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What are the SU(N) symmetric Heisenberg models that 
we are interested in?
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that are treated equally. 

simplest example: 


SU(2) S=1/2 (fundamental representation)  [but not the S=1]
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What are the SU(N) symmetric Heisenberg models that 
we are interested in?
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For the S = 1/2 fundamental representation of the SU(2):
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SU(2) vs. SU(3) - two sites

⊗ = ⊕
22 1 3× = +

½ ⊗ ½ = 0 ⊕ 1

Addition of two S=½ SU(2) spins:

using Young diagrams:

↑ and ↓ spins

|↑↓〉−|↓↑〉 singlet
odd (anti-symmetrical)

|↑↑〉, |↑↓〉+|↓↑〉, |↓↓〉 triplet 
even (symmetrical)

⊗ = ⊕
33 3 ̅ 6× = +

Addition of two SU(3) spins:

|aa〉, |bb〉, |cc〉, |ab〉+|ba〉, 
|ac〉+|ca〉, and |bc〉+|cb〉
even (symmetrical)

|ab〉−|ba〉, |ab〉−|ba〉, |ab〉−|ba〉 
odd (anti-symmetrical).

|a〉, |b〉, and |c〉. 

H = P12

P12(|αβ⟩ − |βα⟩) = −(|αβ⟩ − |βα⟩)

P12(|αβ⟩ + |βα⟩) = +(|αβ⟩ + |βα⟩) E=+1, even wave function

E=−1, odd wave function
1 2



SU(3) singlet

in the SU(3) singlet the spins are fully entangled:

 we cannot write it in a product form

= |abc〉 + |bca〉 + |cab〉 − |acb〉 − |acb〉 − |acb〉

spins fully antisymmetrized

SU(3) irreps on 3 sites

1 2 × 83 = +

Addition of three SU(3) spins (27 states):

⊕⊕  2×=⊗ ⊗

+ 10× ×3 3



SU(3) in S=1 spin model
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increased symmetry
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FIG. 1. (Color online) The simplex solid states obtained with
iPEPS (D = 14) for two different SU(N ) Heisenberg models. The
width of a bond is proportional to the magnitude of the bond energy,
while blue (red dotted) bonds correspond to negative (positive)
energies. (a) One of the two degenerate trimerized ground states
of the SU(3) Heisenberg model on the kagome lattice. (b) One of the
two quadrumerized ground states of the SU(4) Heisenberg model on
the checkerboard lattice.

The Rapid Communication is organized as follows: First
we provide details on the iPEPS simulations, in particular,
how the models are simulated using a square-lattice iPEPS.
Then we present the iPEPS and ED results obtained for the
kagome and the checkerboard model, respectively. Finally, we
summarize our findings.

Infinite projected entangled-pair states (iPEPSs). A
projected-entangled pair state (PEPS) is an efficient variational
ansatz for two-dimensional ground state wave functions.22– 26

It can be seen as a natural extension of a matrix product state
(MPS), the underlying ansatz of the famous density matrix
renormalization group (DMRG) method.27 The main idea is
to represent a wave function by a trace of a product of tensors,
with one tensor per lattice site. On the square lattice each
tensor T

p
ijklhas five indices: one index p which carries the local

Hilbert space of a lattice site with dimension d, and four indices
i,j,k,l—the auxiliary bonds with bond dimension D—which
connect to the four nearest-neighbor tensors. Thus, each tensor
contains dD4 variational parameters, and by varying D the
accuracy of the ansatz can be systematically controlled. A
bond dimension D = 1 simply corresponds to a product state
(a site-factorized wave function), and upon increasing D
quantum fluctuations (entanglement) can be taken into account
in a systematic way.

Details on the iPEPS method for the square lattice can
be found in Refs. 28– 30, in particular, how to optimize the
tensors (i.e., finding the best variational parameters) and how to
compute expectation values by contracting the tensor network
(i.e., computing the trace of the product of all tensors). We
performed similar iPEPS simulations already for the SU(4)
Heisenberg model31 and the triangular- and square-lattice
SU(3) Heisenberg models.32

For the experts, we note that the optimization is done
through an imaginary time evolution using the simple
update,29,33– 35 and we have verified some simulation re-
sults also with the full update.29 The corner-transfer matrix
method29,36,37 is used to contract the tensor network, where
the error of the approximate contraction can be controlled by
the boundary dimension χ . The simulation results in this work
are extrapolated in χ , where the extrapolation error is small

FIG. 2. (Color online) The two different simulation setups used to
simulate the kagome lattice with the iPEPS method developed for the
square lattice. Black circles and triangles correspond to tensors, and
black lines to the connection between tensors (the physical index of a
tensor is not shown). Interactions between physical sites (solid circles)
are given by thick shaded lines. (a) Auxiliary tensors (white circles)
are introduced to create a square lattice iPEPS. The interactions along
the horizontal and vertical direction correspond to nearest-neighbor
couplings on the square lattice, whereas the interactions along the
diagonal are treated as next-nearest-neighbor interactions. (b) Three
physical sites A, B, C on the kagome lattice, each having a local
dimension d = 3, are mapped into a block site with a local dimension
d̃ = 27.

compared to the symbol sizes. To improve the efficiency of the
simulations we used tensors with Zq symmetry.38,39

To simulate the checkerboard model we use the usual square
lattice iPEPS ansatz where we treat the diagonal couplings as
next-nearest-neighbor interactions as described in Ref. 40.

For the kagome lattice we implemented two different
simulation setups based on a square lattice iPEPS, which have
the advantage that existing algorithms for the optimization
and contraction can be reused. For the first variant we
use one tensor per lattice site, plus additional auxiliary
tensors which are inserted to form a square lattice iPEPS, as
sketched in Fig. 2(a). (The bond dimension of the auxiliary
tensors can be chosen as D = 1 since all correlations are
carried by the tensors on the physical sites.) The couplings
along the horizontal and vertical direction correspond to
nearest-neighbor couplings between two tensors, whereas
the remaining bonds necessary to form the kagome lattice
are represented by the next-nearest-neighbor bonds in
the square lattice, which can be treated as explained in
Ref. 40. In the second setup we map the kagome lattice onto a
square lattice by blocking three sites as illustrated in Fig. 2(b).
The original Hamiltonian is mapped onto a square lattice
Hamiltonian with nearest-neighbor interactions between the
block sites (see the Supplemental Material41). We point out
here that we do not block three sites belonging to a triangle
in the kagome lattice, since this would automatically bias the
solution towards a trimerized state.

Since we work directly in the thermodynamic limit, the
ground state wave function may exhibit spontaneously broken
symmetries. We measure the energy on each bond Eb in the
unit cell. If the energies are not equal on all symmetry related
bonds, i.e., if the difference

"E = max(Eb) − min(Eb) (2)

is finite, then the state breaks some lattice symmetries.
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The trimerized/simplex solid state/simplex valence-bond crystal for the 
fundamental 3 irrep model and S=1 Kagome (BLBQ, including the pure 

Heisenberg point)

What do we know about SU(3) Kagome ?

SU(3)

Large-N expansion: Hermele & Gurarie, Phys. Rev. B 
84, 174441 (2011);


iPEPS and ED: Corboz, Penc, Mila, & Läuchli, Phys. 
Rev. B 86, 041106(R) (2012)

S=1

H. J. Changlani, A. M. Läuchli, Trimerized ground state of the spin-1 Heisenberg 
antiferromagnet on the kagome lattice, Phys. Rev. B 91, 100407 (2015) 

T. Liu, W. Li, A. Weichselbaum; J von Delft, Jan, G. Su, Simplex valence-bond crystal 
in the spin-1 kagome Heisenberg antiferromagnet, Phys. Rev. B 91, 060403(R) (2015) 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Spin-1 antiferromagnets are abundant in nature, but few theories or results exist to understand their general
properties and behavior, particularly in situations when geometric frustration is present. Here we study the S =
1 Kagome compound Na2Ti3Cl8 using a combination of Density Functional Theory, Exact Diagonalization, and
Density Matrix Renormalization Group methods to achieve a first principles supported explanation of exotic
magnetic phases in this compound. We find that the effective magnetic Hamiltonian includes essential non-
Heisenberg terms that do not stem from spin-orbit coupling, and both trimerized and spin-nematic magnetic
phases are relevant. The experimentally observed structural transition to a breathing Kagome phase is driven by
spin–lattice coupling, which favors the trimerized magnetic phase against the quadrupolar one. We thus show
that lattice effects can be necessary to understand the magnetism in frustrated magnetic compounds, and surmise
that Na2Ti3Cl8 is a compound which cannot be understood from only electronic or only lattice Hamiltonians,
very much like VO2.

The search for exotic phases of matter in geometrical frus-
trated magnets has been an area of active research. To a large
extent, effort has been focused on S = 1/2 2D materials [1–3]
which have seen a flurry of theoretical activity [4–10]. Less
explored is the S � 1 case [11, 12], where many candidate
materials exist, but where the theoretical effort has not been
proportionate to the experimental activity. This is partly based
on the rationale that larger S systems magnetically order at
low temperature, however, there are many counter-examples
to this intuition. For example, both theoretically and exper-
imentally, it has been found that certain compounds do not
conform to this scenario and instead form long-range non-
magnetic states such as valence bond (simplex) or "trimer-
ized" phases (in the case of the S = 1 kagome [13–17]). In
some cases, a strongly quantum fluctuating phase or "spin liq-
uid" is favored, as has been argued in the case of the nearly
idealized Heisenberg S = 1 pyrochlore [18–20]), triangu-
lar lattices [21–24], with second nearest neighbor and/or bi-
quadratic couplings and possibly even the honeycomb lat-
tice [25]. Further prohibiting deeper understanding of the
physics of these materials is the interaction of magnetic de-
grees of freedom with the lattice, which provides an addi-
tional mechanism of relieving magnetic frustration. This work
is thus motivated by the exploration of the interplay of mag-
netism with the lattice in S = 1 kagome materials, which have
multiple reported experimental realizations [26, 27].

Na2Ti3Cl8 , a compound that has been known for at least 24
years [28], has recently seen a resurgence of interest due to the
underlying S = 1 kagome physics, and its relevance to under-
standing the interplay between magnetic and lattice degrees
of freedom [29, 30]. At room temperature, the compound
has layers of titanium ions arranged in a kagome structure,
as shown in Fig. 1. The titanium ions are in Ti2+ configura-

3.70 Å

2.98 Å
3.99 Å

3.70 Å

(a) (b)

(c)

Figure 1. (Color online) (a) Crystal structure of Na2Ti3Cl8 con-
sists of layers of edge-sharing TiCl6 octahedra, which are interca-
lated with Na ions. (b) At room temperature, Ti ions in each layer
form ideal Kagome lattices (HT structure). (c) At low temperatures,
a breathing distortion sets in, resulting in two different Ti-Ti bond
lengths of 2.98 Åand 3.99 Å.

tion, so Hund’s rules dictate a 3d2 configuration with S = 1
magnetic moments. Experimentally, at low temperature (LT),
Na2Ti3Cl8 has the "breathing kagome" or "trimerized" struc-
ture, referred to as in the literature as the � phase [29] (Fig.
1b). On heating the sample, at around 200 K, a phase tran-
sition occurs to the undistorted kagome structure, the room
temperature ↵ phase [29], which we refer to as the high tem-
perature (HT) phase. On cooling the sample from the HT
phase, one reproducibly gets trapped in an “intermediate" �

phase (IT phase) which appears to be a distinct metastable
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state [29]. Magnetic susceptibility drops sharply with decreas-
ing temperature below the HT phase, consistent with S = 1
atomic moments at HT phase, which are suppressed in the IT
and LT phases as the crystal structure is trimerized [28–30].

