

Destruction of magnetic long-range order by quenched disorder: Triangular & Pyrochlore AFM

Matthias Vojta (TU Dresden)

Santanu Dey Eric Andrade Jose Hoyos Stephan Rachel (Dresden) (Sao Paulo) (Sao Paulo) (Melbourne)

PCS-IBS. Daejeon, 2019

Deutsche Forschungsgemeinschaft DFG

Destruction of magnetic long-range order by quenched disorder: Triangular & Pyrochlore AFM

- 1. Frustration + quenched disorder \rightarrow spin glass?
- Triangular-lattice Heisenberg antiferromagnet
 Dipolar spin texture from bond defect
 Destruction of long-range order for infinitesimal disorder
- **3.** Pyrochlore-lattice XY antiferromagnet
 Order by disorder
 Destruction of long-range order for finite disorder

> by defect-induced tranverse fields Frustration & disorder

Zeitschrift für Physik B © by Springer-Verlag 1979

Insulating Spin Glasses

Jacques Villain

Département de Recherche Fondamentale, Laboratoire de Diffraction Neutronique, Centre d'Etudes Nucléaires de Grenoble, Grenoble, France

Received September 21, 1978

The possibility of obtaining spin glasses by addition of impurities in an antiferromagnetic insulator is examined. Dipolar interactions are briefly considered but the attention is focussed on Heisenberg systems. Equivalence with the Edwards-Anderson model is derived in a theoretical case. Experimental realisations, such as quasi-one dimensional systems, and spinels, are reviewed. A weak concentration of non-magnetic impurities can give rise to a new state that we call "semi spin glass", in which a ferromagnetic component coexists with a transverse, spin glass component. An important case is when the pure system has a high ground state degeneracy (cooperative paramagnet). Non-magnetic impurities or other forms of disorder can transform it into a spin glass.

Villain, Z. Phys B 33, 31 (1979)

Quenched disorder

Weak randomness - two cases:

- 1) Gapped phase stable against weak randomness (defects screened)
- 2) Gapless phase less clear

Triangular lattice Heisenberg AFM + quenched disorder

Triangular Heisenberg antiferromagnet

$$H = J_1 \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \vec{S}_i \cdot \vec{S}_j$$

Couplings $\alpha = J_2/J_1 < 1/8$

Spin stiffness in classical limit:

$$\rho_s^{\parallel} = N_0^2 (J_1 - 6J_2) \frac{\sqrt{3}}{2} \mathcal{A}$$
order parameter amplitude $N_0=1$ area of unit cell

Triangular Heisenberg antiferromagnet + bond disorder

Watanabe *et al.*, JPSJ **83**, 034714 (2014)

Wu / Gong / Sheng, PRB **99**, 085141 (2019)

Bond defect in triangular Heisenberg AFM

Linear-response theory for defect-induced texture:

$$\langle S_i^{\perp} \rangle = \lambda(\delta J) N_0 \mathcal{A} \int \frac{d^d q}{(2\pi)^d} \left(i\hat{e} \cdot \vec{q} \right) \chi^{\parallel}(\vec{q}) e^{i\vec{q} \cdot \vec{r}_i}$$

State remains coplanar, with dipolar texture:

$$\delta \Theta(\vec{r}) = \kappa \, \delta J \, \frac{N_0^2}{\tilde{\rho}_s} \, \frac{\hat{e} \cdot \vec{r}}{r^d}$$

 N_0 : order parameter ρ_s : clean-limit stiffness \hat{e} : defect bond vector

Site vs. bond disorder in triangular AFM

vacancy \rightarrow octupole

bond defect \rightarrow dipole

$$\delta \Theta \sim 1/r^3$$

 $\delta \Theta \sim 1/r$

Utesov *et al*, PRB **92**, 125110 (2015) Dey / Andrade / Vojta, arXiv:1907.08208

Wollny / Fritz / Vojta, PRL 107, 137204 (2011)

Finite defect concentration: Fate of long-range order

Superposition of textures from random dipoles d_{ij} at locations r_{ij} :

$$\left\langle S_l^{\perp} \right\rangle = \kappa \frac{N_0^3}{\tilde{\rho}_s} \sum_{\langle ij \rangle} \frac{\vec{d}_{ij} \cdot \vec{r}_{l,ij}}{r_{l,ij}^d}$$

Disorder-averaged "transverse" magnetization (Δ : disorder strength):

$$\overline{\left\langle S_l^{\perp 2} \right\rangle} = \tilde{\kappa} \, \Delta^2 \frac{N_0^6}{\tilde{\rho}_s^2} \int dr \, r^{1-d}$$

Fluctuations diverge for $d \le 2$ (!)

