

Exciton-polaritons in 2D Lieb lattice with spinorbit coupling

D.N. Krizhanovskii

Low-dimensional structures & devices (LDSD) group The University of Sheffield

Outline

- Intoduction to Lieb lattices. Importance of flat bands
- Methods of polariton confinement. Photonic spin-orbit coupling
- Polariton 2D Lieb lattice
- Real space patterns with polarisation textures of S and P type flat band condensates
- Condensate fragmentation and effects of interactions
- Conclusions

2D Lieb lattice

YBa₂Cu₃O₇

Decorated square lattice (A) with another sublattice centered on each side of the square

Lieb lattice oobserved in layered perovskites materials
CuO₂ weakly bound layer in high T superconductor YBa₂Cu₃O₇

Energy band structure and flat bands

- Ferromagnetic ordering
- Quantum Hall phases
- Linear and nonlinear self-trapped wave packets (compactons)

Flat band arises from destructive interference between quasiparticles tunnelling from C to A and from B to A.

Linear dispersion crossing flat band at the edge of BZ

Topological and correlated phases in Lieb Lattice

Spin-orbit induced next nearest neighbour coupling opens gap

Formation of topologically protected edge states *PRB 82, 085310 (2010)*

BEC of cold atoms in Lieb lattice

Atomic BEC in optically induced Lieb lattice

Localisation in a flat band

Science Advances 1, 10, (2015)

Compactons in Lieb lattice of coupled waveguides

PRL 114, 245503 (2015)

STRONG EXCITON-PHOTON COUPLING IN SEMICONDUCTOR MICROCAVITIES

quantum well (III-V, II-VI or 2D materials of MoSe₂, WSe₂.)

mirror

MICROCAVITY POLARITON DISPERSION

- Strong polariton-polariton interactions due to exciton
- Fast response on ps timescale=> suitable for optical signal processing
- Low mass (low density of state). 10 8-9 times smaller than an atom mass

Polariton Bose-Einstein condensation at high T can be observed

Methods of exciton-polariton confinement

Metal deposition (100's μeV)

Nature **450**, 529-532 (2007); Nature Phys. **7**, 681-686 (2011)

Surface acoustic waves (100's µeV)

Phys. Rev. Lett. 105, 116402 (2010)

Mesa traps (several meV)

New J. Phys. 17, 023001 (2015)

Etched micropillars (10's meV)

Phys. Rev. Lett. 112, 116402 (2014)

Photonic spin-orbit coupling

- Strong TE-TM splitting of photonic mode
- Introduces effective magnetic field acting on polariton pseudospin (polarisation)

$$\begin{pmatrix} H(\mathbf{k}) & \Omega_{LT}(\mathbf{k})e^{-2i\theta} \\ \Omega_{LT}(\mathbf{k})e^{+2i\theta} & H(\mathbf{k}) \end{pmatrix} = H(\mathbf{k})I + \mathbf{\Omega}_{LT} \cdot \boldsymbol{\sigma}$$

C. R. Physique 17, 920-933 (2016)

Phys. Rev. Lett. 115, 116402 (2015)

Polarization-dependent hopping in micropillars

- One way to realize SSH Hamiltonian
- Large SOC + Zeeman splitting → opening of a topologically non-trivial gap in honeycomb lattices

PSEUDOMAGNETIC FIELDS IN POLARITON SYSTEM

Large spin-orbit interaction for photons + real magnetic field acting on excitons

Phys. Rev. Lett. 114, 116401 (2015)

1D Lieb lattice

Phys. Rev. Lett. 116, 066402 (2016)

Condensation into S type flat band.

Orbital flat bands and effects of spin orbit coupling unexplored

Our system

Unetched wafer

EBL + plasma dry etching

- $\lambda/2$ GaAs microcavity with 3x In_{0.4}Ga_{0.96}As QWs
- Rabi splitting of 4.7 meV
- Linewidth ~0.1 meV
- Photon-exciton detuning of -7.2 meV

2D lattice

- 14x14 unit cells (~100 μm²)
- 3 μm pillar diameter and 2.9 μm separation
- 5.8 μm lattice constant

S and P type orbitals in micropillars

for now neglect polarisation degree of freedom

Orbitals in single pillar

Tunneling of P orbitals between coupled pillars

Energy-momentum relation

Experimental *E-k* relations with tight-binding curves

Emission from Flat S and P type band is pronounced

Emission from some dispersive bands is supressed probably due to far-field destructive intereference of different modes

Tight-binding model:

