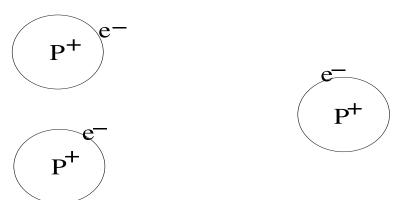
Disorder-induced local moments in a SU(2) symmetric Majorana spin liquid

Random-singlet phenomenology of low-temperature susceptibility

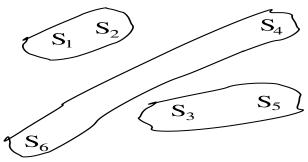
Kedar Damle (Tata Institute, India)
IBS-PCS-KIAS Workshop on Frustrated Magnetism
October 2019

Background: Random singlet physics in Si:P



- ▶ Low density of P dopants in Si → Half-filled "Hubbard model" on random lattice Electrical insulator
- Electrical insulator
- ▶ At low energies: Physics of S = 1/2 local moments

Random singlet phenomenology of $\chi(T)$



- $ightharpoonup \sum_{i,j} J_{ij} \vec{S}_i \cdot \vec{S}_j$ with broad distribution of $J_{ij} > 0$
- RG: Singlet pairs with broad distribution of binding energies
- ▶ N(T): Pairs with binding energy < T $\chi(T) \sim \frac{N(T)}{T} \sim T^{\alpha-1}$ $1 > \alpha(T) > 0$ «effective» exponent

Varies slowly with fitting range, depends on concentration of P (Bhatt & Lee)

Asymptotically exact?

In d = 1, picture asymptotically exact for the random-exchange antiferromagnetic chain

$$\chi(T) = rac{\Gamma_T^{-2}}{T}$$
 as $T o 0$. $(\Gamma_T \equiv \log(J/T))$

[J: scale of antiferromagnetic exchange] Multiplicative log shows up as effective exponent $\alpha(T)$ in fits (Dasgupta & Ma, D. S. Fisher)

 ▶ For d > 1, distributions do not broaden under RG (Bhatt & Lee; Motrunich & Huse)
 But random-singlet phenomenology in broad temperature/field range

Recent interest in random-singlet phenomenology in d > 1

- Possibility of random-singlet physics in bond disordered VBS phases proximate to spin liquid states (Kimchi, Nahum, Senthil 2018) partially motivated by properties of triangular lattice S=1/2 magnet YbMgGaO₄
- Numerical evidence for bond disordered VBS phase in JQ model (with multispin interactions)
 (Liu, Shao, Lin, Guo, Sandvik 2018)

Apparently wide applicability of phenomenology

Random singlet phenomenology for C_ν(H, T) and χ(H, T) (or M(H, T)) in variety of disordered frustrated magnets
 H₃LiIr₂O₆, LiZn₂Mo₃O₈, ZnCu₃(OH)₆Cl₂ and 1T-TaS₂ (Kimchi, Sheckleton, McQueen, Lee 2018)
 Argument': When distributions don't broaden indefinitely, also get few large local moments →
 Curie tail + random-singlet phenomenology

In this talk...

Random-singlet-like susceptibility of diluted SU(2)-symmetric Majorana spin liquid

- ► Tractable example of a disordered SU(2)-symmetric Majorana spin liquid in d=2 with $\chi(T)=\frac{\mathcal{C}}{4T}+\frac{N(\Gamma_T)}{4T}$ as $T\to 0$
- ▶ $N(\Gamma_T)$ consistent with random-singlet physics $N(\Gamma_T) \sim \Gamma_T^{-y}$ for $T^* \ll T \ll J$ (y nonuniversal) $N(\Gamma_T) \sim \Gamma_T^{1/3} \exp(-c\Gamma_T^{2/3})$ for $T \ll T^*$ $N(\Gamma_T)$ factor gives effective exponent $\alpha(T)$

Natural interpretation and question

- C
 Density of "forever-free" moments
 Composite' large-lengthscale objects
- $N(\Gamma_T)$ Density of singlet-pairs with binding energies smaller than T

Results raise question:

How literally should we take this interpretation?

Alternate strong-disorder RG approach to go beyond solvable limit?

Source of these results...

