## Dynamics and transport in quantum spin liquids

Leon Balents, KITP

FRUMAG, PCS IBS, October 2019

## Collaborators



Oleg Starykh, U. Utah



Urban Seifert, TU Dresden

#### experimental inspiration





Rick Averitt Gufeng Zhang UCSD

## Classes of QSLs

- Topological QSLs
- U(1) QSL



anyons, spinons



compact U(1)

QED<sub>3</sub>

• Dirac QSLs



• Spinon Fermi surface



non-Fermi liquid "spin metal"

## Spinon Fermi surface

$$|\Psi\rangle = \prod_{i} \hat{n}_{i} (2 - \hat{n}_{i}) \prod_{k < k_{F}} c_{k\uparrow}^{\dagger} c_{k\downarrow}^{\dagger} |0\rangle$$



- The most gapless/highly entangled QSL state
- Like a "metal" of neutral fermions w/ a U(1) gauge field
- Prototype "non-Fermi liquid" state of great theoretical interest

## Spinon Fermi surface



dmit

 $Ba_3NiSb_2O_9\\$ 

### Triangular lattice w/ ring exchange





- Motrunich (2005): ring exchange stabilizes a spin liquid
- Motrunich, Lee/Lee: spin liquid state favored by ring exchange is the "spinon Fermi sea" state



# triangular organics



CO

1.0



 $\kappa$ -(ET)<sub>2</sub>Cu<sub>2</sub>(CN)<sub>3</sub> K. Kanoda group (2003-)

 $\beta'$ -Pd(dmit)<sub>2</sub> R. Kato group (2008-)

### Evidence





#### no magnetic order

- Y. Shimizu *et al*, 2003 T. Itou *et al*, 2008,2010
- Specific heat



#### Sommerfeld law

- S. Yamashita *et al*, 2008
- Thermal conductivity



#### itinerant fermions?

M. Yamashita et al, 2010

## Spectra

Common expectation in a QSL: broad continuum scattering





Not very inspiring?

## particle-hole continuum

Free fermions

lowest energy for  $k < k_F$  E

maximum energy



## particle-hole continuum

With Zeeman field  $\chi_{\pm}(q,\omega) = i \int_0^\infty dt \langle [S_q^{\dagger}(t), S_{-q}^{-}(0)] \rangle e^{i\omega t}$ 



#### Inorganic analogs? YbMgGaO4

#### Letter | Published: 05 December 2016

Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

Yao Shen, Yao-Dong Li, Hongliang Wo, Yuesheng Li, Shoudong Shen, Bingying Pan, Qisi Wang, H. C. Walker, P. Steffens, M. Boehm, Yiqing Hao, D. L. Quintero-Castro, L. W. Harriger, M. D. Frontzek, Lijie Hao, Siqin Meng, Qingming Zhang, Gang Chen <sup>SSI</sup> & Jun Zhao <sup>SSI</sup>

Nature 540, 559–562 (22 December 2016) | Download Citation 🕹



#### Article | OPEN | Published: 08 October 2018

Fractionalized excitations in the partially magnetized spin liquid candidate YbMgGaO<sub>4</sub>

Yao Shen, Yao-Dong Li, H. C. Walker, P. Steffens, M. Boehm, Xiaowen Zhang, Shoudong Shen, Hongliang Wo, Gang Chen <sup>™</sup> & Jun Zhao <sup>™</sup>

Nature Communications 9, Article number: 4138 (2018) Download Citation 🚽



## particle-hole continuum

#### With Zeeman field



Effects of interactions?

#### Interactions

Longitudinal

 $a_0\psi^\dagger\psi$ 

screened Coulomb interaction



• Transverse $i oldsymbol{A} \cdot \left( \psi^{\dagger} oldsymbol{
abla} \psi - oldsymbol{
abla} \psi^{\dagger} \psi 
ight)$ 

coupling to dynamical photons



+ M

#### Interactions

• Longitudinal  $a_0\psi^{\dagger}\psi$   $\psi^{\dagger}\psi_{\uparrow}\psi_{\downarrow}^{\dagger}\psi_{\downarrow}\psi_{\downarrow}$ 

$$= -um\left(\psi_{\uparrow}^{\dagger}\psi_{\uparrow} - \psi_{\downarrow}^{\dagger}\psi_{\downarrow}\right) + u:\psi_{\uparrow}^{\dagger}\psi_{\uparrow}\psi_{\downarrow}^{\dagger}\psi_{\downarrow}:$$

self-energy

interaction



#### Interaction





### Transverse gauge coupling



Does this smear out all the Fermi liquid structure?