Destruction of non-collinear LRO by infinitesimal bond disorder for $d \le 2$

Dey / Andrade / Vojta, arXiv:1907.08208

Destruction of long-range order

Conjecture: Resulting state is **spin glass** with finite correlation length ξ

Estimate ξ as domain size from stability condition $\overline{\langle S_l^{\perp} \rangle} \lesssim N_0^2$

$$\xi^{2-d} \propto \tilde{\rho}_s^2 / (\Delta^2 N_0^4)$$

d=2 is **marginal** case, with exponentially large ξ for weak disorder Δ :

$$\ln \frac{\xi}{\xi_{\infty}} \propto \frac{\tilde{\rho}_s^2}{\Delta^2 N_0^4}$$

RG analysis

Non-linear sigma model for order parameter R (rotation matrix, $\vec{S}_i = R_i \cdot \vec{N}_i$):

$$\mathcal{S} = -\frac{\tilde{\rho}}{4} \int d\tau d^d x \left[\frac{1}{c^2} \operatorname{Tr} \left(R^{-1} \partial_\tau R \right)^2 + \operatorname{Tr} P \left(R^{-1} \partial_i R \right)^2 \right]$$

Add bond disorder:

$$\delta J_{ij}\vec{S}_i \cdot \vec{S}_j = \delta J_{ij}\vec{N}_i \cdot R^{-1} \left(\hat{e}_{ij} \cdot \boldsymbol{\nabla} \right) R \cdot \vec{N}_j$$

Replicas, disorder average, one-loop RG:

Stiffness
$$\beta(\eta_a) = \frac{d\eta_a}{d\log b} = (1-d)\eta_a + \frac{R_{abc}}{8\pi} \left[\left(\frac{\eta_a^2}{\eta_b \eta_c} \right) + \frac{2\eta_a^2 \sigma_c}{\eta_b} \right]$$

Disorder $\beta(\sigma_a) = \frac{d\sigma_a}{d\log b} = (d-2)\sigma_a - \frac{R_{abc}}{8\pi} \left[\left(\frac{\sigma_b}{\eta_c} + \frac{2\eta_a \sigma_a}{\eta_b \eta_c} \right) + 2(\sigma_b \sigma_c + \frac{2\eta_a \sigma_a \sigma_c}{\eta_b}) \right]$

Destruction of non-collinear LRO by infinitesimal bond disorder for $d \le 2$

Numerical results

Finite-size scaling of correlation length ξ

Finite-size scaling of order parameter

Dey / Andrade / Vojta, arXiv:1907.08208

 $\alpha = J_2/J_1$

Numerical results: Correlation length

Recall prediction (d=2):
$$\ln \frac{\xi}{\xi_{\infty}} \propto \frac{\tilde{\rho}_s^2}{\Delta^2 N_0^4}$$

Numerical results: Stiffness dependence

Finite-disorder spin glass is non-coplanar

While texture is coplanar for single bond defect $(\Delta \rightarrow 0)$, state at finite Δ is non-coplanar

Layered triangular AFM with bond disorder

Assume weak interlayer coupling $\varepsilon \ll 1$ ($\varepsilon \sim J_{\perp}/J_{1}$)

$$\chi^{\parallel}(\vec{q}, q_{\perp}) = \frac{N_0^2}{\rho_s} \frac{1}{q^2 + \varepsilon q_{\perp}^2}$$

LRO is stable for small disorder, specifically if

$$\varepsilon \gtrsim \frac{\Delta^4 N_0^8}{(\tilde{\rho}_s^{\parallel})^4}$$

Summary of our results: Phase diagram of bond-disordered triangular AF

Dey / Andrade / Vojta, arXiv:1907.08208 see also Watanabe *et al.*, JPSJ **83**, 034714 (2014) Shimokawa *et al.*, PRB **92**, 134407 (2015) Wu / Gong / Sheng, PRB **99**, 085141 (2019)

Note 1: Small concentration of random vacancies does not destroy LRO!

see also Maryasin/Zhitomirsky, PRB 90, 094412 (2014)

Note 2: Easy-plane version w/ bond disorder leads to quasi-LRO!

Dey et al., în preparation

Pyrochlore XY antiferromagnet + quenched disorder

Pyrochlore XY antiferromagnet

XY moments on pyrochlore lattice (XY planes local!)

Hamiltonian in local frame:

$$\mathcal{H} = \sum_{\langle ij \rangle} \left\{ J_{zz} S_i^z S_j^z - J_{\pm} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) \right. \\ \left. + J_{\pm\pm} \left(e^{i\theta_{ij}} S_i^+ S_j^+ + e^{-i\theta_{ij}} S_i^- \cdot S_j^- \right) \right. \\ \left. - J_{z\pm} \left[S_j^z \left(e^{-i\theta_{ij}} S_i^+ + e^{i\theta_{ij}} S_i^- \right) + i \longleftrightarrow j \right] \right\}$$

,,XY" model: $J_{zz} = J_{z\pm} = 0$

Pyrochlore XY antiferromagnet

Hamiltonian in local frame:

Classical

$$\mathcal{H} = \sum_{\langle ij \rangle} \left\{ J_{zz} S_i^z S_j^z - J_{\pm} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) \right. \\ \left. + J_{\pm\pm} \left(e^{i\theta_{ij}} S_i^+ S_j^+ + e^{-i\theta_{ij}} S_i^- \cdot S_j^- \right) \right. \\ \left. - J_{z\pm} \left[S_j^z \left(e^{-i\theta_{ij}} S_i^+ + e^{i\theta_{ij}} S_i^- \right) + i \longleftrightarrow j \right] \right]$$

One-parameter manifold of Q=0 ground states Fluctuations select ψ_2 or ψ_3 state (both 6-fold degenerate) (order by disorder)

Er₂Ti₂O₇

Curie-Weiss temperature $\theta_{CW} = -13$ K

Magnetic order below $T_{\rm N} = 1.2$ K

Ordering wavevector Q = 0

Ordered moment ~ $3 \mu_B$

Champion et al., PRB 68, 020401 (2003)

Characteristic field dependence of Bragg peaks as evidence for ψ_2 order

Spin-wave gap $\Delta \sim 0.05$ meV consistent w/ order-by-disorder theory (pseudo-Goldstone)

Ruff et al., PRL 101, 147205 (2008)

Ross et al., PRL 112, 057201 (2014)

Order by quenched disorder

Randomness tends to select state from classically degenerate manifold **"opposite"** to that selected by thermal or quantum fluctuations (!)

Example: J_1 - J_2 square-lattice antiferromagnet

 $J_2 > J_1/2$: classical energy independent of θ

Thermal and quantum fluctuations select collinear order ($\theta=0,\pi$)

Vacancy selects anticollinear order ($\theta = \pm \pi/2$)

Weber/Mila, PRB 86, 184432 (2012)

Quenched disorder in XY pyrchlores

Randomness tends to select state from classically degenerate manifold **"opposite"** to that selected by thermal or quantum fluctuations

Conjectured phase diagram for classical model:

Maryasin/Zhitomirsky, PRB **90**, 094412 (2014) Andreanov/McClarty, PRB **91**, 064401 (2015)

Er_{2-x}Y_xTi₂O₇

Gaudet/Gaulin et al., PRB 94, 060407 (2016)

Summary of our results: Phase diagram of dirty XY pyrochlore AF

Andrade/Hoyos/Rachel/Vojta, PRL **120**, 097204 (2018)

Monte Carlo results (classical): Site dilution

 $J_{\pm\pm}/J_{\pm}=1$

Monte Carlo results: Glassiness

Andrade/Hoyos/Rachel/Vojta, PRL 120, 097204 (2018)

3.5

3.02.5

 $\frac{7^{+2.0}}{5}$ L 1.5

1.0

0.5

0.1

0.2

0.3

(a)

Paramagnet

0.5

0.6

CSG

0.4

Glassiness from random tranverse fields

Assume ordered state: ferromagnetic in local frame, all spins || z

With disorder: Local mean field $\mathbf{h}_j = h_j^{\parallel} \hat{n}_{\parallel} + h_j^{\perp} \hat{n}_{\perp}$ will not be parallel to z, due to **off-diagonal exchange couplings**

Parameterize disorder: $J_{jk}^{\pm} = J^{\pm} (1 + \epsilon_{jk}), \ J_{jk}^{\pm\pm} = J^{\pm\pm} (1 + \epsilon_{jk})$ Effective random field $u_j = \frac{h_j^{\perp}}{J^{\pm\pm}} = \sum_{k=1}^6 \epsilon_{jk} \sin \theta_{jk}$ with strength $\delta h = \sqrt{u^2} J^{\pm\pm} = \sqrt{3x (1 - x)} J^{\pm\pm}$

Transverse fluctuations in ordered state

Ordered state stable if

$$\overline{\langle S_i^{\perp 2} \rangle} = (\delta h)^2 \int \frac{d^3 q}{(2\pi)^3} \chi^{\perp}(\mathbf{q})^2$$

 $\delta h \ll \kappa^{d/4} \lambda^{1-d/4}$

for bulk response given by $\chi^{\perp}({f q}) \sim 1/(\lambda + \kappa_{\mu}q_{\mu}^2)$, i.e. gap $\Delta \propto \sqrt{\lambda}$

Summary

Quenched disorder in frustrated magnets can produce effective **random transverse fields** which destroy long-range order

- Non-collinear LRO in triangular Heisenberg AFM is destroyed by infinitesimal quenched bond disorder in favor of spin glass
- Pyrochlore XY magnets with quenched disorder show cluster spin-glass phase which destroys ,,order-by-disorder" LRO; explains experiments in Er_{2-x}Y_xTi₂O₇ and NaCaCo₂F₇; also applies to doped Er₂Pt₂O₇

Dey / Andrade / Vojta, arXiv:1907.08208 Andrade/Hoyos/Rachel/Vojta, PRL **120**, 097204 (2018)