Free-fermion physics of bipartite random hopping problem with vacancy and flux disorder

• $\chi(T) \propto \kappa(T)$ (compressibility) $N(\Gamma_T) \rightarrow$ integrated DOS for single-particle energies $0 < |\epsilon| < J imes 10^{-\Gamma_T}$ $\mathcal{C} \rightarrow$

density of protected zero modes of single-particle problem

Setting: Honeycomb model of Yao & Lee

$$\mathcal{H} = J \sum_{\langle \vec{r}\vec{r}'' \rangle_{\lambda}} \tau_{\vec{r}'}^{\lambda} \vec{S}_{\vec{r}'} \cdot \vec{S}_{\vec{r}'} - \sum_{\vec{r}} \vec{B} \cdot \vec{S}_{\vec{r}} . \tag{1}$$

- ightharpoonup : "Orbital degrees of freedom that remain dynamical at low energy
- $ightharpoonup ec{S} = rac{ec{\sigma}}{2}$: spin-half moments
- Effective H for S = 1/2 antiferromagnet on decorated honeycomb lattice

Strong AF exchange within each triangle; multi-spin interactions between triangles

Each \vec{S}_r : Total spin on each triangle r.

Chirality $\tau_r^z = \pm 1$: Two different doublet states of a triangle r

Majorana representation

- $\begin{aligned} & \sigma^z_{\vec{r}} = -ic^x_{\vec{r}}c^y_{\vec{r}} \\ & \tau^z_{\vec{r}} = -ib^x_{\vec{r}}b^y_{\vec{r}} \\ & \text{and cyclic permutations} \end{aligned}$
- $c_{\vec{r}}^{\lambda}$ and $b_{\vec{r}}^{\lambda}$ are Majorana (real) fermion operators.

Single-site Hilbert space doubled by this representation (Shastry-Sen, Tsvelik)

Constraint on fermion states

▶ $D_{\vec{r}} \equiv -ic_{\vec{r}}^x c_{\vec{r}}^y c_{\vec{r}}^z b_{\vec{r}}^x b_{\vec{r}}^y b_{\vec{r}}^z = +1$ at each site \vec{r} Curious fact: D = -1 sector also provides faithful representation of $\vec{\sigma}$ and $\vec{\tau}$.

 \rightarrow

No "unphysical" states. Instead: Two copies of physical states at each site

► In D = +1 sector: $\sigma_{\vec{r}}^{\alpha} \tau_{\vec{r}}^{\beta} = i c_{\vec{r}}^{\alpha} b_{\vec{r}}^{\beta}$ Similar reduction in D = -1 sector

Reduction leads to exact solution

- On bond $\langle rr' \rangle \lambda$ (orientation $\lambda = x, y, z$) get term: $u_{\langle rr' \rangle \lambda}(i\vec{c}_r \cdot \vec{c}_{r'})$ where $u_{\langle rr' \rangle \lambda} = -ib_r^{\lambda}b_{r'}^{\lambda}$
- ► Three copies of Kitaev's non-interacting Majorana model, all coupled to same static Z₂ gauge field

Majorana fermion Hamiltonian

$$\mathcal{H} = \frac{J}{2} \sum_{\alpha = x, y, z} \sum_{\langle \vec{r} \vec{r}' \rangle_{\lambda}} u_{\langle \vec{r} \vec{r}' \rangle_{\lambda}} (ic_{\vec{r}}^{\alpha} c_{\vec{r}'}^{\alpha} + h.c.) + B \sum_{\vec{r}} ic_{\vec{r}}^{x} c_{\vec{r}}^{y}$$
(2)

where $\vec{B} = B\hat{z}$.

- ► Convenient: Canonical fermions $f_{\vec{r}} = (c_{\vec{r}}^x i c_{\vec{r}}^y)/2$
- $S_{\vec{r}}^z = \frac{i}{2} c_{\vec{r}}^x c_{\vec{r}}^y = f_{\vec{r}}^{\dagger} f_{\vec{r}} 1/2$
- ▶ Want to compute: $m^z \equiv \sum_r \langle S^z_{\vec{r}} \rangle / 2L^2$ as function of B and obtain $\chi(T) = \frac{dm^z}{dB}$ at B = 0

Calculating susceptibility

- Hamiltonian H for f fermions: Tight-binding model with static Z₂ gauge-fields u determining signs of each hopping matrix element t = u|J|
- $\chi(T) \to f$ fermion compressibility $\kappa(T)$ at $\mu \equiv B = 0$.
- $ightharpoonup c^z$ Majorana plays no role in susceptibility calculation
- $\begin{array}{l} \blacktriangleright \ \chi(T) = \frac{1}{T} \int_{-\Omega}^{+\Omega} d\epsilon \rho_{\text{tot.}}(\epsilon) \frac{e^{\epsilon/T}}{(e^{\epsilon/T}+1)^2} \\ \text{where } \rho_{\text{tot}}(\epsilon) \text{ is full DOS of } H \end{array}$

Projection issues?