Here we elucidate the magnetic ground state and expli-
cate the mechanism of the breathing distortion in Na2Ti3Cl8
by a combination of first principles density functional theory
(DFT), exact diagonalization (ED), and density matrix renor-
malization group (DMRG) approaches. We find that (i) the
magnetic Hamiltonian that describes the interactions between
atomic spins moments in the HT phase includes essential non-
Heisenberg terms (biquadratic and ring-like exchange) that
stem from higher order processes, and (ii) due to the magni-
tude of these non-Heisenberg terms, the magnetic groundstate
of the HT Hamiltonian is ferroquadrupolar (nematic) instead
of trimerized. This implies that the breathing distortion of
the lattice is necessary to stabilize the trimerized phase. We
also find that (iii) the DFT calculations on the HT phase with
Neel order point to no lattice instability, which implies that
the trimerized ground state is stabilized through spin-lattice
coupling. In other words, neither the lattice nor the mag-
netic Hamiltonians by themselves have any instabilities to-
wards trimerization, but their combination gives rise to a co-
incident magnetic-structural transition.

The Effective Hamiltonian— Lack of information on the
low-energy effective Hamiltonian is often a limiting factor in
studies of frustrated magnetic materials. While there has been
progress in downfolding approaches using quantum mechani-
cal expectation values [31, 32], here we adopt the classical fit-
ting approach in conjunction with DFT that is now commonly
used to extract magnetic Hamiltonians and parameter for real
materials. (See, for example, Refs. [33–35].) We performed
self-consistent DFT calculations for multiple magnetic config-
urations, including various collinear and non-collinear states,
and extracted the final spin configurations and energies at the
DFT level. We then fit the parameters of various magnetic
models to these energies.

In Fig. 2, we present the results of our DFT calculations
for the HT structure, performed using the PBEsol exchange
correlation functional with the on-site +U correction with
U = 3 eV [36–40]. A fit to a nearest-neighbor only Heisen-
berg Hamiltonian captures the main trend of the energy with
an antiferromagnetic nearest neighbor coupling; but the agree-
ment is far from perfect, and especially the non-collinear spin
configurations’ energy are not properly captured by the model
(Fig. 2a). Possibly the simplest extension of the Hamiltonian
is the biquadratic term ⇠ (Si · Sj)

2 [41]. This biquadratic ex-
change is allowed by symmetry, and emerges in various spin-1
models due to higher order (⇠ t

4, where t is the hopping am-
plitude) perturbations which correspond to multiple electrons
between two atoms [36, 42–44]. At the same order in nearest
neighbor hopping t, there also exists a ring exchange on the
triangles with the form ⇠ (Si · Sj) (Si · Sk). We include both

Figure 2. (Color online) Fits of different effective model spin Hamil-
tonians to density functional theory data for U = 3 eV. Each data
point corresponds to a different magnetic configuration. The hori-
zontal axis is the energy from the DFT calculation, and the vertical
axis is the energy for the same configuration from the fitted model.
(a) The fit to the model with only the nearest neighbor Heisenberg
coupling. The energies of many non-collinear states are not repro-
duced well by the model. (b) The model with biquadratic and ring-
exchange couplings. The agreement is enhanced, with no clear out-
liers in the data.

of these terms to get the Hamiltonian

H = J

X

hiji

Si · Sj + Jbq

X

hiji

(Si · Sj)
2

+
JR

2

X

�=i,j,k

((Si · Sj) (Si · Sk) + (Si · Sk) (Si · Sj)) (1)

where hiji refers to nearest neighbor pairs and J > 0 is
the Heisenberg coupling. The symmetrization in the ring ex-
change term is required to maintain Hermiticity of the Hamil-
tonian. Ring exchanges similar to this one have been proposed
and studied in square lattices before [45], but to the best of our
knowledge, this form of the Hamiltonian has not been con-
sidered for a Kagome system before. The inclusion of more
terms make the fit better, as expected (Fig. 2). We find that
while the nearest neighbor antiferromagnetic Heisenberg cou-
pling is the strongest term, both Jbq and JR are nonzero and
significant. In the supplementary information [36] we provide
a jackknife analysis to show that the data is not over-fit, and
discuss the possibility of other Hamiltonians that can be fit to
the DFT data but require further neighbor hopping terms.

Wannier analysis of the electronic structure of Na2Ti3Cl8
provides insight into the reason that the Hamiltonian attains
this complicated form, and also to how the J coefficients be-
have under the structural transition. In Fig. 3a, we show the
t2g-like Wannier functions on the Ti atoms. The Ti cations are
at Wyckoff position 9e with site symmetry 2/m (C2h). This
low symmetry of the crystal field further splits the 3 t2g or-
bitals into t2g ! Ag+Bg+Bg , but our first principles calcu-
lations indicate that the two Bg orbitals (xz and yz) are degen-
erate within numerical noise, and only the Ag (xy) orbital has
a different energy. In Fig. 3b, we show the hoppings between
the 3 t2g-like orbitals in the HT phase. There are at least 3 dif-
ferent t values that are large and hence contribute significantly
to the exchange processes. While we do not attempt to solve
this model explicitly, we note that it is rich enough to give

arXiv:1909.02020

Trimerized phase in the S = 1 Kagome antiferromagnet 
with ring exchange
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Simplex solid in SU(3) Kagome

3≡̅333 ̅ (b)(a) 6 ⊗ = ⊕

33 3 ̅ 6× = +
Addition of two SU(3) spins:

Each site hosts the symmetric, 
6 dimensional irrep because of 

the bosons (like in the S=1 
AKLT wave function case).

The ability of two spins to form a singlet state is a special
property of the SU!2" group. Decomposing the product of
two spin-S representations yields the well-known result

S ! S= 0 " 1 " 2 " ¯ " 2S, !4"

and there is always a singlet available. If we replace SU!2"
by SU!3", this is no longer the case. The representations of
SU!N" are classified by !N−1"-row Young tableaux
!l1 , l2 , . . . , lN−1" with lj boxes in row j and with l1! l2! ¯
! lN−1. The product of two fundamental !1,0" representations
of SU!3" is

3

⊗
3

=
3

⊕
6

, !5"

which does not contain a singlet. One way to rescue the
two-site singlet for general SU!N" is to take the product of
the fundamental representation N with the antifundamental
N̄. This yields a singlet plus the !N2−1"-dimensional adjoint
representation. In this manner, generalizations of the SU!2"
antiferromagnet can be defined in such a manner that the
two-site valence bond structure is preserved, but only on
bipartite lattices.9,10

Another approach is to keep the same representation of
SU!N" on each site but to create SU!N" singlets extending
over multiple sites. When each site is in the fundamental
representation, one creates N-site singlets,

" #1¯#Nb#1

† !i1" ¯ b#N

† !iN"#0$ , !6"

where b#
†!i" creates a Schwinger boson of flavor index # on

site i. The SU!N" spin operators may be written in terms of
the Schwinger bosons as

S$
# = b#

†b$ −
p

N
%#$, !7"

with Tr!S"=0, for the general symmetric !p ,0" representa-
tion. These satisfy the SU!N" commutation relations

%S$
#,S&

'& = %$'S&
# − %#&S'

$ . !8"

Extended valence bond solid !XVBS" states were first dis-
cussed by Affleck et al. in Ref. 11. In that work, SU!2N"
states where N=mz were defined on lattices of coordination
number z, with singlets extending over z+1 sites. Like the
MG model, the XVBS states break lattice translation sym-
metry t and their ground states are doubly degenerate; they
also break a charge conjugation symmetry C, preserving the
product tC. In addition to SMA magnons, the XVBS states
were found to exhibit soliton excitations interpolating be-
tween the degenerate vacuums. More recently, Greiter and
Rachel12 considered SU!N" valence bond spin chains in both
the fundamental and other representations, constructing their
corresponding Hamiltonians and discussing soliton excita-
tions. Extensions of Klein models, with Kekulé ground states
consisting of products of local SU!N" singlets, were dis-
cussed by Shen13 and more recently by Nussinov and Ortiz.14

An SU!4" model on a two-leg ladder with a doubly degen-
erate Majumdar-Ghosh-type ground state has been discussed
by Chen et al.15

Shen also discussed a generalization of Anderson’s RVB
state to SU!N" spins as a prototype of a spin-orbit liquid
state.13 A more clearly defined and well-analyzed model was
recently put forward by Pankov et al.,16 who generalized the
Rokhsar-Kivelson quantum dimer model17 to a model of
resonating singlet valence plaquettes. Their plaquettes are
N-site SU!N" singlets !N=3 and N=4 models were consid-
ered", which resonate under the action of the SU!N" antifer-
romagnetic Heisenberg Hamiltonian, projected to the valence
plaquette subspace. The models and states considered here
do not exhibit this phenomenon of resonance. Rather, they
are described by static “singlet valence simplex” configura-
tions. Consequently, their physics is quite different and in
fact simpler. For example, with resonating valence bonds or
plaquettes, one can introduce vison excitations18 which are
Z2 vortex excitations, changing the sign of the bonds or
plaquettes which are crossed by the vortex string.19 For sim-
plex !or plaquette" solids, there is no resonance, and the vi-
son does not create a distinct quantum state. The absence of
“topological quantum order” in the Klein and AKLT models
has been addressed by Nussinov and Ortiz.14

Here, I shall explore further generalizations of the AKLT
scheme, describing a family of “simplex solid” !SS" states on
N-partite lattices. While the general AKLT state is written as
a product over the links of a lattice L, with M singlet cre-
ation operators applied to a given link, the SS states, mutatis
mutandis, apply M SU!N" singlet operators on each N sim-
plex. Each site then contains an SU!N" spin whose represen-
tation is determined by M and the lattice coordination. Fur-
thermore, as is the case with the AKLT states, the SS states
admit a simple coherent state description in terms of classical
CPN−1 vectors. Their equal-time quantum correlations are
then computable as the finite temperature correlations of an
associated classical model on the same lattice. A classical
ordering transition in this model corresponds to a zero-
temperature quantum critical point as a function of M !which
is, however, a discrete parameter". I argue that the ordered
SS states select a particular ordered structure via an “order
by disorder” mechanism. Finally, I discuss what happens to
these states at an edge, where the bulk SU!N" representation
is effectively fractionalized, and a residual entropy propor-
tional to the volume of the boundary arises.

