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Neutron Scattering Collaborators:

A. Banerjee, A. Aczel, C. Balz, C. Batista, S. Bhattacharjee, C.
Bridges, H. Cao, B. Chakoumakos, G. Ehlers, O. Garlea, G.
Granroth, Y. Kamiya, J. Knolle, D. Kovrizhin, P. Lampen-Kelley, L.
Li, Y. Liu, Z. Lu, M. Lumsden, D. Mandrus, R. Moessner, M.
Stone, D, Pajerowski, A. Samarakoon, D. A. Tennant, B. Winn, J.-
Q. Yan, Y. Yiu, S. Zhang.

Most recent: Christian Balz et al.,
PRB 100 060405(R), 2019

MCE collaborators:
X. Hu, S. M. Yadav, Y. Takano
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Outline

. Kitaev's model & materials
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Kitaev’s model on honeycomb lattice — a special QSL

« Kitaev interaction: Bond-directional
Hitaey = — Z K, S;/S} dependent Ising coupling
y—bonds « Exactly solvable Hamiltonian
— quantum spin liquid ground state

Fig. 3. Three types of links in the honeycomb lattice.
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Kitaev interactions in materials

week endin

PRL 102, 017205 (2009) PHYSICAL REVIEW LETTERS 9 JANUARY Zgﬂﬂ“? See aISO

Mott Insulators in the Strong Spin-Orbit Coupling Limit: H. Takagl et al., .
From Heisenberg to a Quantum Compass and Kitaev Models Nature Reviews Physics 1, (2019)

G. Jackeli'* and G. Khaliullin®

d® in low spin

strong spin- edge-sharing
22;1%%1;'% orbit coupling octahedra
e’ J=3/2 (4)

—

L=1, S=1/2

+
_IHr_ e, 3A2
'

strong field limit

S=1/2, Loy =1 J=1/2 (2)
e.g. (5d°) Ir4+ AL -S
(4cF) Ru* o
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Heisenberg — Kitaev Phase Diagram

week ending

PRL 110, 097204 (2013) PHYSICAL REVIEW LETTERS I MARCH 2013

Zigzag Magnetic Order in the Iridium Oxide Na,IrQ;

Jirt Cl']aloupka,l'2 George Jackeli,"* and Giniyat Khaliullin'

H Y = 2KS7SY +JS; - S,
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Effect of additional interactions

week ending
PRL 112, 077204 (20143 PHYSICAL EEVIEW LETTERS 21 FEEFUARY 2014

Generic Spin Model for the Honeycomb Iridates beyond the Kitaevy Limit
effrey G. Ran,' Fric KinHo Lee| and Hae Young Kee™™"
— A~ ¥ Gt %
H = > [JS-5+KS/S + (535 + §/5%)],

{iiyeaply)
Zigrag ’I ’ Kitaev

| Owpy ~= Stripy

Kitaev

(a) Classical phase diagram with I > 0 (a) Phase diagram for T > 0

PHYSICAL REVIEW B 90, 155126 (2014)

Importance of anisotropic exchange interactions in honeycomb iridates: Minimal model for zigzag
antiferromagnetic order in Na,IrO3

Yuriy Sizyuk,? Craig Price,® Peter Wélfle,"* and Natalia B. Perkins'?
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Outline

Il. Ordering in a-RuCl,

*- OAK RIDGE NATIONAL LLABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY




a-RuCl; : quasi - 2D honeycomb material

o Honeycomb Eliile - September 14, 1963 NATURE
 Ru**in octahedral low spin | cwesTRy
* Jip 2 Jgp transition = 200 meV s
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Transition to zig-zag order at T, =7 K
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Comparisons of specific heat
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Effect of stacking faults in a-RuCl,

5 ° 10 15
T (K)
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Effect of stacking faults in a-RuCl,
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Stacking faults =>14 K transition
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Magnetic Field Effects

Kubota et al., Johnson et al. showed that a modest in-plane field kills magnetic order
(out of plane needs > 50 Tesla to saturate)

PHYSICAL REVIEW B 92, 235119 (2015)