- In usual Kitaev model: Projection gives subleading corrections in thermodynamic limit (Pedrocchi-Chesi-Loss, Zschocke-Vojta)
- What happens here? Again: Only subleading corrections in general.
- For specific boundary conditions: Coefficient of subleading corrections zero

Flux-binding

- Lieb-Loss heuristics: Each vacancy binds static π -flux in ground-state sector. Numerical verification: Gap to other flux sectors (Kitaev)
- \blacktriangleright At low temperature, χ dominated by this flux-sector

Features of free-fermion *H*

- Without flux-attachment: site-diluted tight-binding model for graphene)
- ▶ In any flux sector, $\rho(\epsilon) = \rho(-\epsilon)$ "Chiral" (bipartite) symmetry: $\epsilon \to -\epsilon$, $\Psi_B \to -\Psi_B$

d=1 bipartite random-hopping: Dyson form of DOS

- $\begin{array}{l} \blacktriangleright \ \, \rho(\epsilon) \sim 1/[|\epsilon|\log^3(1/|\epsilon|)] \\ \text{Defining: } N(\Gamma_\epsilon) = 2 \int_0^{10^{-\Gamma_\epsilon}} \rho(x) dx \; , \\ \frac{dN/d\Gamma_\epsilon}{} \sim 1/\Gamma_\epsilon^3 \text{ with } \Gamma_\epsilon = \log_{10}(1/|\epsilon|) \end{array}$
- Controlled strong-disorder RG rederivation:

Eliminate states at cutoff $\pm \Omega \rightarrow J_i \rightarrow J_i$

At cutoff scale $\Gamma \equiv \log(1/\Omega)$

Number of surviving sites: $N(\Gamma) \sim 1/\Gamma^2$

Fraction $1/\Gamma$ of $\zeta_i \equiv \log(\Omega/\tilde{J}_i)$ have $\zeta_i = 0$

Distribution of log-couplings becomes infinitely broad at low energies

$$\rightarrow dN/d\Gamma_{\epsilon} \sim N(\Gamma_{\epsilon})/\Gamma_{\epsilon}$$

▶ Conversely: $\frac{1}{N(\Gamma)} \times dN/d\Gamma \sim 1/\Gamma \rightarrow$ Distributions broaden as $\sim \Gamma$ (Motrunich, KD, Huse)

d = 2: Modified Gade-Wegner scaling

- $\rho(E) \sim \frac{1}{|\epsilon|} e^{-b|\ln \epsilon|^{1/x}}$ equivalently: $dN(\Gamma_{\epsilon})/d\Gamma_{\epsilon} \sim \exp(-b\Gamma_{\epsilon}^{1/x})$ $N(\Gamma_{\epsilon}) \sim \Gamma_{\epsilon}^{1-\frac{1}{x}} e^{-b\Gamma_{\epsilon}^{1/x}}$
 - Gade & Wegner prediction: x = 2
- ▶ $\frac{1}{N(\Gamma_{\epsilon})} \times dN/d\Gamma_{\epsilon} \sim 1/\Gamma_{\epsilon}^{1-1/x} \rightarrow \text{broad distributions}$ $\rightarrow \text{At cutoff scale } \Gamma = \log(1/\Omega)$: width $\sim \Gamma^{1-1/x}$ Strong disorder effect: x = 3/2 (Motrunich, KD, Huse) (field-theory confirmation: Mudry, Ryu, Furusaki)
- ▶ Distributions broaden as $\sim \Gamma^{1/3}$

What about vacancies?

- ▶ Usual Kitaev model with vacancies: free fermion H has dilution and flux binding Numerical result: $N(\Gamma_\epsilon) \sim 1/\Gamma_\epsilon^y$ with $y \approx 0.7$ at not-too-low energies ϵ (Willans, Chalker, Moessner)
- surprising violation of modified Gade-Wegner scaling?

Similar surprise in diluted graphene?

