Magnetic and Charge response of Kitaev's spin liquid

Shintaro Takayoshi

Takashi Oka

Masafumi Udagawa

Dept. of Physics, Gakushuin University

Max Planck Institute for the Physics of Complex Systems

Oct. 14, '19 @ IBSPCS-KIAS workshop

M. Udagawa, in preparation

S. Takayoshi, T. Oka and M. Udagawa, in preparation

Outline:

- I. Introduction
 - Kitaev's honeycomb model
- II. Model & Method
 - Classical Monte Carlo simulation with parity fixing
 - Analytical solution of the real-frequency dynamical correlation
- III. Results
 - Dynamical magnetic structur efactor of chiral spin liquid phase
 - Detection and control of Visons with local charge probe
- IV. Discussions & Summary

Introduction

Introduction: Kitaev's honeycomb model

$$\mathcal{H} = -J_{K} \sum_{i \in A-\text{sub.}} s_{i}^{x} s_{i+x}^{x} + s_{i}^{y} s_{i+y}^{y} + s_{i}^{z} s_{i+z}^{z}$$

Introduction: Energy level of Kitaev's model

$$\mathcal{H} = \frac{i}{4} J_{\mathrm{K}} \sum_{i \in A} (u_i^x c_i c_{i+x} + u_i^y c_i c_{i+y} + u_i^z c_i c_{i+z}).$$

-
$$Z_2$$
 flux $W_p = \pm 1 \rightarrow$ gauge fields $u_i^{\alpha} = \pm 1$

- Ground state

 $W_p = +1$ everywhere c.f. E. Lieb, Phys. Rev. Lett. **73**, 2158 (1994).

- Two types of excitations (Bogoliubov) fermion: $c_i \rightarrow \gamma_m$ Vison: $W_p = -1$ (π -vortex)
- fermionic spectrum
 half of Graphene

Introduction: Chiral spin liquid phase

– Kitaev's model under magnetic field \parallel [111] ($\kappa \propto H^3$)

$$\mathcal{H} = \mathcal{H}_{\text{Kitaev}} - h \sum_{i} (\sigma_i^x + \sigma_i^y + \sigma_i^z)$$
$$\rightarrow \mathcal{H}_{\text{eff}} = \frac{i}{4} J \sum_{n.n.} c_i c_j + \frac{i}{4} \kappa \sum_{n.n.n.} c_i c_j. \quad (\kappa \propto h^3)$$

– Majorana Haldane model \rightarrow Chiral spin liquid half-integer quantized κ_{xy} one zero mode shared by two distant Visons !

Introduction: Thermal Hall conductivity

Half-integer quantization of thermal Hall conductivity: —

 $\pi^2 k_{\rm B}^2$

- K. Kasahara et al. (2018)
- Integer quantum Hall effect + Wiedemann-Franz law

$$\sigma_{xy} = \frac{e^2}{h} \rightarrow \kappa_{xy}/T = \frac{\pi^2}{3} (\frac{k_{\rm B}}{e})^2 \sigma_{xy} = \frac{\pi^2}{3} \frac{k_{\rm B}^2}{h}$$

Motivation:

- direct evidence of excitation desirable \rightarrow Majorana zero mode

Model & Method

Model & Method: Classical Monte Carlo method

– Kitaev's model on a honeycomb lattice ($2 \times N \times N$ sites)

$$\mathcal{H}[\{W_p\}] = \frac{i}{4} J_{\mathrm{K}} \sum_{i \in A} (u_i^x c_i c_{i+x} + u_i^y c_i c_{i+y} + u_i^z c_i c_{i+z}) + \frac{i}{4} \kappa \sum_{\langle i,j \rangle_{2nd}} c_i c_j$$
$$(J_{\mathrm{K}} = 1 : \text{ferromagnetic})$$

- Sampling
$$N^2 + 1$$
 conserved Z_2 fluxes: $\{W_p\}$:
 $\langle \mathcal{O} \rangle = \sum_{\{W_p\}} \frac{\operatorname{Tr}_{c}[e^{-\beta \mathcal{H}[\{W_p\}]}]}{Z} \frac{\operatorname{Tr}_{c}[e^{-\beta \mathcal{H}[\{W_p\}]}\mathcal{O}]}{\operatorname{Tr}_{c}[e^{-\beta \mathcal{H}[\{W_p\}]}]}.$

c.f. MC based on Jordan-Wigner transformation J. Nasu, M. U. and Y. Motome, Phys. Rev. Lett. **113**, 197205.