II. SIMPLEX SOLIDS

Consider an N-site simplex ( and define the SU!N" sin-
glet creation operator:

R(
† = " #1¯#Nb#1

† !(1" ¯ b#N

† !(N" , !9"

where i=1, . . . ,N labels the sites (i on the simplex. Any
permutation ' of the labels has the trivial consequence of
R(

†→sgn!'"R(
†. Next, partition a lattice L into N-site sim-

plixes, i.e., into N sublattices, and define the state

#) !L;M"$ = '
(

!R(
†"M#0$ , !10"

where M is an integer. Since each R(
† operator adds one

Schwinger boson to every site in the simplex, the total boson
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SU(N) singlet on N sites, represented 
by  Schwinger bosons:
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$ . !8"
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plex. Each site then contains an SU!N" spin whose represen-
tation is determined by M and the lattice coordination. Fur-
thermore, as is the case with the AKLT states, the SS states
admit a simple coherent state description in terms of classical
CPN−1 vectors. Their equal-time quantum correlations are
then computable as the finite temperature correlations of an
associated classical model on the same lattice. A classical
ordering transition in this model corresponds to a zero-
temperature quantum critical point as a function of M !which
is, however, a discrete parameter". I argue that the ordered
SS states select a particular ordered structure via an “order
by disorder” mechanism. Finally, I discuss what happens to
these states at an edge, where the bulk SU!N" representation
is effectively fractionalized, and a residual entropy propor-
tional to the volume of the boundary arises.

II. SIMPLEX SOLIDS

Consider an N-site simplex ( and define the SU!N" sin-
glet creation operator:
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where i=1, . . . ,N labels the sites (i on the simplex. Any
permutation ' of the labels has the trivial consequence of
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plixes, i.e., into N sublattices, and define the state
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3≡̅333 ̅ (b)(a) 3

⊗ = ⊕

3 ̅3 ̅ 3 6 ̅× = +

Each site hosts the 
antisymmetric, 3 
dimensional irrep.

SU(3) singlet on 3 sites, represented by fermions :

But we can do this with fermions as well !

|1(i1, i2, i3)i =
X

↵,�,�

"↵��f†
↵(i1)f

†
�(i2)f

†
�(i3)|0i = Fi1,i2,i3 |0i

<latexit sha1_base64="cqbxTxEWHh01I6KavecD3Rny++Y="></latexit>

|FSSi =
Y

4i

Y

5j

F4iF5j |0i
<latexit sha1_base64="mem02Z04q1Vq1ILHmc04PNS/wrw="></latexit>

femionic simplex solid wave function:



3≡̅333 ̅ (b)(a) 3

A guess: sum of local projectors, like in the S=1 AKLT model 

Do we know the parent Hamiltonian ?

H = J
X

hi,ji

Pi,j +K
X

4,5
(Pi,j,k + Pi,k,j)

<latexit sha1_base64="yDll9v2FBQXIsYJwCWIxSz33Zdc="></latexit>

hFSS|H2
|FSSihFSS|FSSi = hFSS|H|FSSi2

<latexit sha1_base64="H8wRc2owtmrQC0nodZseFXyAEYg="></latexit>

We may try it on a small system: we generate the FSS, and ask if the 
condition for being an eigenstate 

is satisfied with some values of J/K.

Surprise: it is always satisfied, the FSS is 
always an eigenstate of H ! 


But how does this happen?
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H = J
X

hi,ji

Pi,j +K
X

4,5
(Pi,j,k + Pi,k,j)
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#of states in (4,4,4) sector = 34650, but symmetry group large




The irreps in a triangle
1 2 × 83 ̅ =

⊕⊕  2×=⊗ ⊗
10̅ ̅3 ̅ 3 ̅

A̅

B̅C̅

A̅

A̅A̅

1 ⨀ 10 = 0

problem!
A̅

1 ⨀ 8 = 8

B̅A̅ A̅

B̅

C̅

1 ⨀ 1 = 0

A̅

B̅A̅

B̅

C̅ C̅

C

AB

A̅

B̅
A̅

B̅

C̅
C̅

C

AB

+

The sum cancels because of 
odd number of 

antisymmetrizations: (-1)3 = -1

⊕⊗⊗ ⊕

⨀ 1 8R 8L 10
1 8R 8L

8R 8R 8L 1� 10 8R

8L 8L 1� 10 8R 8L

10 8R 8L 10
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Comparing the S=1 AKLT chain with FSS

{s=1
sz=1

s=1
sz=0

S= 0 or 1

H
AKLT =

X

bonds

|S=2ihS=2|
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8R 8R 8L 1� 10 8R

8L 8L 1� 10 8R 8L
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H = J
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X
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(Pi,j,k + Pi,k,j)
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AKLT chain

Fermionic simplex solid eigenstate of the 

and ground state when c1>0 and c10>0.

H
FSS =

X

4,5
(c1|1ih1|+ c10|10ih10|)
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X

4,5
|10ih10|

<latexit sha1_base64="KatgErlYuvW/zlWg+SxUXWVVR5A="></latexit>

c1 = 3(K � J)

c10 = 3(K + J)
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Lower bound on energy

J = J1 + 2J2 + J3

K = K1 + 3K2
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H(J,K) =
X

lattice

H9(J1, J2, J3,K1,K2)
<latexit sha1_base64="FZwhB+9lJkbwE8GZYeT8NKjre/0="></latexit>

Let us write the lattice Hamiltonian as a sum offer the 
lattice of a Hamiltonian defined on a (9-site) open cluster:

where
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Lower bound on energy

ELB = max
J=J1+2J2+J3
K=K1+3K2

EGS(J1, J2, J3,K1,K2)

<latexit sha1_base64="B40jkGIDDkd+227IGwbBZWLoiW4=">AAACRnicbZBLSyNBEMdrsutjsz6iHr00GwQXJcxMBL0IsrIoyR4UjQpOGHo6ndjY86C7RgzDfL9c9gP4Jbwsspdd2EoMCz4Kqil+9e/uqn+UaWXRdR+cyoePM7Nz85+qnxcWl5ZrK6sXNs2NkB2R6tRcRdxKrRLZQYVaXmVG8jjS8jK6PRz3L++ksSpNznGYyW7MB4nqK8GRUFgbfA+LAOU9Fj++lSXbZ0HM7wnZPLLIxW3RItYKvS2/FfpbrbDJgoC1ibWJNen0S1ay/48cnZXlJsm3SU3Z3CYZpf81rNXdhjsJ9rbwpkUdpnES1kZBLxV5LBMUmlt77bkZdgtuUAkty2qQW5nRgHwgi4kNJdsg1GP91FAmyCb0hY7H1g7jiJQxxxv7ujeG7/Wuc+zvdQuVZDnKRDx/1M81w5SNPWU9ZaRAPaSCC6NoQiZuuOECyfkqre69XvRtceE3vGbDP92pH+xNTZiHdfgCm+DBLhzAMZxABwT8hF/wB/46I+fReXJ+P0srzvTOGryICvwDsIircQ==</latexit>

"1 = �3J + 2K

"8 = �K

"10 = 3J + 2K
<latexit sha1_base64="FFbe3Cl7J6bRYqOkn4QKAex5/NI="></latexit>

Actually, the 
energies of a 
single triangle 

gives also a lower 
bond (per triangle)

The energy calculated from the ground states of the sub-Hamiltonians will 
always be lower that the ground state energy of H, as the true ground 
state of H can be viewed as a variational wavefunction for H9.

FSS

FM

FM

The FM and the FSS saturate the lower bound, 
they are ground states (beware uniqueness)



Tensor network: the wave function

each triangle 
represents the 

antisymmetrizing 
Levi-Civita symbol 

3 ̅

3 ̅3 ̅

3



Tensor network: the overlap

R. Penrose, 
Applications of 
negative dimensional 
tensors, 1971

Penrose polynomial, 
defined for plane graphs 


graph of contracted 
Levi-Civita symbols 

12: 13392  
27: 1828256832
36: 2220531642144

gfortran has 128-bit long 
integer type:-)
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Example for overlap (12 sites)
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ε11,23,35ε12,24,36ε37,45,47ε38,43,50ε39,49,51ε40,52,55ε41,42,53ε44,48,60ε46,58,59ε54,56,57

= 49152

Penrose graph

The graphs are 
“bipartite” (median graph for 

degree 3 regular bipartite graph)



Evaluating Penrose graphs

1

2

3

ε1,2,3 ε1,2,3 = 6

1
2

3

4
5

6

7

8

1
5

6

7

8

…ε5,1,6 ε1,2,3 ε2,4,3 ε4,7,8… = − 2 × …ε5,1,6 ε1,7,8…

= −2 ×

εi, j,k εi,l,m = δl
j δ

m
k − δm

j δl
k

εi, j,k εi, j,l = 2δl
k

εi, j,k εi, j,k = 6

=

implied sum over 
repeated indices



Evaluating Penrose graphs

…ε1,2,8 ε2,3,4 ε4,5,6 ε6,7,8… = δ3
1δ7

5 + δ7
1δ3

5

1 2 3
4
567

8 = +1,3
7,5

1,7
3,5

1 2

3

4
5

6
= − δ2

1δ6
3δ4

5 − δ6
1δ4

3δ2
5 − δ4

1δ2
3δ6

5 + δ4
1δ6

3δ2
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Evaluating using tensor network
the building block:



Tensor network: the overlap

is simply a product 
of matrices



12 sites
27 sites
48 sites

Spin-spin correlation function
calculated using “tensor network”
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Spin-spin correlation function
decays exponentially, 

hFSS|P0,r|FSSi = C(r) ⇡ 3�r
<latexit sha1_base64="CXy2P6lZxi/c7PX/hgA3r8LLg2o=">AAACJ3icbVDNSwJBHJ21L7OvrY5dhiQwKNnVIC+BIIRHw/wA12R2HHVw9oOZ34ay+Qd16e/o1iWiDgX9J626h7QeDDzee8PMe7YvuALD+NASK6tr6xvJzdTW9s7unr5/UFdeICmrUU94smkTxQR3WQ04CNb0JSOOLVjDHpamfuOeScU99xbGPms7pO/yHqcEIqmjly1B3L5g2AI2gvC6Wp3gB1zphMaZnLLfuiXn0StcyshTbBHfl94I5+/Ccznp6Gkja8yA/xIzJmkUo9LRn62uRwOHuUAFUaplGj60QyKBU8EmKStQzCd0SPosnPWc4JNI6uKeJ6PjAp6pCzniKDV27CjpEBioZW8q/ue1AugV2iF3/QCYS+cP9QKBwcPT0XCXS0ZBjCNCqOTRDzEdEEkoRNOmourmctG/pJ7Lmvls7uYiXSzEIyTRETpGGWSiS1REZVRBNUTRE3pFn+hLe9RetDftfR5NaPGdQ7QA7fsHLVKj/A==</latexit>

Manhattan distance
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H =
X

4,5
|1ih1|

<latexit sha1_base64="CMhEbq+3DCIp+ZRIU1aqE+PWWRQ="></latexit>

H =
X

4,5
|10ih10|

<latexit sha1_base64="KatgErlYuvW/zlWg+SxUXWVVR5A="></latexit>

J = K
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J = �K
<latexit sha1_base64="vMu5WeB4xQGapGE7DHa2O7NxTA4=">AAAB4XicbVDLSgMxFL3xWeur6tJNsAhuLDNVsBuh4EZ0U8E+oC0lk2ba0ExmSO4IpfQD3Ii4UfCH/AX/xpl2Nm09EDicc8K953qRkhYd55esrW9sbm3ndvK7e/sHh4Wj44YNY8NFnYcqNC2PWaGkFnWUqEQrMoIFnhJNb3SX+s0XYawM9TOOI9EN2EBLX3KGqfRwe/nYKxSdkjMDXSVuRoqQodYr/HT6IY8DoZErZm3bdSLsTphByZWY5juxFRHjIzYQk9mGU3qeSH3qhyZ5GulMXcixwNpx4CXJgOHQLnup+J/XjtGvdCdSRzEKzeeD/FhRDGlal/alERzVOCGMG5lsSPmQGcYxOUo+qe4uF10ljXLJvSqVn66L1Up2hBycwhlcgAs3UIV7qEEdOAzhDT7hi3DySt7Jxzy6RrI/J7AA8v0HER2JRg==</latexit>