### Transverse gauge coupling



#### **Summary** Distinct signatures of spinons, interactions, and gauge fields



O.Starykh + LB, arXiv:1904.02117

#### Ultra-fast Manipulation of Quantum Matter



Floquet-Bloch states in Bi<sub>2</sub>Se<sub>3</sub>

Wang et al, Science 2013

Photo-induced conductivity changes in K<sub>3</sub>C<sub>60</sub>

Mitrano et al, Nature 2016

Couple to electrons Couple to phonons? How about spins?



### Sr<sub>2</sub>IrO<sub>4</sub>



Square lattice antiferromagnet Strong SOC

Good venue for light-spin interactions

## Ultrafast experiments

Gufeng Zhang et al, Averitt group, UCSD, in preparation



b  $9 \mu m$   $1.3 \mu m$   $J_{eff,3/2}$   $J_{eff,1/2}$   $F_{F}$ UHB

"Resonant" versus "non-resonant"







- Oscillation frequency 0.57THz = 2meV independent of details of pump: intrinsic magnon energy
- Pumping <u>much more efficient</u> for 9micron light.

#### Phenomena



#### Questions

- What is the magnon oscillation and why is it visible?
- How is the magnon excited by sub-gap light?

#### Phenomena



c.f. T. Satoh *et al*, 2010 - NiO

#### Phenomena



#### Questions

- What is the magnon oscillation and why is it visible?
- How is the magnon excited by sub-gap light?

## Magnons

• Gross features: square lattice Heisenberg antiferromagnet



RIXS: BJ Kim et al, PRL 2012

Magnon is a very low energy feature

## Anisotropy

#### Unit cell doubled by octahedral rotation

$$\mathcal{H}_{eq} = \sum_{i \in A} \sum_{\mu = \pm x, \pm y} \left[ J_{xy} \left( \mathsf{S}_i^x \mathsf{S}_{i+\mu}^x + \mathsf{S}_i^y \mathsf{S}_{i+\mu}^y \right) + J_z \mathsf{S}_i^z \mathsf{S}_{i+\mu}^z + D\hat{z} \cdot \vec{\mathsf{S}}_i \times \vec{\mathsf{S}}_{i+\mu} \right] \qquad \qquad \mathsf{XXZ+DM}$$



#### DM is removed in local frame

G. Jackeli+G.Khaliullin, 2009

$$\rightarrow \sum_{i \in A} \sum_{\mu = \pm x, \pm y} J \left[ S_i^x S_{i+\mu}^x + S_i^y S_{i+\mu}^y + (1-\delta) S_i^z S_{i+\mu}^z \right]$$

Fits to RIXS give J~60meV and  $\delta$ ~.05 Small easy-plane anisotropy

## Spin wave theory



## In-plane anisotropy

• Even weaker effect gives tiny gap to in-plane magnon



argue due to lattice distortion induced by spin order



$$ilde{\mathcal{H}}_{\mathsf{JT}} = \mathsf{\Gamma} \sum_{\langle ij 
angle} S^x_i S^x_j - S^y_i S^y_j$$

 $\Gamma$ ~6 $\mu$ eV (!)  $\omega_0 \simeq 8S\sqrt{\Gamma J}$  ~2meV

Oscillation matches in-plane magnon.

## Magnetization oscillation

• Q: Why does Kerr angle oscillate if magnon is in-plane??



## Pumping

• Strategy: light creates *source terms* for EOM

 $\partial_t u = \chi^{-1} m + h_m(t)$  $\partial_t m = -\kappa u + h_u(t)$ 

effective fields drive during pump pulse

decay/relaxation negligible during pump



effective initial conditions

<u>Theory</u>: include light-matter interaction and integrate out higher energy modes to obtain  $h_m$ ,  $h_u$ 

