

Floquet topological polaritons in semiconductor microcavities

Wijnand Broer, Rongchun Ge and Timothy Liew

Division of Physics and Applied Physics, Nanyang Technological University Singapore

Topological polaritons

- (Exciton-)Polariton: result of EM Energy coupled to exciton
- Photonic analogue of electronic topological insulator
- Occurs upon time-reversal symmetry breaking
- Chiral edge state
- Topologically protected: Propagation backscattering immune

Quantum Hall Effect

left-moving skipping orbit

Cf. Lorentz force

Band Structure

Electromagnetic Analog

PRL 100, 013904 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 JANUARY 2008

Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry

F. D. M. Haldane and S. Raghu*

Department of Physics, Princeton University, Princeton, New Jersey 08544-0708, USA (Received 23 March 2005; revised manuscript received 30 May 2007; published 10 January 2008)

We show how, in principle, to construct analogs of quantum Hall edge states in "photonic crystals" made with nonreciprocal (Faraday-effect) media. These form "one-way waveguides" that allow electromagnetic energy to flow in one direction only.

DOI: 10.1103/PhysRevLett.100.013904

PACS numbers: 42.70.Qs, 03.65.Vf

Theoretical prediction

Experimental observation:

Z. Wang et al., Nature **461**, 772 (2009)

Quantum Hall Analog

right-moving skipping orbit

O O O O O O

left-moving skipping orbit

Cf. Lorentz force \iff Magnetic Field?

Band Structure

Examples Zeeman splitting

FIG. 1. (Color online) Schematic view of a typical system supporting topological polaritons or indirect excitons: Surface acoustic waves modulate the thickness of quantum wells and interfere to generate a triangular lattice potential for particles in the plane. Whether multiple quantum wells are coupled together, as in the depicted system of indirect excitons, or are strongly mixed with light inside a microcavity, combining the periodic potential with an applied Zeeman field **B** leads to topologically nontrivial bands.

Bardyn et al. PRB **91**, 161413 (2015)

Nalitov et al, PRL **114,** 116401 (2015)

Without Magnetic Field: Helical structure

 $a \approx 15 \mu m$

M. C. Rechtsman et al., Nature **496** 196 (2013)

D Leykam et al, PRL **117,** 013902 (2016)

Tight Binding Model

Linear combination

$$|\Psi(x,y,t)\rangle = \sum_{n,p,\beta} C_{np\beta}(t) |np\beta\rangle$$

Gaussian Basis:

$$\Phi_{n,p,\beta}(x,y) = \exp[-(x - x_{n,\beta})^2/L^2 - (y - y_{p,\beta})^2/L^2]$$

Coefficients

$$i\hbar rac{\partial}{\partial t} C_{npeta}(t) = \langle npeta | \hat{H}(x,y,t) \sum_{n'p',eta'} | n'p'eta'
angle C_{n'p'eta'}(t)$$

if
$$\langle n'p'\beta'|np\beta\rangle = \delta_{n'n}\delta_{p'p}\delta_{\beta'\beta}$$

ODE to be solved numerically

Time Evolution

$$C_{np\beta}(t) = \mathcal{T} \exp\left[-\frac{i}{\hbar} \int_{0}^{t} \langle np\beta | \hat{H}(x, y, t) \sum_{n', p', \beta'} C_{n'p'\beta'}(t) | n'p'\beta' \rangle dt\right] C_{np\beta}(0)$$

with
$$C_{np\beta}(0) = 1$$

Let
$$\hat{U}(t+T,t)\Psi(x,y,t) = \Psi(x,y,t+T)$$

Then the quasi-energies are:

$$\varepsilon_{\alpha,kx} = \frac{i\hbar}{T}\log(\eta_{\alpha})$$
 where η_{α} denotes eigenvalues of \hat{U}

- Quasi-Energies obtained by diagonalizing \hat{U} Tight Binding Model provides Matrix Representation

Cf. 1D dimer chain

$$H_{K(t)} = \tau \begin{pmatrix} 0 & \rho(k,t) \\ \rho(k,t)^* & 0 \end{pmatrix},$$

$$\rho(k,t) \equiv \lambda e^{-i(k+A_0\sin(\omega t))b_0} + e^{i(k+A_0\sin(\omega t))(a_0-b_0)}$$

Tight Binding Hamiltonian with AC Electric Field

Gomez-Leon et al. PRL 110, 200403 (2013)

Summary and Outlook

- We have proposed a method to obtain topologically non-trivial bandstructures in a microcavity without an external magnetic field
- Determining time dependent coefficients of the tight binding model reproduces known results
- To be included: Spin dependence. Absence of magnetic field preserves spin-degeneracy