• *S* band: $\tau = 0.165$ meV

• $P \text{ band: } \tau^a = 0.375 \text{ meV; } \tau^t = 0.1 \text{ meV}$

Schrödinger equation in 2D Lieb potential

- 10 meV confinement potential
- $m^* = 5x10^{-5}m_0$
- 0.1 meV lifetime

Band structure for different lattice constants

At smaller lattice constants energy gaps become smaller

Flat bands disappear

Real space emission

- Flat bands show suppressed emission from B sublattices due to destructive wave interference
- AB (dispersive) band eigenmodes are delocalized

P-flat band real space pattern

A site has higher proportion of Px orbital $(Px/Py^{\sim}6)$

C site has higher proportion of Py orbital

Population on B site close to zero as expected for flat band

Py (A)
$$\tau_a$$
= Py (C) τ_t

Polariton condensation

- 100 ps horizontally-polarized pulses from an 80 MHz Ti:Sa laser
- Laser tuned to 843 nm (~1 meV below exciton)
- Polaritons condense into two flat bands and the negative effective mass states at the AB band maxima

Excitation scheme

Real space emission patterns

- Condensates formed on flat bands are localized on A and C sublattices
- Photonic spin-orbit coupling gives rise to pseudospin texture in flat band condensates

Polarisation dependent tunnelling

Tight-binding model:

• *S* band:

$$\tau_{||}$$
 = 0.165 meV; τ_{\perp} = 0.145 meV

• *P* band:

$$\tau_{||}^{a}$$
 = 0.375 meV; $\tau_{||}^{t}$ = 0.1 meV
 τ_{\perp}^{a} = 0.125 meV; τ_{\perp}^{t} = 0.033 meV

Calculated real space emission patterns with polarisation

Calculated patterns for P flat band

Ratio of orbital populations: 6

$$\left|\Psi_{P_{x}}\right|^{2}/\left|\Psi_{P_{y}}\right|^{2}$$
 (A sites)

$$\left|\Psi_{P_{\mathcal{Y}}}\right|^{2}/\left|\Psi_{P_{\mathcal{X}}}\right|^{2}$$
 (*C* sites)

Linear Polarisation degree

~0.5 for P flat bandand ~0.13 for S flat band

in agreement with the experiment

Calculated Energy-momentum dispersions

TB model with polarization

0.4

0.2

 $k_v/(\pi/\alpha)$

 $k_v/(\pi/\alpha)$

0.4

0.2

 $k_y/(\pi/\alpha)$

Dispersive bands are polarisaion split

Flat bands are unaffected by polarisation dependent tunneling

Condensate fragmentation

1D case

Phys. Rev. Lett. 116, 066402 (2016)

2D case

- Spatially-dependent blueshift of pillar modes seen in flat-band condensates
- Correlation between population and blueshift of orbitals shows role of interactions in spectral fragmentation. Interactions with reservoir are dominant

Strength of polariton-polariton interaction

Polariton density

Blueshift of polariton energy at given k

$$E_{shift} = g_{pol-pol} N_{pol}$$

Exciton fraction Photon fraction $E_{shift} = g_{pol-pol} N_{pol} = g_{xx} N_{pol} |X|^4 / N_{QW} + \Delta \Omega |C|^2$

Blueshift of exciton resonance

Strength of exciton-exciton interactions g_{xx}

Number of quantum wells N_{OW}

Reduction of Rabi splitting due to screening of exciton resonance by exction-exciton interactions $\Delta\Omega = \beta_{xx}N_{pol}|X|^2/N_{OW}$

g_{pol-pol} and g_{xx} from literature

Measuring blueshift of polariton high density phase (condensate) in microcavities pumped resonantly or nonresonantly

SRK Rodriguez, A Amo et al.arXiv preprint arXiv:1602.07114, Nature Comm (2016)

$$g_{pol-pol}=0.8~\mu eV~\mu m^2$$
; g_{xx} =30 $\mu eV~\mu m^2$.

Lydie Ferrier, et aland Jacqueline Bloch Phys. Rev. Lett. 106, 126401 (2011)

$$g_{pol-pol} = 2 - 10 \ \mu eV \ \mu m^2$$
; $g_{xx} > 100 \ \mu eV \ \mu m^2$.

