁
𝐓𝐫 𝐞−𝜷𝑯𝐔𝟐 ∝ 𝐞𝐱𝐩 𝒊𝐒𝐞𝐟𝐟 𝑨𝝁

Here 𝑨𝝁 is generated by 𝑼𝟐, i.e., 𝑨𝝁 = 𝜹𝝁𝟎𝜹(𝝉)
𝟐𝝅

𝑳𝒙𝑳𝒚
𝒙𝒚

So, what is 𝑺𝒆𝒇𝒇[𝑨𝝁] ?

𝝉

Space

(Imaginary) Time evolution

𝝉 = 𝟎 Action of 𝑈2

~exp −𝛽𝐻

Applying Dyson’s formula:

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Effective Responses of Multipoles:

1. Charge (monopole)

2. Dipole (1st multipole)

3. Quadrupole (2nd multipole)

-q
𝐒𝐞𝐟𝐟 = ම𝐝𝐭𝐝𝟐𝐱 𝐪 𝐕 𝐱, 𝐲

-q +q

𝐒𝐞𝐟𝐟 = ම𝐝𝐭𝐝𝟐𝐱 𝐪 𝐕 𝐱, 𝐲 − 𝐪 𝐕(𝐱 + 𝐝, 𝐲)

≈ ම𝐝𝐭𝐝𝟐𝐱 𝐪𝐝 𝝏𝒙𝐕 𝐱, 𝐲 =ම𝐝𝐭𝐝𝟐𝐱 𝐏 ⋅ 𝐄𝐱

-q +q

-q+q

𝐒𝐞𝐟𝐟 = ම𝐝𝐭𝐝𝟐𝐱 [𝐪 𝐕 𝐱, 𝐲 − 𝐪 𝐕 𝐱 + 𝐝, 𝐲 + ⋯]

=ම𝐝𝐭𝐝𝟐𝐱 𝐐𝐱𝐲
𝒑𝒉 𝝏𝒙𝑬𝒚 + 𝝏𝒚𝑬𝒙

𝟐



For the gauge fields: 𝑨𝝁 = 𝜹𝝁𝟎𝜹(𝝉)
𝟐𝝅

𝑳𝒙𝑳𝒚
𝒙𝒚

𝐆𝐒 𝐔𝟐 𝐆𝐒 ∝ 𝐞𝐱𝐩 𝒊𝐒𝐞𝐟𝐟 𝑨𝝁 ∝ 𝐞𝐱𝐩 𝟐𝝅𝒊𝑸𝒙𝒚
𝒑𝒉

= 𝐞𝐱𝐩 (𝟐𝝅𝒊𝑸𝒄)

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



Spins?

[1] B Kang, K Shiozaki, and GYC (2018)

[Each dot is spin-1/2]

At the exactly-soluble limits:

(1) 𝝀 ≠ 𝟎 and 𝐭 = 𝟎: Topological

(2) 𝝀 = 𝟎 and 𝐭 ≠ 𝟎: Trivial

- Dangling spin-
1

2
’s at the corners

𝑼𝟐 = −𝟏

𝑼𝟐 = +𝟏

[Ref. Dubinkin-Hughes (2018)]



Other models?

Reviewer 1’s model:



Other models?

Review 1 With Boundary Polarizations

𝑸𝒄 = 𝑷𝒙
𝒃𝒅𝒓𝒚

+ 𝑷𝒚
𝒃𝒅𝒓𝒚

− 𝑸𝒙𝒚

Good agreement within numeric errors 



Other models?

[Amorphous, Disordered Fermionic (2019 Feb)]

[Nonsymmorphic, Bosonic (2019 Mar)]

[Nonequilibrium, Floquet-driven (2019 April)]

So far so good if there is a Wannier gap.

Cf. S Ono, L Trifunovic, and H Watanabe (2019)



In short, 

We found working definitions of electric multipoles in Crystals

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

See also: William Wheeler, Lucas Wagner, and Taylor Hughes, arxiv:1812.06990 (2018)



Beyond Multipoles:
Byungmin Kang, and GYC, in preparation

For U(1) symmetric states:

𝑺𝒕𝒐𝒑 = 𝐈𝐦 [𝑺𝒆𝒇𝒇] can be gradient expanded by 𝑨𝝁

We find a unitary U with spatial geometry M:

Byungmin Kang (KIAS)



Beyond Multipoles:
Byungmin Kang, and GYC, in preparation

For U(1) symmetric states:

𝑺𝒕𝒐𝒑 = 𝐈𝐦 [𝑺𝒆𝒇𝒇] can be gradient expanded by 𝑨𝝁

1: Phase of 〈𝐺𝑆(𝑀) 𝑈 𝐺𝑆(𝑀)〉 detects the topology

Ex: bulk dipole, bulk quadrupole, bulk octupole etc

Ex: boundary polarizations, Chern numbers

Byungmin Kang, and GYC, in preparation

We find a unitary U with spatial geometry M:

Resta (1999); Kang, Shiozaki, and GYC (2018) 

Byungmin Kang (KIAS)



Beyond Multipoles:
Byungmin Kang, and GYC, in preparation

For U(1) symmetric states:

𝑺𝒕𝒐𝒑 = 𝐈𝐦 [𝑺𝒆𝒇𝒇] can be gradient expanded by 𝑨𝝁

1: Phase of 〈𝐺𝑆(𝑀) 𝑈 𝐺𝑆(𝑀)〉 detects the topology

Ex: bulk dipole, bulk quadrupole, bulk octupole etc

Ex: boundary polarizations, Chern numbers

2: | 𝐺𝑆 𝑀 𝑈 𝐺𝑆 𝑀 | detects “metallicity/gap” of the excitation

Byungmin Kang, and GYC, in preparation

Ex: Resta’s conjecture, Wannier gap for multipoles

We find a unitary U with spatial geometry M:

Resta (1999); Kang, Shiozaki, and GYC (2018) 

Resta (1999), Kang, Shiozaki, and GYC (2018); Dubinkin, May-mann, and Hughes (2019) 

Byungmin Kang (KIAS)



3. Conclusions & Outlooks



1. Proposed (definition of) many-body invariants for multipoles

2. Numerically confirmed the invariants

3. Analytic Supports from Effective QFT

Conclusions

Outlooks

1. Momentum-Space Indices of Our Many-Body Invariants

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

4. Generalization to other topological states

Byungmin Kang, and GYC, in preparation

2. Cases without Wannier gap



Thanks for your attention!



Remarks on the modulus of Unitaries 1.

𝑼𝟏 → 𝟎 as ∆𝒈𝒂𝒑→ 𝟎 (“metal”)

1. Resta’s conjecture on 𝑼𝟏 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳𝒙
෍𝒙𝝆 𝒙

…so that 𝑷𝒙 as the phase of 〈𝑼𝟏〉 ill-defined.

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

[Ref. Resta (1998); more precise statement in Kobayashi-Nakagawa-Fukusumi-Oshikawa (2018)]



Remarks on the modulus of Unitaries 1.

𝑼𝟏 → 𝟎 as ∆𝒈𝒂𝒑→ 𝟎 (“metal”)

1. Resta’s conjecture on 𝑼𝟏 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳𝒙
෍𝒙𝝆 𝒙

…so that 𝑷𝒙 as the phase of 〈𝑼𝟏〉 ill-defined.

2. Our conjecture on 𝑼𝟐 = 𝐞𝐱𝐩
𝟐𝝅𝒊

𝑳𝒙𝑳𝒚
෍𝒙𝒚 𝝆 𝒙

𝑼𝟐 → 𝟎 as ∆𝑾−𝒈𝒂𝒑→ 𝟎

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

Note: ∆𝑊−𝑔𝑎𝑝≠ 0 is necessary to define quadrupoles in nested Wilson loops

[“dipolar metal” but “charge insulator”?]

[Ref. Resta (1998); more precise statement in Kobayashi-Nakagawa-Fukusumi-Oshikawa (2018)]



Remarks on the modulus of Unitaries 2.

∆𝑾−𝒈𝒂𝒑

We plot…

V.S. 𝑼𝟐



Remarks on the modulus of Unitaries 3.

𝑼𝟐 → 𝟎 as ∆𝑾−𝒈𝒂𝒑→ 𝟎 (“Dipole Metal”)

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)



In short, 

We found generic definitions of electric multipoles in Crystals

Ref. Byungmin Kang, Ken Shiozaki, and GYC, arxiv:1812.06999 (2018)

+ many-body measure of Wannier gap closing

[phase part of unitary]

[modulus of unitary]



Higher-Order Topology = Non-Trivial at “Boundary of Boundary” 

Ex: In 2D,

2D Topological Insulators Corner States

E.g. QHEs or HgTe E.g., ?

Quadrupolar Insulators



Higher-Order Topology = Non-Trivial at “Boundary of Boundary” 

3D Topological Insulators Hinge States Corner States

Ex: In 3D,

E.g. Bi2Se3 E.g. Bismuth E.g., ?

Octupolar Insulators