Monoclinic crystal structure of «-RuCl; and the zigzag antiferromagnetic ground state

R. D. Johnson,"*" S. C. Williams,! A. A. Haghig_hirad,1 1. Singleton,? V. Zapf,? P. Manuel,” L. 1.
H. O. Jeschke,” R. Valenti,® and R. Coldea’

4.5
PHYSICAL REVIEW B 91, 094422 (2015) 4.0
Successive magnetic phase transitions in ¢-RuCls: 3.5
XY-like frustrated magnet on the honeycomb lattice
- 1 . 1 % - o] -3 . . . 4 2 3-0
Yumi Kubota," Hidekaru Tanaka,' - Toshio Ono,” Yasuo Narumi,” and Koichi Kindo o
5 2.5
PHYSICAL REVIEW B 95, 180411(R) (2017) <
< = 2.0
Phase diagram of «-RuCl; in an in-plane magnetic field =
o 1.5

J. A. Sears.' Y. Zhao.>* Z. Xu.”" J. W. Lynn.” and Young-June Kim':
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Field dependence of Ty g .737
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Additional ordered phase 6-7.3 T
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Additional ordered phase 6-7.3 T
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Diffraction:

o

Intensity (arb. units)

2nd zigzag w/ different stacking
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In-plane field direction dependence
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Outline

lll. Inelastic neutron scattering in a-RuCl,
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Unpolarized neutron intensity for magnetic scattering:

[™(Q,) | £ (Q)f Z 57 - ")’ )% (Q,0)
/ AN

magnetic form factor magnetic structure factor
components of spin a,3 = x,y,z. unit vector in direction of Q
Magnetic Structure Factor: \ ————————— j
S”(Qu@) = [ {m* ©0)m” (r,0)¢ ™ “drdi 00
m*=L"+28

S?(Q, ) oc Im{;(aﬂ(Q, a))} Fluctuation dissipation theorem

For magnons usually S(Q,®) oc 6(w-0g)
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Exactly solvable quantum spin system
=Y fzlszlo)f
(E'lsgE)]

where / = Ze‘ﬂE and SS = ZSI‘%@"'Q'R
E

R

T=0: S0 S(w—E)

T>0:  S“Q,@)=Z"> e
E,E'

Neutron scattering is sensitive to matrix elements where AS or AL = 0,£1
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a-RuCl; powder — inelastic neutron scattering

a ¢ 35D 3]
f—‘L ; T=5K 15K
EI' af oC
% Z \ B oD
= b 7 :
= z
W tn —
E = Ei
[T} a 3
> =
z
@
E
b
d
=) 30t
~ = -~
5 3 3
s = =
= 5 207
=
C
10{-
= E
1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1
0.0 05 1.0 1.5 20 03 08 13 1.8 22
QAT QAN

Nature Materials 15, 733 (2016).
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Expectations for spin waves in a zigzag state
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(a) zig-zag model
8 spin waves
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» Dispersion minima at ordering wavevectors (M points)

» Low energy constant E slices show cone shaped dispersion surfaces
around the M points

» Less general, but true for Heisenberg-Kitaev model:

I" points show flat modes sharp in energy

*- OAK RIDGE NATIONAL LLABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



a-RuCl; single crystal - INS

Energy vs wavevector slice Constant energy slice

T=5K
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Zero field excitations:

»Low energy, gapped spin
waves.

»Superimposed on broad
continuum at -point
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Experiment: I" point signal inconsistent with SW

8

Sk

Intensity (arb. units)
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@ * Below TN - I" point shows spin

BN waves plus continuum

5.4 * Above TN — only continuum remains
® » Large sustained continuum atI" is

C " [

22 absent in spin wave theory
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Scattering through the Brillouin zone

Intansity (ark. wnith

[HbO]

At Ty = 7 K the spin waves disappear throughout the Brillouin zone
* Above T the continuum near the I" point persists

*- OAK RIDGE NATIONAL LLABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY




Q,T dependence of the continuum scattering

T=5K

[K,-K,0]
(syun pazjjew.ou) A}isualu|
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« circular column centered on H=K=0, extending to higher energies

« atlow T, moderate energy SW peaks and column merge and scattering
resembles a six pointed Star of David

 scattering persists to high T
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How does field affect the magnetic excitations?
* Does killing order with an applied field lead to a QSL?