A.S. Brichkin et al PRB, 84, 195301 (2011)

$$g_{pol-pol} = 0.07 \ \mu eV \ \mu m^2$$
; $g_{xx} \sim 2-3 \ \mu eV \ \mu m^2$ -consistent with theoretical estimate $g_{xx} \sim 3a_B^2 E_B$

Bright Temporal Solitons

http://arxiv.org/abs/1409.0725 P.Walker et al., DNK Nature Comm. 2015

Inject 350fs pulse through a grating. Let it propagate $600 \ \mu m$ and extract it through a second grating.

Comparison with other photonic systems

From soliton threshold estimate the nonlinear parameter and nonlinear refractive index:

P.Walker, et al., DN Krizhanovskii Nature Comm. 6, 8317 (2015)

$$L_{NL} pprox rac{1}{\Delta k} = rac{v_g \hbar}{E_{shift}}$$
 - the length over which nonlinear phase is 1 rad

$$L_{NL} \approx L_D \approx 40 - 50 \,\mu\text{m}$$

Excitonic nonlinearity $g_{xx} = 4-12 \mu eV \mu m^2$

	Polariton GaAs system	AlGaAs waveguides	Silicon PhC	InGaP PhC
Nonlinear Index n_2 (W ⁻¹ m ²)	10-14 - 10-13	1.8 x 10 ⁻¹⁷	6 x 10 ⁻¹⁸	6 x 10 ⁻¹⁸

Strength of polariton-polariton interactions for CW pump

- Inject fluids containing amplitude and phase defects.
- Vary the density of the polariton fluid and observe the changes after nonlinear propagation.
- Formation of dark polariton solitons

Estimation of $g_{\text{pol-pol}}$ from CW dark soliton

$$g_{pol-pol} = \frac{\hbar^2}{2M_{x_eff}\xi^2 N_{pol}}$$

 M_{x_eff} - polariton effective mass in transverse direction of waveguide ξ - dark soliton FWHM or healing length N_{pol} — polariton density of dark soliton background

 $g_{pol-pol} \approx 5 \,\mu eV \,\mu m^2$ Taking into account $|X|^2 = 0.5$ and $N_{QW} = 3$

 $g_{xx}\sim 60 \mu eV \mu m^2$

An order of magnitude larger than in case of ps pulsed excitation

Population of exciton reservoir under CW pump

D Sarkar, SS Gavrilov, Physical review letters 105 (21), 216402 (2010)

DN Krizhanovskii, et alSolid state communications 119 (7), 435-439 (2001)

Exciton reservoir:

Localised excitons not coupled to cavity mode

Dark excitons

Excitons with high momenta

Pumping of reservoir directly or via excitation of biexcitons with two linearly polarised polaritons

 $\tau_{res} \sim 10$'s-100's ps

Reservoir density vs duration of excitation

450-ps Pulse Spatial Defocussing

450 ps long pulse Temporal offset of outer spatial harmonics by 100-200 ps.

Surprisingly tail of the pulse experiences large defocusing

TOWARDS QUANTUM POLARITONS IN LATTICES

Active media- GaAs-based quantum well

Q-factor \sim up to 150 000 .

Dufferwiel, DNK et al Applied Physics Letters 107 (20), 201106 (2015); Phys. Rev. Applied **3**, 014008 (2015)

Strong lateral confinement (\sim 500 nm) => strong polariton-polariton interactions in lattice sites U \sim 20 μ eV (maybe further increased up to 100's μ eV)

Scalable system=> My group in collaboration with J Smith (Oxford) demonstrated high-quality photonic molecules, lattices of 3D boxes in progress.

Fabrication of open MC lattices for topological photonics (Oxford, J Smith's group)

Summary

- Full 2D Lieb lattice of etched micropillars
- Flat bands formed by S and P orbitals
- Condensation observed in both flat bands and AB band
- Photonic spin-orbit coupling provides pseudospin texture
- Spectral profiles of condensates are spatially-inhomogeneous for flat bands
- Interactions are not very strong and there is effect of reservoir

Acknowledgements

Experiment

Charles Whittaker (Sheffield)

E. Cancellieri (Sheffield)

P. M. Walker (Sheffield)

Prof. M. S. Skolnick (Sheffield)

Prof. H. Schomerus (Lancaster)

Prof. D. M. Whittaker (Sheffield)

EPSRC

Pioneering research and skills

ITMO, St Petersburg

Ivan Shelykh Ivan Iorsh

Samples, Sheffield University: Ed Clarke Ben Royal Deivis Vaietikis

D. R. Gulevich (ITMO)

Thanks for listening!

Supplementary material

Schrödinger equation

- 10 meV confinement potential
- $m^* = 5x10^{-5}m_0$
- 0.1 meV lifetime

Fourier space emission