# Coupling to E-field

 Assumption: E-field of light dominates. Strong timereversal-symmetry constraints

 $\mathcal{T}: \vec{E} \to \vec{E}, \ \vec{S} \to -\vec{S}$ 

 ${\cal H}_{\sf E} \sim g \: E^lpha S_i^eta S_j^\gamma$ 

• General symmetry allowed couplings

$$\begin{aligned} \mathcal{H}_{\mathsf{E}} &= \sum_{i} \left[ g_{1} \epsilon_{i} \left[ E_{x} \left( \mathsf{S}_{i}^{y} \mathsf{S}_{i+x}^{x} + \mathsf{S}_{i}^{x} \mathsf{S}_{i+x}^{y} \right) - (x \leftrightarrow y) \right] \\ &+ g_{2} \epsilon_{i} \left( E_{y} \mathsf{S}_{i}^{x} \mathsf{S}_{i+x}^{x} - E_{x} \mathsf{S}_{i}^{y} \mathsf{S}_{i+y}^{y} \right) \\ &+ g_{3} \epsilon_{i} \left( E_{y} \mathsf{S}_{i}^{y} \mathsf{S}_{i+x}^{y} - E_{x} \mathsf{S}_{i}^{x} \mathsf{S}_{i+y}^{x} \right) \\ &+ g_{4} \epsilon_{i} \mathsf{S}_{i}^{z} \left( E_{y} \mathsf{S}_{i+x}^{z} - E_{x} \mathsf{S}_{i+y}^{z} \right) \\ &+ g_{5} \left( E_{y} \, \mathbf{\hat{z}} \cdot \mathsf{S}_{i} \times \mathsf{S}_{i+x} - E_{x} \, \mathbf{\hat{z}} \cdot \mathsf{S}_{i} \times \mathsf{S}_{i+y} \right) \right] \end{aligned}$$

staggering due to octahedral rotations important!

microscopic calculations confirm these terms

Katsura, Nagaosa, Balatsky, PRL 2005 Bolens, PRB 2018

#### Bosons

• Holstein-Primakoff:  $\psi_{\mathbf{k}} = (a_{\mathbf{k}}, a_{-\mathbf{k}}^{\dagger})^T$ 

 $\sim \operatorname{Re}\left(\mathcal{E}_{\mu}e^{i\omega t}\right)$ 

Floquet drive

 $\mathcal{H}_{\mathsf{E}} = \frac{\mathcal{E}_{\mu}(t)}{\mathcal{E}_{A}^{1,\mu} \psi_{A}} + \Phi_{A,B}^{2,\mu} \psi_{A} \psi_{B} + \Phi_{A,B,C}^{3,\mu} \psi_{A} \psi_{B} \psi_{C} + \mathcal{O}(1/S^{0})$ 



- Cannot excite single magnon due to momentum conservation
- Two magnon process is resonant: generates pairs with k and -k
   ?? How is k=0 magnetization created?

#### Formalism

- Non-equilibrium Keldysh method: evolve both bra and ket $|\Psi(t)\rangle = U(t, -\infty)|\Psi(-\infty)\rangle$  $\langle \mathcal{O}(t)\rangle = \langle \Psi(\infty)|U(-\infty, t)\mathcal{O}U(t, -\infty)|\Psi(-\infty)\rangle$
- Keldysh contour  $t = -\infty$   $t = -\infty$   $t = -\infty$   $\mathcal{Z} = \int \mathcal{D}[a_{+}, a_{-}] \exp(iS)$   $S = \sum_{s=\pm} s \int dt \left\{ \sum_{i} \bar{a}_{s,i} i \partial_{t} a_{s,i} - \mathcal{H}[\{\bar{a}_{s,i}, a_{s,i}\}] \right\}$ path integral over doubled fields

#### Formalism

• Non-equilibrium Keldysh path integral



Now integrate out "fast" fields: internal lines



#### Formalism

• Non-equilibrium Keldysh path integral



• Now integrate out "fast" fields: internal lines



involves boson interactions!

## Physical picture

• Step 1:

photon generates coherent pairs

----<



• Step 2: Interaction "proximitizes" low energy condensate = magnons





• Effective fields given by loop integrals

$$h \sim \int d^2 \mathbf{k} \, \mathcal{E}_{\mu} \bar{\mathcal{E}}_{
u} \sum_{eta, eta'=\pm 1} rac{\Phi^{2,\mu} \Phi^{3,
u}}{\Omega + eta E_{\mathbf{k}} + eta' E_{\mathbf{Q}-\mathbf{k}} + \mathrm{i}\eta}$$

dissipative

virtual

separates into:

 $\sim \delta(\Omega - E_{\mathbf{k}} - E_{\mathbf{Q}-\mathbf{k}})$ 

$$\sim \frac{P}{\delta - E_{k} - E_{Q-k}}$$

• Effective fields given by loop integrals

$$h \sim \int d^{2}\mathbf{k} \, \mathcal{E}_{\mu} \bar{\mathcal{E}}_{\nu} \sum_{\beta,\beta'=\pm 1} \frac{\Phi^{2,\mu} \Phi^{3,\nu}}{\Omega + \beta \mathcal{E}_{\mathbf{k}} + \beta' \mathcal{E}_{\mathbf{Q}-\mathbf{k}} + \mathrm{i}\eta}$$

dissipative

virtual

separates into:

 $\sim \delta(\Omega - E_{\mathbf{k}} - E_{\mathbf{Q}-\mathbf{k}})$ 

 $\sim \frac{P}{\delta - E_{k} - E_{Q-k}}$ 

• Structure of contributions to effective fields

 $\sin 2\phi \times \begin{cases} \mathcal{E}_x \bar{\mathcal{E}}_y + \mathcal{E}_y \bar{\mathcal{E}}_x & \text{total intensity} & \text{chiral intensity} \\ \mathcal{E}_x \bar{\mathcal{E}}_x - \mathcal{E}_y \bar{\mathcal{E}}_y & \sin 4\phi \times \left(\mathcal{E}_x \bar{\mathcal{E}}_x + \mathcal{E}_y \bar{\mathcal{E}}_y\right) & \text{i} \left(\mathcal{E}_x \bar{\mathcal{E}}_y - \mathcal{E}_y \bar{\mathcal{E}}_x\right) \end{cases}$ 

traceless symmetric

identity

antisymmetric

• Effective fields given by loop integrals

$$h \sim \int d^{2}\mathbf{k} \, \mathcal{E}_{\mu} \bar{\mathcal{E}}_{\nu} \sum_{\beta,\beta'=\pm 1} \frac{\Phi^{2,\mu} \Phi^{3,\nu}}{\Omega + \beta \mathcal{E}_{\mathbf{k}} + \beta' \mathcal{E}_{\mathbf{Q}-\mathbf{k}} + \mathrm{i}\eta}$$

dissipative

virtual

separates into:

 $\sim \delta(\Omega - E_{f k} - E_{f Q-k})$ 

 $\sim \frac{P}{\delta - E_{k} - E_{Q-k}}$ 

Structure of contributions to effective fields

 $\sin 2\phi \times \begin{cases} \mathcal{E}_x \bar{\mathcal{E}}_y + \mathcal{E}_y \bar{\mathcal{E}}_x & \text{total intensity} \\ \mathcal{E}_x \bar{\mathcal{E}}_x - \mathcal{E}_y \bar{\mathcal{E}}_y & \sin 4\phi \times \left(\mathcal{E}_x \bar{\mathcal{E}}_x + \mathcal{E}_y \bar{\mathcal{E}}_y\right) & \text{i} \left(\mathcal{E}_x \bar{\mathcal{E}}_y - \mathcal{E}_y \bar{\mathcal{E}}_x\right) \end{cases}$ 

linear polarization

• Effective fields given by loop integrals

$$h \sim \int d^{2}\mathbf{k} \, \mathcal{E}_{\mu} \bar{\mathcal{E}}_{\nu} \sum_{\beta,\beta'=\pm 1} \frac{\Phi^{2,\mu} \Phi^{3,\nu}}{\Omega + \beta \mathcal{E}_{\mathbf{k}} + \beta' \mathcal{E}_{\mathbf{Q}-\mathbf{k}} + \mathrm{i}\eta}$$

dissipative

virtual

separates into:

$$\sim \delta(\Omega - E_{f k} - E_{f Q-k})$$

$$\sim \frac{P}{\delta - E_{k} - E_{Q-k}}$$

• Structure of contributions to effective fields

$$\sin 2\phi \times \begin{cases} \mathcal{E}_x \bar{\mathcal{E}}_y + \mathcal{E}_y \bar{\mathcal{E}}_x \\ \mathcal{E}_x \bar{\mathcal{E}}_x - \mathcal{E}_y \bar{\mathcal{E}}_y \end{cases} \begin{cases} \text{total intensity} & \text{chiral intensity} \\ \sin 4\phi \times \left(\mathcal{E}_x \bar{\mathcal{E}}_x + \mathcal{E}_y \bar{\mathcal{E}}_y\right) & \text{i} \left(\mathcal{E}_x \bar{\mathcal{E}}_y - \mathcal{E}_y \bar{\mathcal{E}}_x\right) \end{cases}$$