The 𝜗=3𝜋/4 (J = −K) case
H =

X

4,5
|1ih1|

<latexit sha1_base64="CMhEbq+3DCIp+ZRIU1aqE+PWWRQ="></latexit>

H4 = Pi,j,k + Pi,k,j � Pi,j � Pi,k � Pj,k
<latexit sha1_base64="/z/JhM7ZxQ2oAfOaLE8r88kJaTE=">AAACXnicbZFdSwJBFIZntzLTzO0Lgm6GJAgy2bUgbwKhGy8N8gNUZHYcddzZD2ZmA1mW/l5/obtu+h/N6hK4emDg5Tlnzpzzjh0wKqRpfmv63v5B7jB/VCgel07KxulZV/ghx6SDfebzvo0EYdQjHUklI/2AE+TajPRs5zXJ9z4IF9T33uUyICMXzTw6pRhJhcbGJxy6SM4xYlErHkdDySnyZozEL/+8rTitLqpODO9hhjrVRQwfsnQXc7ZY0rEwNipmzVwF3BZWKiogjfbY+BpOfBy6xJOYISEGlhnIUYS4pFiNXRiGggQIO2hGopU9MbxVaAKnPlfHk3BFN+qQK8TStVVlMp/I5hK4KzcI5bQxiqgXhJJ4eP3QNGRQ+jDxGk4oJ1iypRIIc6omhHiOOMJS/UiyupVddFt06zXrsVZ/e6o0G6kJeXANbsAdsMAzaIIWaIMOwOBXK2oX2qX2o+f0kl5el+paeuccbIR+9Qcu77U6</latexit>

= 0 
A

AA

B

AA

triangles having no 
more than two colors 

are degenerate 
eigenstates

(H4 + 1)
<latexit sha1_base64="6T9r0pUNoHB+jCICLQS2U8/myRk=">AAACBnicbVDLSgMxFM3UV62vUZdugkWsCGWmCnZZcNNlBfuAThkyaWYamnmQ3BHK0L0bf8WNiBsFl/6Cf2Om7aatFwKHc06Se46XCK7Asn6Nwsbm1vZOcbe0t39weGQen3RUnErK2jQWsex5RDHBI9YGDoL1EslI6AnW9cb3ud59YlLxOHqEScIGIQki7nNKQFOueYkdwXyoOCGBESUia07dzAHJSRQINr22HcmDEVy5ZtmqWrPB68BegDJaTMs1f5xhTNOQRUAFUapvWwkMMiKBU/1wyUkVSwgdk4BlsxhTfKGpIfZjqU8EeMYu+Uio1CT0tDPfVq1qOfmf1k/Brw8yHiUpsIjOP/JTgSHGeSd4yCWjICYaECq53hDTEZGEgm6upKPbq0HXQadWtW+qtYfbcqO+KKGIztA5qiAb3aEGaqIWaiOKXtAb+kRfxrPxarwbH3NrwVjcOUVLY3z/ARQmmKM=</latexit>

= 0 (H4 + 1)
<latexit sha1_base64="6T9r0pUNoHB+jCICLQS2U8/myRk=">AAACBnicbVDLSgMxFM3UV62vUZdugkWsCGWmCnZZcNNlBfuAThkyaWYamnmQ3BHK0L0bf8WNiBsFl/6Cf2Om7aatFwKHc06Se46XCK7Asn6Nwsbm1vZOcbe0t39weGQen3RUnErK2jQWsex5RDHBI9YGDoL1EslI6AnW9cb3ud59YlLxOHqEScIGIQki7nNKQFOueYkdwXyoOCGBESUia07dzAHJSRQINr22HcmDEVy5ZtmqWrPB68BegDJaTMs1f5xhTNOQRUAFUapvWwkMMiKBU/1wyUkVSwgdk4BlsxhTfKGpIfZjqU8EeMYu+Uio1CT0tDPfVq1qOfmf1k/Brw8yHiUpsIjOP/JTgSHGeSd4yCWjICYaECq53hDTEZGEgm6upKPbq0HXQadWtW+qtYfbcqO+KKGIztA5qiAb3aEGaqIWaiOKXtAb+kRfxrPxarwbH3NrwVjcOUVLY3z/ARQmmKM=</latexit>
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385427 states are degenerate 
312=531441 is the total number of states
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The 𝜗=𝜋/4 (J = K) case
H =

X

4,5
|10ih10|

<latexit sha1_base64="KatgErlYuvW/zlWg+SxUXWVVR5A="></latexit> ⊗ = ⊕

13 3 ̅ 8=⊗ ⊕

3 ̅

3
1

this does not contain 
10, only 1 and 8 

the building blocks are:



The J = K case: Lego time!
H =

X

4,5
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“current conservation” - some 
kind of a Coulomb liquid ?


On each bond 3 possibilities:

2 directions of arrow and 

absence of an arrow.


Z3 degrees of freedom


topological sectors 

(definition not obvious 

because of overlap and non-
orthogonality)



The J = K case: singlet states characterized by 
directed loops on honeycomb lattice

1 1

2 2

3 ̅
3≡̅33(a) (b) (c)

local loops -> 
extensive number of 

loops

number of undirected loops = 2×2×2(Nhex-1)

N undirected directed lin. ind.
12 32 69 48
27 1024 2551 2485
36 8192 22437



The J = K case: other irreps also appear

What is the origin of the higher SU(3) irreps?
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Lifting the degeneracy: K - J2 model
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J2 = sin↵
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we calculate the 
eigenvalues of the 

polarization 
operator:



p = ∑
j∈bonds

ωl( j)𝒫j

Topological sectors (polarizability)
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Topological sectors (polarizability)

we calculate the 
eigenvalues of the 

polarization 
operator:



p = ∑
j∈bonds

ωl( j)𝒫jRe(p)

Im(p)

27 sites, 2485 states
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FIG. 1. (a)–(j) Ten possible configurations of a local tensor to
realize the trimer covering. Known trimer coverings consisting of
linear and bent types only arise as special limits. The numbers 0, 1,
and 2 denote the indices of the site tensor. (k) Red and blue bars
represent all possible L- and B-type trimers, respectively.

Z =
∑

{li ,ri ,ui ,di } Al1r1u1d1δr1l2Al2r2u2d2 · · · gives the number of
trimer coverings.

The efficient calculation of Z proceeds on a cylinder ge-
ometry with the periodic boundary condition (PBC) imposed
along the x direction of length Nx and open ends along the
y direction of length Ny . The largest eigenvalue λ of the
row-to-row transfer matrix (TM) is used to evaluate Z ∼ λNy .
The entropy per site is s = ln Z/N , where N = NxNy counts
the number of lattice sites. We quote below the thermodynamic
extrapolation of the entropy for the mixed (both L- and B-type)
trimer case along with known results for L-only and B-only
types [24,25]:

s∞ =

⎧
⎪⎨

⎪⎩

0.15852(1.17178) for L-type,
0.27693(1.31907) for B-type,
0.41194(1.50974) for L- and B-type.

(1)

The number in the parentheses is x = es∞ , with which one
obtains Z ∼ xN .

Interestingly, we have found from analysis of the adjacency
graph of the transfer matrix that trimer configurations on the
cylinder can be classified into three distinct topological sectors
[26]. The winding number characterizing each sector can be
defined with a string threading the dual lattice. As depicted in
Fig. 2(a), we assign a direction to the string and give a weight
ω = e2π i/3 when the center position of the trimer is seen on
the right side of the path, and ω∗ if seen on the left side. With
this definition, the total weight for the elementary string loop
surrounding a site anticlockwise [Fig. 2(b)] is always ω, and it
can be considered as a locally conserved quantity in the trimer
problem. The winding number % around a single trimer is the
product of three factors of ω as the loop should consist of
three consecutive elementary loops, thus giving % = ω3 = 1.
For noncontractible loops defined on a compact manifold such
as the torus, the allowed winding numbers are % = 1,ω,ω∗,
as readers can easily verify, and cannot be modified by local
rearrangements of the string or of the trimers.

FIG. 2. (a) Assignment of the weight ω = e2π i/3 and its conjugate
ω∗ for the passage through the dual lattice with the center of the trimer
(blue dot) on the right and left side of the path, respectively. (b) For
any elementary loop surrounding a site, the total weight is always
% = ω. For any loop surrounding a single trimer, the total weight is
% = ω3 = 1.

A quantum Hamiltonian with 9g (g = genus of the mani-
fold) topological degeneracy may be constructed in analogy
with the RK Hamiltonian [3,4]:

(2)

The summation over all lattice translations of the blue-dot
site, as well as the 90◦ rotation (R π

2
) of the displayed terms,

are assumed. The v and t terms are the potential and resonating
pieces, respectively, in analogy with the structure of the RK
Hamiltonian for dimers [3,4]. In the potential terms, · · ·
denotes all other possible diagonal terms [26]. Resonating
terms involve only two trimers at one time and are not able
to alter the topological sector of the initial configuration. As
with all dimer models, there are certain “staggered states”
that cannot be reached by applying any number of resonance
moves. An example is given in Fig. 3(a). Acting with the
Hamiltonian on the staggered state gives 0 irrespective of t
and v values. Higher-order moves such as the simultaneous
rearrangement of six trimers caged inside the blue contour in

FIG. 3. (a) Staggered trimer configuration. A nonflippable six-
trimer block inside the blue boundary can be connected to (b) a
flippable configuration through six-trimer resonance moves.
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Figs. 3(a) and 3(b) can connect such staggered configurations
to flippable ones. Even this six-trimer flip is not able to alter
the topological sector.

At t = v, the trimer Hamiltonian in Eq. (2) can be recast
as a sum of projectors that locally project out the linear
superposition of flippable configurations [3,4,26]. Its ground
state is the linear superposition of all but the staggered
trimer configurations (to be defined shortly), with equal
amplitudes, i.e., the trimer resonating valence bond (tRVB)
state, |tRVB⟩ =

∑
T |T ⟩. Here, |T ⟩ refers to a trimer covering

within a particular topological sector. For a torus with genus
number g = 1, we have 9g = 9 degenerate ground states
not connected with each other by resonance moves of the
Hamiltonian. Each one is a unique ground state of the trimer
RK Hamiltonian at t = v, within the subspace that excludes
staggered configurations, due to the Perron-Frobenius theorem
[27]. The staggered states also have zero energy, in apparent
degeneracy with the tRVB state |tRVB⟩. One can rule out
staggered states from the ground state by perturbing away
from the RK point to v = t − ϵ infinitesimally, ϵ/t ≪ 1 [28].
Also, since this perturbation does not mix different topological
sectors, we still have 9g independent ground states.