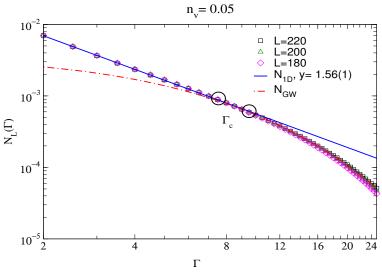
Perhaps motivated by Willans-Moessner-Chalker...

 New field-theoretical prediction: Vacancies change asymptotic universality class

```
N(\Gamma_\epsilon)\sim 1/\Gamma_\epsilon^y with y=0.5 (Ostrovsky, Protopopov, Konig, Gornyi, Mirlin, Skvortsov)
```

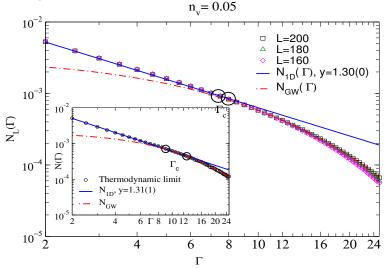
concurrent numerical evidence: $y \sim 1/2$ (Hafner, Schindler, Weik, Mayer, Balakrishnan, Narayanan, Bera, Evers)

Actually: surprisingly long crossover...



(Sanyal, KD, Motrunich)

Revisiting calculation of Willans-Chalker-Moessner



Same crossover in diluted system with $\boldsymbol{\pi}$ flux with flux attached to each vacancy

(Sanyal, KD, Chalker, Moessner, in preparation)

Crossover looks nonuniversal:

- Crossover Γ_c and intermediate asymptotic exponent y nonuniversal:
 - depends on n_v and correlations between vacancy positions

But: Zero mode density controls crossover

Other *generic* feature of bipartite random hopping H on diluted lattice:

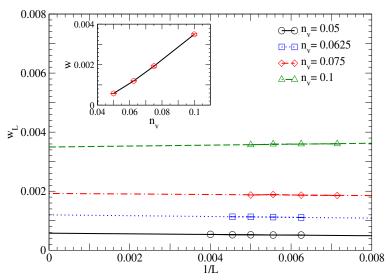
Nonzero *density w* of zero modes

Robust to bond-disorder, flux attachment, boundary conditions

not associated with lattice imbalance, isolated sites or other
trivial effects

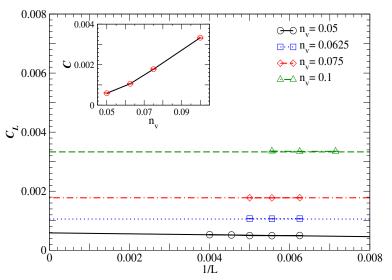
w(n_v), y(n_v), Γ_c(n_v) all depend on correlations between vacancy positions
 But y(w) and Γ_c(w) are universal
 (Sanyal, KD, Motrunich)

Zero modes in diluted graphene



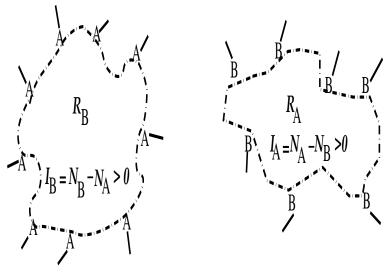
(Sanyal, KD, Motrunich)

Kitaev: Zero modes



(Sanyal, KD, Chalker, Moessner, in preparation)

Zero modes are robust large-lengthscale effect



(Biswas, Islam, KD, in preparation)

Conclusions

- Exactly solvable example of random-singlet physics in SU(2) symmetric Majorana spin liquid state
- key ingredients present: Low-temperature susceptibility controlled by flows to strong disorder Large-lengthscale cooperative effect controls Curie coefficient associated with emergent free moments

Acknowledgements

Collaborators:

- Diluted graphene: «Sambuddha Sanyal » and Lesik Motrunich
- SU(2) symmetric Kitaev work: «Sambuddha Sanyal», John Chalker, Roderich Moessner
- Curie tails in usual Kitaev model: «Sambuddha Sanyal» and Sounak Biswas
- Large-lengthscale physics of disorder-robust zero modes:
 «Sounak Biswas» and Mursalin Islam
- Oxford → India travel grant for seeding SU(2) symmetric Kitaev work
- Long-term DAE (India) support for computing cluster at Tata Institute