

Josephson vortices in scalar and vector dissipative polariton systems

A.V. Yulin

International Research Centre for Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia

19 of May 2017, Institute for Basics Science, Korea International Workshop *Physics of Exciton-Polaritons in Artificial Lattices*

The aim of the work is to explore the analogy between coherent systems of different physical origine: superonducting systems vs polariton ones.

Abrikosov vortices vortices in polariton condensates

Josephson vortices -

Very brief introduction to Josephson effect

Outline of the talk

- I. Mathematical model.
- II. Scalar case.
 - 1. Linear geometry. Stationary Josephson effect.
 - 2. Annular geometry. Stationary Josephson effect.
 - 3. Non-stationary Josephson effect
- III. Inter-polarization Josephson vortices in vector case.
 - 1. Linear geometry.
 - 2. Annular geometry.
 - 3. Josephson vortex as a polarization flip.
- IV. Mixed vortex states: intra- and inter-polarization Josephson vortices.
- V. Vortices in microstructures cavities
 - 1. Josephson vortices.
 - 2. Dark solitons.
- VI. Conclusion

Mathematical model

$$i\partial_{t}\psi_{\pm} = \left(i(n_{\pm} - \frac{1}{2}) - \frac{1}{2}\nabla^{2} + |\psi_{\pm}|^{2} + \alpha |\psi_{\mp}|^{2} + gn_{\pm} + g_{m}n_{\mp}\right)\psi_{\pm} + \sigma\psi_{\mp}$$

$$\partial_{t}n_{\pm} = P_{\mp} - \left(i\Gamma + \beta |\psi_{\pm}|^{2}\right) \cdot n_{\pm}$$

$$\alpha = -0.1$$
 $g = 3.64$ $\beta = 1.1$ $g_m = -0.364$ $\Gamma = 3$ $\sigma = 0.15$

Stationary non-vortex and vortex states in linear Josephson junctions (scalar case)

$$\varphi = \arg \frac{\psi(x,y=y_0) \cdot \psi(x,y=-y_0)^*}{|\psi(x,y=y_0)||\psi(x,y=y_0)|}$$

Annual geometry (scalar case)

$$N_v - N_{av} = n_1 - n_2$$

Non-stationary Josephson effect

Inter-polarization Josephson vortices linear geometry, stationary state

Non-stationary inter-polarization Josephson effect

Inter-polarization Josephson vortices, annular geometry

Coexisting Inter- and intra-polarization Josephson vortices, annular geometry

Polariton condensate in potential wells

Josephson vortex state

Dark soliton state

Destruction of dark soliton state and the formation of Josephson vortex state

Conclusion

- 1. The formation of Josephson vortices in polariton systems with incoherent pump is studied theoretically.
- 2. It is shown that inter-polarization Josephson vortices can be considered as localized flips of the polarization.
- 3. Mixed states of intra- and inter-polarization vortices are found.

Thank you for your attention!