Connected trimer (⟨tRVB|TiTj |tRVB⟩c) and trimer-trimer
(⟨tRVB|TiTi+x̂TjTj+x̂ |tRVB⟩c) correlation functions, where Ti

is either an L- or a B-type trimer projector, are evaluated and
presented in Fig. 4. By performing a finite size scaling, we
obtained very nicely converged values and therefore the results
in Fig. 4 are not certainly affected by the finite size effect.
All functions decay exponentially with very short correlation
lengths of order one lattice spacing, as observed in the dimer
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FIG. 4. Correlations between (a) L-type, (b) B-type, (c) L- and
B-type, and (d) (LL)-trimers are measured on a 120 × 120 lattice
with the open boundary condition. Here, Rij is the distance between
two trimers at the site i and j , and the estimated correlation length ξ

is shown for each plot.

RK wave function on the triangular lattice [29,30]. It strongly
suggests that the quantum trimer Hamiltonian in Eq. (2) is
gapped at the RK point.

The 9g-fold topological degeneracy along with the likely
gapped nature of the ground state suggests a Z3 gauge theory
description of the low-energy dynamics for the trimer Hamil-
tonian. The relevant magnetic excitations (so-called vortex
and antivortex) will also be of Z3 character, differentiating
a vortex from the antivortex [31]. (In the Z2 gauge theory,
vortex and antivortex are the same [32].) A vortex-antivortex
pair excitation can be constructed explicitly. Let us consider the
same string operator, used previously for defining the winding
number, connecting two sites (p1,p2) on the dual lattice and
define a quantum state

|v1v̄2⟩ =
∑

T

ωnr−nl|T ⟩, (3)

where nr(l) denotes the number of the trimers crossed by the
string from the right (left) side of its center. This state is
orthogonal to the ground state in the thermodynamic limit,

⟨v1v̄2|tRVB⟩ =
∑

T

ωnl−nr ∝ 1 + ω + ω∗ = 0. (4)

The first equality follows from the assumed orthogonality
of different trimer configurations ⟨T ′|T ⟩ = δT T ′ . For a suf-
ficiently large sample and a well-separated vortex-antivortex
pair there should be equal numbers of configurations having
nl − nr = 0,1,2 (mod 3), hence the overlap must be zero. The
phase V12 = ωnl−nr is topologically identical to the operator
creating the Z3 vortex-antivortex pair in the Z3 gauge theory
[31]. Therefore, |tRVB⟩ and |v1v̄2⟩ can be considered as a
vacuum and a single vortex-antivortex pair state, respectively.
In this sense, we may interpret the nontrivial phase ω obtained
by the elementary loop in Fig. 2(b) as a result of braiding
between the vortex (or antivortex) and a Z3 charge placed at
each site [31].

The t = v RK point defines the first-order phase boundary
[4]. For v/t > 1, the ground state is one of the staggered
configurations such as that shown in Fig. 3(a), defined as states
that are annihilated identically by the actions of t and v terms
in the trimer Hamiltonian. Any trimer configuration containing
a flippable block gains a positive energy (v − t)nfl, where nfl is
the number of such flippable blocks. At v/t = −∞, the ground
state will be chosen to maximize the number of flippable
configurations. It is one of the columnar configurations
depicted in Fig. 5, and those are sixfold degenerate at most,
depending on the boundary condition and the system size.
A likely phase diagram of the quantum trimer model is
schematically proposed in Fig. 5. An extensive numerical work

FIG. 5. Schematic phase diagram of the quantum trimer
Hamiltonian.
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FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical trimer
covering configuration on the square lattice. (c) Projected entangled-
pair state representation of the SU(3) tRVB state. (d) Two kinds of
projectors mapping virtual states to physical states.

with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0⟩ belonging to the
SU(3) trivial representation and {|1⟩, |2⟩, |3⟩} ({|1̄⟩, |2̄⟩, |3̄⟩})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E⟩ = |00⟩ + |11̄⟩ + |22̄⟩ + |33̄⟩ + |1̄1⟩ + |2̄2⟩ + |3̄3⟩. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E⟩i1,i2 =
∑

α,β∈VA

Eα,β |α⟩i1 |β⟩i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑

a∈V

∑

α,β,η,γ∈VA

Pa
α,β,η,γ |a⟩⟨α,β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑

a∈V

∑

α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ ,0

− δα,0δβ,0(δη,aδγ ,0 + δη,0δγ ,a )]|a⟩⟨α,β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],

P̂2 =
∑

a∈V

∑

α,β,η,γ∈VA

∑

M̄,N̄∈(1̄,2̄,3̄)

εaMN (δα,M̄δβ,0δη,N̄δγ ,0

+ δα,M̄δβ,0δη,0δγ ,N̄ + δα,0δβ,M̄δη,N̄δγ ,0

+ δα,0δβ,M̄δη,0δγ ,N̄ )|a⟩⟨α,β, η, γ |. (6)

The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ⟩ =
N⊗

i=1

P̂ (i)
⊗

⟨i1,i2⟩
|E⟩i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ⟩, and all trimer
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FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical trimer
covering configuration on the square lattice. (c) Projected entangled-
pair state representation of the SU(3) tRVB state. (d) Two kinds of
projectors mapping virtual states to physical states.

with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0⟩ belonging to the
SU(3) trivial representation and {|1⟩, |2⟩, |3⟩} ({|1̄⟩, |2̄⟩, |3̄⟩})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E⟩ = |00⟩ + |11̄⟩ + |22̄⟩ + |33̄⟩ + |1̄1⟩ + |2̄2⟩ + |3̄3⟩. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E⟩i1,i2 =
∑

α,β∈VA

Eα,β |α⟩i1 |β⟩i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑

a∈V

∑

α,β,η,γ∈VA

Pa
α,β,η,γ |a⟩⟨α,β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑

a∈V

∑

α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ ,0

− δα,0δβ,0(δη,aδγ ,0 + δη,0δγ ,a )]|a⟩⟨α,β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],

P̂2 =
∑

a∈V

∑

α,β,η,γ∈VA

∑

M̄,N̄∈(1̄,2̄,3̄)

εaMN (δα,M̄δβ,0δη,N̄δγ ,0

+ δα,M̄δβ,0δη,0δγ ,N̄ + δα,0δβ,M̄δη,N̄δγ ,0

+ δα,0δβ,M̄δη,0δγ ,N̄ )|a⟩⟨α,β, η, γ |. (6)

The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ⟩ =
N⊗

i=1

P̂ (i)
⊗

⟨i1,i2⟩
|E⟩i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ⟩, and all trimer
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FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical trimer
covering configuration on the square lattice. (c) Projected entangled-
pair state representation of the SU(3) tRVB state. (d) Two kinds of
projectors mapping virtual states to physical states.

with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0⟩ belonging to the
SU(3) trivial representation and {|1⟩, |2⟩, |3⟩} ({|1̄⟩, |2̄⟩, |3̄⟩})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E⟩ = |00⟩ + |11̄⟩ + |22̄⟩ + |33̄⟩ + |1̄1⟩ + |2̄2⟩ + |3̄3⟩. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E⟩i1,i2 =
∑

α,β∈VA

Eα,β |α⟩i1 |β⟩i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑

a∈V

∑

α,β,η,γ∈VA

Pa
α,β,η,γ |a⟩⟨α,β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑

a∈V

∑

α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ ,0

− δα,0δβ,0(δη,aδγ ,0 + δη,0δγ ,a )]|a⟩⟨α,β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],

P̂2 =
∑

a∈V

∑

α,β,η,γ∈VA

∑

M̄,N̄∈(1̄,2̄,3̄)

εaMN (δα,M̄δβ,0δη,N̄δγ ,0

+ δα,M̄δβ,0δη,0δγ ,N̄ + δα,0δβ,M̄δη,N̄δγ ,0

+ δα,0δβ,M̄δη,0δγ ,N̄ )|a⟩⟨α,β, η, γ |. (6)

The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ⟩ =
N⊗

i=1

P̂ (i)
⊗

⟨i1,i2⟩
|E⟩i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ⟩, and all trimer
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FIG. 1. (a) The model is constructed from trimers |τ ⟩ which are
in a singlet state with representation Hv ≡ 1 ⊕ 3 ⊕ 3̄ at each site
(green dots), to which a map P• is applied which selects the physical
degrees of freedom from Hv ⊗ Hv . (b) Mapping to a Z3 topological
model: Each site holds a Z3 degree of freedom: one of two arrows or
no arrow. The arrows are pointing towards the 3 representation and
satisfy a Gauss law across each vertex due to the fusion rules of the
SU(3) irreps.

indeed exhibits left- and right-propagating modes with very
different velocities, and the slow mode in the trivial sector
displays a level counting clearly matching that of a chiral
SU(3)1 Conformal Field Theory (CFT). Yet, we find clear
evidence that the modes couple and the ES is gapped. How-
ever, under a specific deformation the chiral features become
more pronounced, and it is well conceivable that the ES
becomes chiral for instance as the deformation drives the
system through a phase transition.

II. SU(3) MODEL

We start by providing the construction of the model, illus-
trated in Fig. 1(a). We start from trimers |τ ⟩ built of three “vir-
tual” particles, |τ ⟩ ∈ H⊗3

v , where each of the virtual particles
lives in Hv = 1 ⊕ 3 ⊕ 3̄. Here, the boldface numbers denote
representations of SU(3), that is Hv decays into a direct sum
C1 ⊕ C3 ⊕ C3, with u ∈ SU(3) acting with the trivial action
(1), the fundamental action u (3), and the antifundamental
action ū (3̄), respectively. We will choose |τ ⟩ to be an SU(3)
singlet. H⊗3

v supports a total of nine singlets, namely one in
each of the spaces 1 ⊗ 1 ⊗ 1, 3 ⊗ 3 ⊗ 3, and 3̄ ⊗ 3̄ ⊗ 3̄, and
the six permutations of 1 ⊗ 3 ⊗ 3̄. We choose |τ ⟩ to be an
equal weight superposition of all singlets, with the follow-
ing convention: The six states 1 ⊗ 3 ⊗ 3̄ together with the
1 ⊗ 1 ⊗ 1 singlet are combined with amplitudes ± 1 to form
a fully symmetric state |S⟩, the remaining states 3 ⊗ 3 ⊗ 3
and 3̄ ⊗ 3̄ ⊗ 3̄ are combined with amplitudes +1 to form a
fully antisymmetric state |A⟩, and |τ ⟩ = |S⟩ + i|A⟩. The state
|τ ⟩ thus has a chiral symmetry: It transforms trivially under
translation and rotation and as |τ ⟩ &→ |τ̄ ⟩ under reflection.

We now arrange the trimers |τ ⟩ as shown in Fig. 1(a) and
apply maps P(α,β ) to pairs of adjacent virtual sites, where the
parameters α,β ∈ [0, 1] will allow us to interpolate between
the fixed-point model and the SU(3) spin liquid. We first de-
fine the map P ⊥ ≡ P(1,1) which projects the two adjacent sites
H⊗2

v = (1 ⊕ 3 ⊕ 3̄)⊗2 onto the union of the three components
Hω = 1 ⊗ 3, Hω̄ = 3 ⊗ 1, and H1 = 3̄ ⊗ 3̄. We will show in
a moment that the resulting wave function is a fixed-point
wave function with Z3 topological order.

The interpolation in α is now obtained by adiabati-
cally removing the 6̄ component in H1 = 3̄ ⊗ 3̄ = 3 ⊕ 6̄,

that is,

P(α,1) =
{
1Hω

⊕ 1Hω̄
⊕

[
α1H1 + (1 − α)!H3

1

]}
P⊥ , (1)

where we have decomposed H1 = 3 ⊕ 6̄ ≡ H3
1 ⊕ H6̄

1, and
!H denotes the orthogonal projector onto H.