Model & Method: Dynamical spin correlation

- s^{α}_i changes fluxes on the both sides of $\alpha\text{-bond}$ from site i
- Spin correlation finite at most to nearest-neighbor

Model & Method: Analytical expression

$$\begin{split} \langle s_{i}^{\alpha}(t)s_{j}^{\beta}(0)\rangle &= \frac{1}{4}\delta_{\alpha\beta}(\delta_{i,j} - iu_{i}^{\alpha}\delta_{i+\alpha,j})\langle e^{iH[\{W_{p}\}]t}c_{i}e^{-iH[\{W_{p}^{\prime}\}]t}c_{j}\rangle. \\ &= \frac{1}{2\sum_{\{W_{p}\}}Z[\{W_{p}\}]}\sum_{\{W_{p}\}} \left(\sqrt{\det(1 + e^{-(\beta - it)\cdot iA}e^{-it\cdot iA^{\prime}})} \left[\frac{1}{1 + e^{-(\beta - it)\cdot iA}e^{-it\cdot iA^{\prime}}}e^{-(\beta - it)\cdot iA}\right]_{ji}\right) \\ &- (-1)^{F}\sqrt{\det(1 - e^{-(\beta - it)\cdot iA}e^{-it\cdot iA^{\prime}})} \left[\frac{1}{1 - e^{-(\beta - it)\cdot iA}e^{-it\cdot iA^{\prime}}}e^{-(\beta - it)\cdot iA}\right]_{ji}\right) (\delta_{ij} - iu_{j}^{\alpha}\delta_{ji+\alpha}) \end{split}$$

M. Udagawa, Phys. Rev. B 98, 220404(R) (2018)

Model & Method: Time dependence, $2 \times 12 \times 12$ sites ($J_K = 1$)

Model & Method: Magnetic response @ T = 0.02 ($J_K = 1$), $2 \times 12 \times 12$ sites

On-site correlation

$$\mathcal{C}_{jj}^{z}(\omega) = \int_{0}^{\infty} dt \ e^{(i\omega-\delta)t} \langle S_{j}^{z}(t)S_{j}^{z}(0) \rangle$$

Results

- Dynamical response in chiral spin liquid phase -

Results: Specific heat and flux@ $\kappa = 0.0$

- $J_K = 1.0 \sim 100 \text{K} \sim 10 \text{meV}$, typically A. Banerjee et al., Nat. Mater. **15** 733 (2016)

- Low-T peak: Vison, high-T peak: fermion

J. Nasu, M. U. and Y. Motome, Phys. Rev. B 92, 115122 (2015)

Results:
$$S(\mathbf{q}, \omega) \otimes \kappa = 0.0$$

Results:
$$S(\mathbf{q}, \omega) \otimes \kappa = 0.0$$

Results:
$$S(\mathbf{q}, \omega) \otimes \kappa = 0.0$$

 $\mathcal{S}(\mathbf{q},\omega) = \mathcal{S}^{xx}(\mathbf{q},\omega) + \mathcal{S}^{yy}(\mathbf{q},\omega) + \mathcal{S}^{zz}(\mathbf{q},\omega)$

Results:
$$S(\mathbf{q}, \omega) \otimes \kappa = 0.0$$

- The Vison peak shifts to higher energy by magnetic field

T = 0.012

1.0

Results: **@** $\kappa = 0.1$

- Incoherent region

 $C = \begin{bmatrix} 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.01 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 1 \\ 1 \\ 0.0 \\ 0.1 \\ 0.1 \\ 1 \\ 1 \\ 0 \\ 0.0 \\ 0$