circular polarization

• Effective fields given by loop integrals

$$h \sim \int d^2 \mathbf{k} \, \mathcal{E}_{\mu} \bar{\mathcal{E}}_{
u} \sum_{eta, eta'=\pm 1} rac{\Phi^{2,\mu} \Phi^{3,
u}}{\Omega + eta E_{\mathbf{k}} + eta' E_{\mathbf{Q}-\mathbf{k}} + \mathrm{i}\eta}$$

dissipative

virtual

separates into:

$$\sim \delta(\Omega - E_{f k} - E_{f Q-f k})$$

$$\sim \frac{P}{\delta - E_{k} - E_{Q-k}}$$

• Structure of contributions to effective fields

$$\sin 2\phi \times \begin{cases} \mathcal{E}_{x}\bar{\mathcal{E}}_{y} + \mathcal{E}_{y}\bar{\mathcal{E}}_{x} \\ \mathcal{E}_{x}\bar{\mathcal{E}}_{x} - \mathcal{E}_{y}\bar{\mathcal{E}}_{y} \end{cases} \quad \text{total intensity} \quad \text{chiral intensity} \\ \sin 4\phi \times \left(\mathcal{E}_{x}\bar{\mathcal{E}}_{x} + \mathcal{E}_{y}\bar{\mathcal{E}}_{y}\right) & \text{i} \left(\mathcal{E}_{x}\bar{\mathcal{E}}_{y} - \mathcal{E}_{y}\bar{\mathcal{E}}_{x}\right) \end{cases}$$

$$= 0 \text{ for } \operatorname{Sr}_{2}\operatorname{IrO}_{4} \quad \text{circular polarization} \\ \left(\phi = \pi/4\right) \quad \text{``inverse Faraday effect''}$$

#### Prior approach to Inverse Faraday effect

PHYSICAL REVIEW VOLUME 143, NUMBER 2 MARCH 1966 Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena\* P. S. PERSHAN,† J. P. VAN DER ZIEL,‡ AND L. D. MALMSTROM Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts (Received 25 October 1965)

• Derived effective thermodynamic potential

really correct for low frequency magnetization (not short pulse)

• Carried out for quantum mechanical few-level system

 $\mathfrak{K}_{eff} = (\mathscr{E}_{R}\mathscr{E}_{R}^{*} - \mathscr{E}_{L}\mathscr{E}_{L}^{*})J_{z}A \\ + \{(\mathscr{E}_{R}\mathscr{E}_{R}^{*} + \mathscr{E}_{L}\mathscr{E}_{L}^{*})[J_{z}^{2} - \frac{1}{3}J(J+1)] \\ - \mathscr{E}_{L}\mathscr{E}_{R}^{*}J_{-}^{2} - \mathscr{E}_{L}^{*}\mathscr{E}_{R}J_{+}^{2}\}C,$ 

Purely virtual excitations

• Our results treat general many body situation with fast dynamics and both real and virtual excitations

• Effective fields maximized when light is near peak of twomagnon DOS



Significant enhancement still possible!

 Effective fields maximized when light is near peak of twomagnon DOS





Dominant chiral intensity: magnetization of opposite sign for two circular polarizations

## Future directions

- Experimental test of frequency dependence. Many other materials applications.
- Extension to T>0
- Extension to non-collinear magnets: much larger anharmonic effects
- Topological effects: Pump/probe of Dirac/Weyl magnons, analogies to topological effects in SHG?
- Ultrafast dynamics of quantum spin liquids without magnons?

#### Recap

O.Starykh + LB, arXiv:1904.02117

U.F.P. Seifert+LB, PRB 100, 125161 (2019)



E<sub>z</sub>+um

 $\mathbf{O}$ 

• Fermionic two-spinon continuum modified by *Silin* spin wave and gauge continuum.

 $E_Z/v_F$ 

Further work: modifications near q=0 by anisotropies/
 SOC - needed to understand ESR, extension to Dirac spin liquids

 Theory of light-induced magnetization oscillations in an antiferromagnet, with direct application to Sr<sub>2</sub>IrO<sub>4</sub>





q