At α = 0, we are left with P333 = P(0,1) which maps
into H333 = Hω ⊕ Hω̄ ⊕ H3

1
∼= 3 ⊗ C3, where the first ten-

sor component transforms as 3, while the second compo-
nent labels which representation we consider, and thus trans-
forms trivially under SU(3). We can now remove the C3

adiabatically,

P(0,β ) = {13 ⊗ [β 1C3 + (1 − β )|e⟩⟨e|C3 ]} P(0,1), (2)

by projecting the label onto the equal weight superposition
|e⟩ of the three components (with the phases of Hω, Hω̄

chosen opposite, leaving P(0,β ) antisymmetric). For (α,β ) =
(0, 0), we can factor out the |e⟩ and are thus left with an
SU(3)-invariant wave function [as the building blocks are
SU(3)-invariant] with the fundamental representation at each
site. Clearly, the two interpolations can be combined into a
two-parameter family, though in the following we will only
consider the presented sequence of interpolations (1, 1) →
(0, 1) → (0, 0).

Let us now show how to map the model with P(1,1) =
P ⊥ : H⊗2

v → Hω ⊕ Hω̄ ⊕ H1 to a topological Z3 fixed-point
model by local unitaries. To this end, let us first add an
extra qutrit (“indicator”) {|−⟩t , | →⟩t , | ←⟩t } at each vertex,
onto which we copy the information whether the system
at that vertex is in the space H1 = 3̄ ⊗ 3̄, Hω = 1 ⊗ 3, or
Hω̄ = 3 ⊗ 1, as shown in Fig. 1(b) (the arrow always points
towards the 3 irrep). Now consider for a moment the scenario
where we project all indicator qutrits onto this basis (“classical
configurations”). Given any such classical configuration, the
states of the virtual system factorize into singlet states of the
corresponding irreps on the individual triangles, and can thus
be brought into a fiducial state by local unitaries controlled by
the state of the indicator qutrits, and thus effectively removed.

This operation can be done coherently, leaving us with
the indicator qutrits in a superposition of all allowed con-
figurations. The construction of |τ ⟩ ensures that around each
vertex of the dual honeycomb lattice, the number of 3 (i.e.,
ingoing arrows) minus the number of 1 (i.e., outgoing ar-
rows) is 0 mod 3. Associating the indicator qutrits with Z3
variables (with arrows pointing from the A to the B sublattice
corresponding to ω = e2π i/3, the other arrows to ω̄, and “no
arrow” to 1), it follows that the indicator qutrits which live
on the edges of the honeycomb lattice satisfy a Z3 Gauss’
law. In addition, all allowed configurations appear with equal
weight. Thus, the wave function given by the indicator qutrits
is the wave function of a quantum double model D(Z3), i.e.,
a fixed-point wave function with Z3 topological order.1

1Observe that our model is not a “resonating trimer state” as, e.g.,
in Ref. [17], since projecting 3̄ ⊗ 3̄ creates large entangled clusters
(e.g., for the vacuum of the Z3 model). Placing the model of Ref. [17]
on the kagome lattice in fact yields a variant of our model with a
modified |τ ⟩ which we found to be in a trivial phase.
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Nsites =
3

2
N3̄3̄3̄ + 3N333 +

3

2
N3̄3

Ntris = N3̄3̄3̄ +N333 +N3̄3

3Ntris = 2Nsites
<latexit sha1_base64="Ok/RlK+FgLRTOxQAu+JTrHgTtmU="></latexit>

from these equations: N333 = 0
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(a) (b)

FIG. 1. The SU(2) spin-1 and spin-2 AKLT spin liquids in
(a) 1D and (b) 2D. Virtual spin- 1

2 (orange circles) are entangled into
singlets (ellipses). Dashed circles represent projectors on the largest
spin irrep.

case of SU(3) symmetry. We show that it can be represented
as a simple tensor network, allowing for extensive studies.
We explore its bulk properties on an infinite cylinder, using
transfer matrix methods. The edge physics is investigated
by computing the entanglement spectrum and the related
entanglement Hamiltonian. We show that the latter can be very
well approximated by a simple SU(3) Heisenberg Hamiltonian
with exponentially decaying interactions.

SU(3) AKLT wave function. We now extend the recipe
for the construction of SU(2) AKLT states to SU(3), in a
straightforward way. In that case, we use standard Young
tableau notations to label the SU(3) irreps or “spins” (also
denoted by their dimension in bold). First, in order to realize
SU(3) singlets on all NN bonds of the square lattice, four
“quarks” in the fundamental [1] = 3 irrep (“antiquarks” in the
antifundamental [1,1] = 3 irrep) are attached on each even
(odd) site. This way, neighboring virtual spins on every NN
bond belong to 3 and 3 irreps and can then be projected
onto SU(3) [1,1,1] = 1 singlets. Then, in order to entangle
this simple product of singlets, one projects the group of four
quarks on each even (odd) site onto the most symmetric [4] =
15 ([4,4] = 15) irrep corresponding to the actual physical
degrees of freedom, as seen in Fig. 2(a). Note that the
assignment as fundamental or antifundamental is arbitrary,
the same tensor being placed on every site. As for SU(2), a
simple parent Hamiltonian can be built from bond projectors
on the largest, most-symmetric [8,4] (self-conjugate) irrep

(a) (b) (c)

FIG. 2. (a), (b) The AKLT SU(3) wave function is defined
similarly to the SU(2) case: Four virtual states in the fundamental
(antifundamental) irrep of SU(3) of dimension D = 3, are attached
on even (odd) sites and projected onto the fully symmetric 15 (15)
irrep. Virtual states of all neighboring sites are projected on SU(3)
singlets to form a tensor network. (c) By contracting two identical
site tensors on their physical indices, one gets a new tensor E of
dimension D2 = 9.

FIG. 3. The fixed-point boundary state is defined as the leading
eigenvector of the transfer matrix. The latter is defined by contracting
the local E tensor along a circle, leaving the left and right legs open.

obtainable from the tensor product 15 ⊗ 15,

H2D
SU(3) =

∑

⟨i,j⟩
P [8,4]

i,j , (1)

where the sum runs over all NN bonds.
Description of the PEPS formalism. For simplicity, let us

first start with a periodic (L-site) 1D chain with d on-site
physical degrees of freedom labeled by α (e.g., the components
of the physical spin). By definition, the amplitudes cα1α2···αL

of a (translational-invariant) MPS of virtual dimension D
are given solely in terms of d D × D matrices Aα as
cα1α2···αL

= Tr{Aα1Aα2 · · ·AαL}. It is easy to see that the 1D
SU(2) AKLT state of Fig. 1(a) is in fact a MPS defined
from a set of three 2 × 2 matrices labeled by the physical
spin (i.e., d = 3 and D = 2). This construction can easily be
generalized in 2D by replacing the d matrices by d rank-z
tensors, where z is the lattice coordination number (z = 4
in our case). The amplitudes of the PEPS are then obtained
from the tensor network defined by attaching a tensor on each
lattice site and by contracting the site tensors over the virtual
indices [32–36]. The S = 2 AKLT state of Fig. 1(b) can then
be viewed as a simple PEPS with D = 2 virtual degrees of
freedom (corresponding to the attached virtual spin- 1

2 ) and
d = 2S + 1 = 5 physical spin components [21]. Similarly, the
SU(3) AKLT state of Fig. 2(b) can be interpreted as a PEPS of
virtual dimension D = 3 (for the three colors of the quarks)
and d = 15 physical dimension, as depicted in Fig. 2(b).

In practice, one needs to compute the PEPS wave-function
norm ⟨"|"⟩ or expectation values ⟨"|O|"⟩ of local operators
O. For such purpose, one first defines a two-layer tensor net-
work, each layer representing the ket and bra wave functions.
By contracting two identical tensors on their physical indices,
one gets a new tensor E of dimension D2 = 9, as shown in
Fig. 2(c). This way, the physical index disappears and its large
dimension (15) is irrelevant for computations. We form an
infinite cylinder by imposing periodic boundary conditions in
one direction with circumference Nv . Each row of the cylinder
can then be seen as a transfer matrix, propagating states from
the left to the right. This matrix acts on boundary states
expressed in terms of virtual variables of the tensor network
as shown in Fig. 3. To construct the fixed-point boundary state
of size (D2)Nv , one uses iterated powers/Lanczos algorithm
to converge to the leading eigenvector/leading eigenvalues of
the transfer matrix. Note that since the latter is a symmetric
matrix, the left and right boundary states are identical.

Bulk properties. The gap # in the bulk can easily be
computed from the two largest eigenvalues of the transfer
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Conclusions

• Designed an exact AKLT-like ground state with a 
simple parent Hamiltonian.


• For special cases, a macroscopically large 
number of states become degenerate.


• Gauss law, states characterized by topological 
(?) quantum numbers (sectors)


• Point separating different phases


• many open questions: Coulomb phase, fractional 
excitations, origin of non-singlet states,…
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(a) Néel (b) VBS

FIG. 1. Illustrations of the (a) Néel-like pattern with an ordering
vector q = (π ,π ) and (b) VBS configuration with an ordering vector
q = (π , 0) for the Mott-insulating state of SU(4) fermions with two
particles per site. The flavors A, B, C, and D of the fermions are
represented by the colors blue, yellow, red, and green, respectively.
The horizontal lines represent the intrachain coupling Jx whereas
the vertical dashed lines represent the interchain coupling Jy that
controls the dimensional crossover. The grey ellipse-shape objects
in (b) indicate the strongly entangled pairs of sites.

Néel-ordered configuration has been suggested as a possible
ground state by VMC calculations [31], and this possibility
has been further supported by the linear flavor-wave theory
(LFWT) [35], an extension of the spin-wave theory for SU(2)
spins. Furthermore, QMC simulations carried out on the
SU(4) Hubbard model in the strong-coupling regime with
sizes up to 16 × 16 show the Néel ordering [36,37]. However,
it remains to be seen if this magnetic order will survive
in the Heisenberg limit. As a matter of fact, auxiliary field
QMC simulations with system sizes up to 24 × 24 seem to
suggest the absence of long-range order [11] for the SU(4)
AFM Heisenberg model at half filling. The existence of an
ordered magnetic state in this model thus appeals for further
investigations.

To progress further on this issue, we study here the evo-
lution of this system between 2D and 1D by tuning the
interchain couplings (thus obtaining a collection of 1D chains
from the 2D square lattice). The aim is to show that this
dimensional crossover triggers a continuous phase transition
to a valence bond solid (VBS) in 1D, and that it supports the
long-range antiferromagnetic configuration for the 2D lattice,
albeit with a small magnetic moment. An example of the
Néel-like configuration and the VBS configuration is shown
in Fig. 1. The phase transition from the Néel state during this
dimensional crossover will first be assessed by the LFWT by
closely following the steps in Ref. [35]. The results of the
auxiliary field QMC simulations (free of the sign problem
for the current model) will then be presented by considering
system sizes up to 40 × 40, showing a small local moment in
the 2D model and supporting a continuous transition between
the Néel state and the VBS state during the dimensional
transition.