2K, OT
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How does field affect the magnetic excitations?

* Does killing order with an applied field lead to a QSL?
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How does field affect the magnetic excitations?

* Does killing order with an applied field lead to a QSL?
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How does field affect the magnetic excitations?
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Npj Quantum Materials 3, 8 (2018).
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Is the scattering gapped at the I" point?

a b
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Npj Quantum Materials 3, 8 (2018).
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Outline

I\V. Higher fields, magnetocaloric effect, T-B phase diagram
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Evidence of fractionalization from thermal Hall ?

Majorana quantization and half-integer thermal quantum Hall effect
in a Kitaev spin liquid

Y. Kasahara!, T.Ohnishi', N. Kurita?, H. Tanaka?, J. Nasu?, Y. Motome?®, T.Shibauchi*, and Y. Matsudal

2D reaches a quantum plateau as a function of
Ty —
applied magnetic field. That is, ~ /T attains a Nature 559’ 227-231 {2018)

quantization value of (7/12)( L?B/h) whlch is ex-
actly half of hQD/T in the integer QHE. This half-

integer thermal Hall conductance observed in a
bulk material is a direct signature of topologi- c MoH (T)
cally protected chiral edge currents of charge neu- 4 6 8 10 12
tral Majorana fermions, particles that are their - - - - -
own antiparticles, which possess half degrees of Ji/ks Conventional paramagnet
freedom of conventional fermions [13—16]. These e o e o o
signatures demonstrate the fractionalization of - Spin liquid (Kitaev paramagnet) e
spins into itinerant Majorana fermions and 75 Half-integer
fluxes predicted in a Kitaev QSL [1, 3]. Above 8t Ty quantized plateau ﬂi 80° o
HDH" (T) ke B . Hy
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Field dependence of scattering at
specific I" points

CHRISTIAN BALZ et al. PHYSICAL REVIEW B 100, 060405(R) (2019)
(a) (b) (c)
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FIG. 1. Field dependence of the inelastic neutron scattering at the 2D I' point for two values of the out-of-plane wave-vector transfer.
Data obtained at 1.5 K on a 2 g single crystal of @-RuCl; using the FLEXX triple-axis spectrometer. (a) Zero-field data. A field of (b) 8 T
and (c) 13.5 T was applied in the honeycomb plane perpendicular to a Ru-Ru bond [see inset of (b)]. The solid lines are fits and the
dashed lines show the model free background for (0,0.3.3) as described in the text. Error bars represent one standard deviation assuming

Poisson statistics.
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L dispersion and band width
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* The dispersion in L is a measure of
the magnetic interactions
perpendicular to the plane

The reduction of the bandwidth
near the region where magnons
are not detected is a signature of
enhanced two-dimensionality
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Magnetocaloric effect

Y. Takano group
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Magnetocaloric effect at different T
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 Measurements at
different
temperatures
allow one to
construct a phase
diagram
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More complete phase diagram
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Comparison with Kasahara et al. phase diagram
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Some conclusions

* Inelastic neutron scattering in a-RuCl; is
consistent with fractional excitations

* An external magnetic field applied in-plane leads
to a magnetically disordered state, with a higher
field transition to a state that seems to be
partially polarized and supports magnons

 The intermediate field disordered state is
consistent with a QSL
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Some ORNL references on a-RuCl,

Neutron scattering experiments:

« A. Banerjee et al. Nature Materials 15, 733(2016).

« H. Cao, A. Banerjee et al. PRB 93, 134423 (2016).

A. Banerjee et al. SCIENCE 356, 1055 (2017).

P. Lampen—Kelley et al. PRL 119, 237203, (2017).

A. Banerjee et. al., Npj Quantum Materials 3, 8 (2018).
C. Balz et al., PRB 100, 060405(R) (2019).
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Thank you for your attention
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Questions?
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