Gradual growth of zero-energy weight

- Basically same as zero magnetic field

Results: **Q** $\kappa = 0.1$

- Chiral spin liquid phase

c.f. Resonance peak @ T = 0

J. Knolle, D. L. Kovrizhin, J. Chalker and R. Moessner (2015)

- low-energy resonance peak
- Vison pair creation

- Excitation of Vison and fermion at the same time

$$\begin{split} \mathcal{S}_{ij}^{\alpha}(\omega) &= \frac{i}{4} \frac{1}{Z} \sum_{n,m} \frac{\langle n | \boldsymbol{c}_i \boldsymbol{b}_i^{\alpha} | m \rangle \langle m | \boldsymbol{b}_j^{\alpha} \boldsymbol{c}_j | n \rangle}{\omega - (E_m - E_n) + i \delta} \\ - \mathcal{H} &= \sum_{m > 0} \varepsilon_m (2\gamma_m^{\dagger} \gamma_m - 1) \\ \varepsilon_m(>0) \text{ depends on flux configuration} \\ E_0 &= -\sum_{m > 0} \varepsilon_m \text{: Ground-state energy} \\ \text{(Vison energy)} \end{split}$$

Peak of
$$\mathcal{S}(\mathbf{q}, \omega)$$

 $\omega = 2\varepsilon_m^{(f)} + (E_0^{(f)} - E_0^{(i)})$

Results: Energy level – a pair of Visons (Size: $64 \times 64 \times 2$)

- $L \rightarrow \infty$: zero mode
- Bonding orbital (ε_1) Visons comfortable next to each other

Reciprocal relation: $2\varepsilon_1^{(f)} + (E_{GS}^{(f)} - E_{GS}^{(i)}) = 2\varepsilon_1^{(i)} + (E_{GS}^{(i)} - E_{GS}^{(f)})$ Inverse process has the same resonant energy

Results: Summary of the peaks

- The pair creation peak sensitive to magnetic field $\propto \kappa$
- Thermal anyon liquid state
- c.f. Disorder-induced Majorana metal, Chris R. Laumann et al., Phys. Rev. B 85, 161301(R) (2012)

Results

- Charge response of Kitaev's spin liquid -

Results: Charge response of Kitaev QSL

- Charge in Kitaev QSL

Optical response

L. J. Sandilands et al., PRB 94, 195156 (2016)

Proximity to Graphene

S. Biswas et al., arXiv:1908.04793

STM ?

$$I(eV) = \frac{2\pi e}{\hbar} \int d\omega \rho_{\rm tip}(\omega - eV) \rho_K(\omega) [f(\omega - eV) - f(\omega)]$$

M. Maltseva, M. Dzero and P. Coleman, Phys. Rev. Lett. 103, 206402 (2009)

– Analytical solution of Hole Green's function $\rightarrow \rho_K(\omega)$

$$g_{js}(t) = -i\langle f_{js}^{\dagger}(t)f_{js}\rangle - \frac{i}{2}\frac{1}{Z}\sum_{\{W_p\}} Z(\{W_p\})\sqrt{\det\left(\frac{1+e^{-(\beta-it)iA}e^{-itiA_j}}{1+e^{-\beta iA}}\right)}$$

Results: Hole Green's function: $\kappa = 0.0$

Results: Hole Green's function – magnetic field dependence

Results: Control of Visons

Quantum coherency between tip and system
 c.f. Quantum dot, adsorbed magnetic ions...

- s-d coupling Hamiltonian

$$\mathcal{H} = \mathcal{H}_{\mathrm{Kitaev}} + \mathcal{H}_{\mathrm{tip}} + J_{\mathrm{sd}} c_{\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} c_{\beta} \cdot \mathbf{S}_{\mathrm{K}}$$

- Vison acquires dynamics

- Low-energy model: Effective L = 1 Kondo model $\mathcal{H} = \mathcal{H}_{tip} + J_{sd}c^{\dagger}_{\alpha}\boldsymbol{\sigma}_{\alpha\beta}c_{\beta}\cdot\mathbf{L}$ \rightarrow Stabilization of odd Vison config. **Results**: Vison twizzer

Summary

- Finite-T spin dynamics of Kitaev's CSL Identification of peaks Thermal anyon liquid at intermediate T
- Charge response of Kitaev's spin liquid
 Vison signatures at low energy
 Possibility of control