II. THE MAGNETIC TRANSITION WITH THE LINEAR
FLAVOR-WAVE THEORY (LFWT)

We first define the SU(4) AFM Heisenberg model in 2D
with the intrachain coupling Jx and the interchain coupling Jy

depicted in Fig. 1,

H =
∑

⟨ı⃗,ȷ⃗ ⟩

∑

µ,ν

Jı⃗,ȷ⃗ Ŝµ
ν (ı⃗)Ŝν

µ(ȷ⃗ ). (3)

The site indices ⟨ı⃗, ȷ⃗ ⟩ run over the nearest neighbors, and
the indices µ, ν ∈ {A, B,C, D} label the flavors. The nearest-
neighbour coupling Jı⃗,ȷ⃗ is given by

Jı⃗,ȷ⃗ =
{

Jx for intrachain bonds,
Jy for interchain bonds. (4)

At the isotropic point Jx = Jy, the model describes a square
lattice whereas the regime Jy/Jx = 0 corresponds to decou-
pled chains. The states of the model of interest are the
states of the six-dimensional fully antisymmetric self-adjoint
representation. We will assume a Néel-type ordering with a
bipartite configuration, where we have the flavors A and B on
one sublattice and the flavors C and D on the other sublat-
tice. Assuming the existence of such a magnetic phase, we
will apply the multiboson approach [35,38– 40] to study the
behavior of the ordered magnetic moment of the system as a
function of the interchain coupling Jy in the linear flavor-wave
approximation. Within this approach, a boson is attributed to
each of the six existing states in the irreducible representation.
We will thus be working in terms of the composite particles,
not in terms of the individual flavor particles.

A. The LFWT multiboson Hamiltonian

Let the six states of the antisymmetric irrep be

AB =
|AB⟩ − |BA⟩

√
2

, AC =
|AC⟩ − |CA⟩

√
2

,

DA =
|DA⟩ − |AD⟩

√
2

, BC =
|BC⟩ − |CB⟩

√
2

,

BD =
|BD⟩ − |DB⟩

√
2

, CD =
|CD⟩ − |DC⟩

√
2

. (5)

The bar over the flavors is used as a reminder that the flavor
indices are antisymmetric. We group these states into the
set #:

# = {AB, AC, DA, BC, BD,CD}. (6)

The states are represented in the weight diagram in Fig. 2.
Let us attribute a boson to each of these states. In other words,
the bosons d

AB
, d

AC
, d

DA
, d

BC
, d

BD
, d

CD
, and their adjoint

counterparts will be used to create and annihilate the six states
of the irrep. Since our model has one composite particle per
site, we have the constraint

∑

η∈#

d †
ηdη = n c, (7)

with n c = 1 for each site, where the boson index η ∈ # refers
to the individual states in #. As for the SU(4) generators Ŝµ

ν (i)
on a site i, they can be written as

Ŝµ
ν (i) =

D∑

α=A
α ̸=µ,ν

d †
αν (i)dαµ(i) − δµ,ν

1
2

n c, (8)
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Using linear flavor-wave theory (LFWT) and auxiliary field quantum Monte Carlo (QMC), we investigate
the properties of the SU(4) Heisenberg model on the anisotropic square lattice in the fully antisymmetric six-
dimensional irreducible representation, a model that describes interacting fermions with four flavors at half-
filling. Thanks to the calculations on very large systems, we have been able to convincingly demonstrate that
QMC results are consistent with a small but finite antiferromagnetic moment at the isotropic point, in qualitative
agreement with LFWT obtained earlier [F. H. Kim et al., Phys. Rev. B 96, 205142 (2017)], and in quantitative
agreement with results obtained previously on the Hubbard model [D. Wang et al., Phys. Rev. Lett. 112, 156403
(2014)] after extrapolation to infinite U/t . The presence of a long-range antiferromagnetic order has been further
confirmed by showing that a phase transition takes place into a valence-bond solid (VBS) phase not too far from
the isotropic point when reducing the coupling constant along one direction on the way to decoupled chains.
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I. INTRODUCTION

Substantial leaps of progress have been reported in recent
years in the field of ultracold atom manipulation in optical
lattices [1– 10]. This, in turn, raises an exciting prospect of
realizing the SU(N ) symmetric fermionic Hubbard model
with N flavors experimentally, whose Hamiltonian is given by

H = −t
∑

⟨i, j⟩,µ
( f †

i,µ f j,µ + H.c.) + U
∑

i,µ<ν

ni,µni,ν (1)

with fermionic operators f †
i,µ, fi,µ on each site i with N flavors,

ni,µ = f †
i,µ fi,µ, and the summation is over the ⟨i, j⟩ nearest-

neighbor sites. In the Mott insulating phase, the low-energy
physics of this model in the second order in t/U is captured
by the antiferromagnetic SU(N ) Heisenberg model,

H = J
∑

⟨i, j⟩

∑

µ,ν

Ŝµ
ν (i)Ŝν

µ( j) (2)

where the operators Ŝµ
ν simply exchanges the SU(N ) flavor

µ with ν, and J ∼ t2/U . When having one particle per site,
the flavor states are described by the fundamental irreducible
representation (irrep) of SU(N ) denoted by the Young tableau
with one box !. In contrast, when multiple particles are
present per site, the flavor states are described by a differ-
ent irrep of SU(N ) depending on the flavor symmetry that
the particles form. The SU(N ) antiferromagnetic Heisenberg
model has been of considerable interest for a while because
of the abundance of interesting phases and physical phenom-
ena that it can accommodate. They should soon be within
reach, allowing perhaps the realization of a variety of exotic
phases shown by recent theoretical and numerical activities

in the field [11– 21] thanks to the unprecedented control over
various parameters that the optical lattices offer. Notably,
one-dimensional systems in the fundamental irrep of SU(N )
were already solved exactly by Sutherland in the 70s using
the Bethe ansatz [22], and calculations using the mean-field
saddle-point treatment in the large-N limit have been per-
formed for various irreps [23– 28] in the late 80s and early
90s, shedding light on the theoretical understanding of the
SU(N ) models in a controlled way. However, the nature of the
large-N expansion implies that the validity of its results could
be questionable for small values of N . Since the enhanced
SU(N ) symmetry seems to be physically realizable for up to
N = 10 with up to two particles per site [5,8,9], it is crucial to
have a reliable assessment of these systems with a relatively
low N .

The model of interest in the present article is the SU(4)
AFM Heisenberg model at half filling (with two fermionic
particles per site) in the fully antisymmetric configuration.
The states thus belong to the fully antisymmetric self-
conjugate representation and this irrep corresponds to the
Young tableau (two boxes placed in one column). For
this model, the large-N limit calculations at zero temperature
have long predicted a degenerate dimerized ground state in
one dimension [24,25], with other analytical approaches and
numerical methods such as the density matrix renormaliza-
tion group (DMRG), the quantum Monte Carlo (QMC) and
variational Monte Carlo (VMC) calculations also reaching
the same conclusion [29– 32]. The Coleman-Mermin-Wagner
theorem [33,34] indeed excludes the possibility of having a
long-range order in 1D, but this is not the case in 2D at
zero temperature. In the two-dimensional square lattice, the
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FIG. 4. QMC results for the isotropic SU(4) Heisenberg model,
Jx = Jy = 1. (a) Spin-spin and (b) VBS correlation functions
SVBS(q) =

∑
δ [SVBS(q)]δ,δ for various lattice sizes along a high

symmetry path in the Brillouin zone. The projection parameter "

grows as a function of system size L so to guarantee that we have
indeed converged to the ground state. (c) Spin correlation ratio. For
each system size, we have checked convergence in the projection
parameter. This quantity grows but shows no clear saturation to unity
for lattice sizes up to 40 × 40. The data are consistent with a small
local moment. (d) Spin-spin correlation at the antiferromagnetic
wave vector divided by the volume, the ordered moment corresponds

charge fluctuations in the diagonal part of Ŝµ
ν (i), Eq. (27),

are neglected). Figures 4(a) and 4(b) plot the spin as well as
VBS correlation functions on our biggest lattice. While the
antiferromagnetic spin fluctuations dominate, one observes
strong q = (0,π ) and q = (π , 0) VBS fluctuations thus lend-
ing support to the point of view that the SU(4) quantum
antiferromagnetic is close to a quantum critical point.

Finally, we calculate the value of the ordered moment. In
the pure Neél state, where the fluctuations are fully neglected,
m = 1 and the correlations in real space are

∑

µ,ν

〈
Ŝµ

ν ( j)Ŝν
µ(i)

〉
=

⎧
⎨

⎩

5 if i = j;
1 if i ̸= j, same sublattice;

−1 if i ̸= j, different sublattice.
(38)

Correspondingly, the correlation function in the reciprocal
space,

SNeél
Spin (q) = 4 + L2δq,Q , (39)

shows a peak diverging with the system size at the ordering
vector Q = (π ,π ).

Figure 4(d) plots SSpin(Q)/L2 as a function of 1/L for the
QMC calculation. The local moment, defined in Eq. (22),
corresponds to

m2 ≡ lim
L→∞

1
L2

SSpin(Q) . (40)

A polynomial fit in 1/L using the values for L = 16, 24, 32,
and 40 gives m2 = 0.0126(10). As apparent, large system
sizes and large projection parameters support a small but finite
local moment in the thermodynamic limit. In particular our
results suggest that

mQMC = 0.11 ± 0.04 (41)

and is hence two times smaller that the linear flavor-wave
result. As shown in the Appendix, this value of the local
moment matches well with the one obtained from the Hubbard
model in the large U/t limit [37].

C. Dimensional crossover

To investigate the dimensional crossover, we consider
again the spin and VBS correlation ratios. As apparent in
Figs. 5(a) and 5(b), the data are consistent with a direct
and continuous transition between the AFM and VBS at
Jc

y = 0.74–0.78. A more precise study of the transition is
certainly possible but difficult. In particular we have seen that
due to the small magnetic moment of the AFM state in the
isotropic limit, very large system sizes are required to merely
establish long-range order. Given the numerically accessible
lattice sizes, we believe that these difficulties will hinder an
accurate estimate of the critical point as a function of dimen-
sionality. As mentioned at the beginning of the section, charge
fluctuations have the potential of enhancing the magnetic

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
to m2 = SSpin(Q)/L2. For each system size, we have checked for
convergence in ". Extrapolation of converged results support a small
but finite local moment m.

085103-6

KIM, ASSAAD, PENC, AND MILA PHYSICAL REVIEW B 100, 085103 (2019)

 0.62

 0.66

 0.7

 0.74

 0.78 Θ=5  
Θ=7.5
Θ=10 
Θ=15 
Θ=20 

 6
 8

 10
 12
 14
 16
 18
 20
 22

(0,0) (π,0) (π,π) (0,0)

L=8,  Θ=10
L=16, Θ=10
L=24, Θ=20
L=32, Θ=20
L=40, Θ=20

 0

 20

 40

 60

 80

 100

 120

 140
L=8,  Θ=10
L=16, Θ=10
L=24, Θ=20
L=32, Θ=20
L=40, Θ=20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.02  0.04  0.06  0.08  0.1  0.12

Θ=7.5
Θ=10 
Θ=15 
Θ=20 

a + b/L + c/L2

R
S
p
i n

( L
)

(a)

(b)

(d)

1/L

S
S
p
in

(π
, π

) /
L

2

q

S
S
p
in

(q
S

V
B

S
(q

a = 0.0126(10)

(c)

)
)

FIG. 4. QMC results for the isotropic SU(4) Heisenberg model,
Jx = Jy = 1. (a) Spin-spin and (b) VBS correlation functions
SVBS(q) =

∑
δ [SVBS(q)]δ,δ for various lattice sizes along a high

symmetry path in the Brillouin zone. The projection parameter "

grows as a function of system size L so to guarantee that we have
indeed converged to the ground state. (c) Spin correlation ratio. For
each system size, we have checked convergence in the projection
parameter. This quantity grows but shows no clear saturation to unity
for lattice sizes up to 40 × 40. The data are consistent with a small
local moment. (d) Spin-spin correlation at the antiferromagnetic
wave vector divided by the volume, the ordered moment corresponds

charge fluctuations in the diagonal part of Ŝµ
ν (i), Eq. (27),

are neglected). Figures 4(a) and 4(b) plot the spin as well as
VBS correlation functions on our biggest lattice. While the
antiferromagnetic spin fluctuations dominate, one observes
strong q = (0,π ) and q = (π , 0) VBS fluctuations thus lend-
ing support to the point of view that the SU(4) quantum
antiferromagnetic is close to a quantum critical point.

Finally, we calculate the value of the ordered moment. In
the pure Neél state, where the fluctuations are fully neglected,
m = 1 and the correlations in real space are

∑

µ,ν

〈
Ŝµ

ν ( j)Ŝν
µ(i)

〉
=

⎧
⎨

⎩

5 if i = j;
1 if i ̸= j, same sublattice;

−1 if i ̸= j, different sublattice.
(38)

Correspondingly, the correlation function in the reciprocal
space,

SNeél
Spin (q) = 4 + L2δq,Q , (39)

shows a peak diverging with the system size at the ordering
vector Q = (π ,π ).

Figure 4(d) plots SSpin(Q)/L2 as a function of 1/L for the
QMC calculation. The local moment, defined in Eq. (22),
corresponds to

m2 ≡ lim
L→∞

1
L2

SSpin(Q) . (40)

A polynomial fit in 1/L using the values for L = 16, 24, 32,
and 40 gives m2 = 0.0126(10). As apparent, large system
sizes and large projection parameters support a small but finite
local moment in the thermodynamic limit. In particular our
results suggest that

mQMC = 0.11 ± 0.04 (41)

and is hence two times smaller that the linear flavor-wave
result. As shown in the Appendix, this value of the local
moment matches well with the one obtained from the Hubbard
model in the large U/t limit [37].

C. Dimensional crossover

To investigate the dimensional crossover, we consider
again the spin and VBS correlation ratios. As apparent in
Figs. 5(a) and 5(b), the data are consistent with a direct
and continuous transition between the AFM and VBS at
Jc

y = 0.74–0.78. A more precise study of the transition is
certainly possible but difficult. In particular we have seen that
due to the small magnetic moment of the AFM state in the
isotropic limit, very large system sizes are required to merely
establish long-range order. Given the numerically accessible
lattice sizes, we believe that these difficulties will hinder an
accurate estimate of the critical point as a function of dimen-
sionality. As mentioned at the beginning of the section, charge
fluctuations have the potential of enhancing the magnetic

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
to m2 = SSpin(Q)/L2. For each system size, we have checked for
convergence in ". Extrapolation of converged results support a small
but finite local moment m.
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A

B

C

D

(a) Néel (b) VBS

FIG. 1. Illustrations of the (a) Néel-like pattern with an ordering
vector q = (π ,π ) and (b) VBS configuration with an ordering vector
q = (π , 0) for the Mott-insulating state of SU(4) fermions with two
particles per site. The flavors A, B, C, and D of the fermions are
represented by the colors blue, yellow, red, and green, respectively.
The horizontal lines represent the intrachain coupling Jx whereas
the vertical dashed lines represent the interchain coupling Jy that
controls the dimensional crossover. The grey ellipse-shape objects
in (b) indicate the strongly entangled pairs of sites.

Néel-ordered configuration has been suggested as a possible
ground state by VMC calculations [31], and this possibility
has been further supported by the linear flavor-wave theory
(LFWT) [35], an extension of the spin-wave theory for SU(2)
spins. Furthermore, QMC simulations carried out on the
SU(4) Hubbard model in the strong-coupling regime with
sizes up to 16 × 16 show the Néel ordering [36,37]. However,
it remains to be seen if this magnetic order will survive
in the Heisenberg limit. As a matter of fact, auxiliary field
QMC simulations with system sizes up to 24 × 24 seem to
suggest the absence of long-range order [11] for the SU(4)
AFM Heisenberg model at half filling. The existence of an
ordered magnetic state in this model thus appeals for further
investigations.

To progress further on this issue, we study here the evo-
lution of this system between 2D and 1D by tuning the
interchain couplings (thus obtaining a collection of 1D chains
from the 2D square lattice). The aim is to show that this
dimensional crossover triggers a continuous phase transition
to a valence bond solid (VBS) in 1D, and that it supports the
long-range antiferromagnetic configuration for the 2D lattice,
albeit with a small magnetic moment. An example of the
Néel-like configuration and the VBS configuration is shown
in Fig. 1. The phase transition from the Néel state during this
dimensional crossover will first be assessed by the LFWT by
closely following the steps in Ref. [35]. The results of the
auxiliary field QMC simulations (free of the sign problem
for the current model) will then be presented by considering
system sizes up to 40 × 40, showing a small local moment in
the 2D model and supporting a continuous transition between
the Néel state and the VBS state during the dimensional
transition.

II. THE MAGNETIC TRANSITION WITH THE LINEAR
FLAVOR-WAVE THEORY (LFWT)

We first define the SU(4) AFM Heisenberg model in 2D
with the intrachain coupling Jx and the interchain coupling Jy

depicted in Fig. 1,

H =
∑

⟨ı⃗,ȷ⃗ ⟩

∑

µ,ν

Jı⃗,ȷ⃗ Ŝµ
ν (ı⃗)Ŝν

µ(ȷ⃗ ). (3)

The site indices ⟨ı⃗, ȷ⃗ ⟩ run over the nearest neighbors, and
the indices µ, ν ∈ {A, B,C, D} label the flavors. The nearest-
neighbour coupling Jı⃗,ȷ⃗ is given by

Jı⃗,ȷ⃗ =
{

Jx for intrachain bonds,
Jy for interchain bonds. (4)

At the isotropic point Jx = Jy, the model describes a square
lattice whereas the regime Jy/Jx = 0 corresponds to decou-
pled chains. The states of the model of interest are the
states of the six-dimensional fully antisymmetric self-adjoint
representation. We will assume a Néel-type ordering with a
bipartite configuration, where we have the flavors A and B on
one sublattice and the flavors C and D on the other sublat-
tice. Assuming the existence of such a magnetic phase, we
will apply the multiboson approach [35,38– 40] to study the
behavior of the ordered magnetic moment of the system as a
function of the interchain coupling Jy in the linear flavor-wave
approximation. Within this approach, a boson is attributed to
each of the six existing states in the irreducible representation.
We will thus be working in terms of the composite particles,
not in terms of the individual flavor particles.

A. The LFWT multiboson Hamiltonian

Let the six states of the antisymmetric irrep be

AB =
|AB⟩ − |BA⟩

√
2

, AC =
|AC⟩ − |CA⟩

√
2

,

DA =
|DA⟩ − |AD⟩

√
2

, BC =
|BC⟩ − |CB⟩

√
2

,

BD =
|BD⟩ − |DB⟩

√
2

, CD =
|CD⟩ − |DC⟩

√
2

. (5)

The bar over the flavors is used as a reminder that the flavor
indices are antisymmetric. We group these states into the
set #:

# = {AB, AC, DA, BC, BD,CD}. (6)

The states are represented in the weight diagram in Fig. 2.
Let us attribute a boson to each of these states. In other words,
the bosons d

AB
, d

AC
, d

DA
, d

BC
, d

BD
, d

CD
, and their adjoint

counterparts will be used to create and annihilate the six states
of the irrep. Since our model has one composite particle per
site, we have the constraint

∑

η∈#

d †
ηdη = n c, (7)

with n c = 1 for each site, where the boson index η ∈ # refers
to the individual states in #. As for the SU(4) generators Ŝµ

ν (i)
on a site i, they can be written as

Ŝµ
ν (i) =

D∑

α=A
α ̸=µ,ν

d †
αν (i)dαµ(i) − δµ,ν

1
2

n c, (8)
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FIG. 5. (a) VBS and (b) spin correlation ratios as a function
of Jy, while keeping Jx = 1. The crossing in the spin and VBS
channels are slightly shifted. From the VBS data, one would have:
Jc

y ≃ 0.76–0.78, whereas for the spin Jc
y ≃ 0.74–0.76. Given the

overall scatter of the crossing point, this difference is not significant
enough to claim two separate transitions. (c) 1

L2
∂E0
∂Jy

shows no jump,
thereby supporting a continuous transition.

moment in the isotropic limit, such that a model with charge
fluctuations may be more suitable to study the criticality of the
dimensional crossover. Figure 5(c) plots 1

L2
∂E0
∂Jy

as a function of
Jy. The smoothness of the function constitutes an additional
hint that the transition is continuous.

IV. CONCLUSION

Using QMC and LFWT, we investigated the SU(4) AFM
Heisenberg model in the fully antisymmetric six-dimensional
self-conjugate representation in two spatial dimensions and
the dimensional crossover to one dimension. Both methods
show that the isotropic model in 2D has AFM order, albeit
with a very small magnetic moment according to the QMC
data. The LFWT predicts a larger magnetic moment (m =
0.214) than the QMC calculations (m ≃ 0.11). The dimen-
sional crossover to 1D yields a phase transition from the Néel
state to the VBS, and the critical value of the dimensional
crossover is Jc

y = 0.74–0.78 according to QMC. The fading
of the Néel phase during the dimensional crossover is also

captured by the LFWT, although it overestimates the robust-
ness of the Néel phase with a predicted transition value of
Jc

y = 0.279. We understand the discrepancy between the QMC
and LFWT calculations as a consequence of the Berry phase.
For the SU(2) model, Haldane [42] has shown that skyrmion
changing configurations (hedgehogs or monopoles) carry C4
charge such that the proliferation of quadruple monopole
instances leads to a VBS state. On the realm of the theory
deconfined quantum criticality (DQC) quadruple monopole
instances are expected to be irrelevant at criticality and beyond
criticality condense to form the VBS state [43,44]. Remark-
ably, hedgehog singularities and the conclusions of Ref. [42]
can be generalized to SU(N) [25,27]. LFWT does not allow
for singular field configurations, and the strong VBS fluctua-
tions observed in the QMC calculations suggest that they can-
not be omitted for an accurate description of the SU(4) quan-
tum antiferromagnet. In particular, promoting N to a contin-
uous variable, our results show that the SU(4) quantum anti-
ferromagnet is close to a putative deconfined quantum critical
point to the VBS. Various, yet to be numerically confirmed,
field theories can be put forward to understand this quantum
phase transition [25,45] in a two-dimensional setting. Finally,
the nature of the dimensional driven transition to the VBS
remains to be studied. In the realm of the theory of DQC, the
reduction of the lattice symmetry from C4 to C2 allows for
double monopole instances in the field theory. A continuous
transition—as supported by the numerical data—would re-
quire double monopole instances to be irrelevant at criticality.
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