Effect of phonon in the condensation of exciton-polaritons

R.-C. Ge, and T.C.H. Liew

Nanyang Technological University

May 19th 2017

Quantum light-matter interactions

Weak and medium coupling

$$\gamma = \frac{2\pi}{\hbar} |\langle e|H_I(\mathbf{r})|i\rangle|^2 \underline{\rho(\mathbf{r},\omega)} \text{ LDOS } \propto \text{Im}[\mathbf{G}_{\hat{p}\hat{p}}(\mathbf{r},\mathbf{r},\omega)]$$

Strong coupling (dressed quasiparticle)

New excitation, e.g. cavity-atom polaritons and exciton-polaritons

Potential Appliation

- Quantum information technology
- Security, biology and chemistry
- Imaging with ultra-high resolution
- Renewable energy, such as solar cell
- Nanotechnology and Fundamental physics, etc.

Exciton-Polaritons

Strong coupling between exciton and cavity photon

$$a|\text{Exciton}\rangle + b|\text{Photon}\rangle$$

Properties:

- bosonic statistics below Mott density
- ightharpoonup small effective mass: $\mu \sim 10^{-5} m_{\rm e}$ — $10^{-4} m_{\rm e}$
- finite life time: $\tau \sim 10^0 \mathrm{ps}$ — $10^2 \mathrm{ps}$
- weak interaction: nonlinearity $(a \neq 0)$

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical model

DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical mode

DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical mode

DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Incoherent pump — how does condensation happen

History: free carries $\xrightarrow{\mathsf{fast}}$ exciton \longrightarrow exciton-polariton

- ▶ Polariton-Polariton Interaction (instability)
 - Refs.[A. Kavokin et al., Cavity Polaritons (2003);Phys. Rev. B 82, 245315 (2010);Phys. Rev. B 91, 085413 (2015)]
- ► Polariton-Phonon Interaction (Optical > Acoustic)
- Polariton-free carrier interaction (negligible)
- ► Polariton-disorder interaction

```
Refs. [Phys. Rev. Lett. 98, 206402 (2007); J. Phys.: Cond. Mat. 19, 295208 (2007)]
```

Could Polariton-Acoustic phonon interaction be important?

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical mode

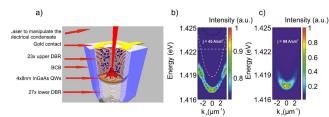
DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Incoherently pumped with external electric field


Ref.[M. Klaas, et al., Appl. Phys. Lett., 110, 151103 (2017)]

Optical probing of the Coulomb interactions of an electrically pumped polariton condensate

```
M. Klaas, <sup>1,a)</sup> S. Mandal, <sup>2</sup> T. C. H. Liew, <sup>2</sup> M. Amthor, <sup>1</sup> S. Klembt, <sup>1</sup> L. Worschech, <sup>1</sup> C. Schneider, <sup>1</sup> and S. Höfling, <sup>1,3</sup>
```

modulational/fracture instability is not found:

phonon induced energy relaxation is important

Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems,

Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

²Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore 637371, Singapore

³SUPA, School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS, United Kingdom

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical model

DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical model

DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Driven-dissipative Gross-Pitaevskii equation

$$i\hbar\partial_t \Psi = \left[\frac{i\hbar}{2}(Rn - \gamma) - \frac{\hbar^2}{2\mu}\nabla^2 + \alpha|\Psi|^2 + gn\right]\Psi$$
$$\partial_t n = P - (\Gamma + R|\Psi|^2)n$$

At low density limit $(|\Psi|^2)$

$$i\hbar\partial_t\Psi = [\frac{i\hbar}{2}(R\beta N_p - \gamma) - \frac{\hbar^2}{2\mu}\nabla^2 + g\beta N_p]\Psi(\mathbf{r}).$$

Non-Hermitian system

$$\hat{H} = \frac{i\hbar}{2}(Rn - \gamma) - \frac{\hbar^2}{2\mu}\nabla^2 + gn$$

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical model

DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Quasi-normal modes (QNM)

- Eigenmodes $\hat{H}\Psi_{\alpha}(\mathbf{r}) = E_{\alpha}\Psi_{\alpha}(\mathbf{r})$
 - Hermitian normal modes $Im[E_{\alpha}] = 0$
 - Non-Hermitian quasi-normal modes $\operatorname{Im}[E_{\alpha}] \neq 0$ indicates the gain and loss widely used in astronomy and electromagnetic system
- Localized modes VS extended modes
 - Localized: physically relevant modes
 - Extended: physically irrelevant modes
- Decoupling between localized and extended modes
 Their overlap is extremely small

Electromagnetic field is a different story

Normalization of QNM

▶ Non-degenerate modes, $\hat{H} = \hat{H}^T$

$$\int \Psi_{\alpha}(\mathbf{r})\Psi_{\beta}(\mathbf{r})d\mathbf{r} = \delta_{\alpha\beta}.$$

Degenerate, rotational symmetry (2D)

$$\int \Psi_{nm}(\mathbf{r})\Psi_{kl}(\mathbf{r})d\mathbf{r} = \delta_{nk}\delta_{ml}$$

with

$$\Psi_{mn}(\mathbf{r}) = \rho_{mn}(r) \exp(\pm im\theta) \exp(-iE_{mn}t/\hbar).$$

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical model

DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Exciton-phonon interaction

Hamiltonian

$$H_{\mathrm{phon}} = \sqrt{\frac{\hbar |\mathbf{q}|}{2\rho_D SLu}} (D_e e^{i\mathbf{q}\cdot\mathbf{r}_e} - D_h e^{i\mathbf{q}\cdot\mathbf{r}_h}).$$

Scattering rate

$$egin{aligned} W_{lpha
ightarrow eta} &= & rac{L_{ ext{eff}}}{\hbar^2 u} ig(n_{ ext{phon}} (|\Delta E_{lpha eta}^{ ext{r}}| ig) + \Theta(E_{lpha eta}^{ ext{r}}) ig) \sum_{\mathbf{q}_{x,y}} |M_{lpha, oldsymbol{
ho} j} (\mathbf{q}_x, \mathbf{q}_y, |\Delta E_{lpha eta}^{ ext{r}}|)|^2 \ & imes E_{ ext{phon}} / \sqrt{E_{ ext{phon}}^2 - (\mathbf{q}_x^2 + \mathbf{q}_y^2)(\hbar u)^2}. \end{aligned}$$

Rate equation

$$\partial_t n_{lpha} = rac{2E_{lpha}^1}{\hbar} n_{lpha} + \sum_{lpha \to lpha} W_{eta o lpha} (n_{lpha} + 1) n_{eta}
onumber
onumbe$$

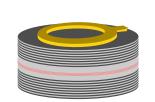
Motivation

Energy relaxation

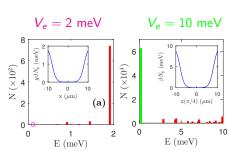
Acoustic Phonon — it could be important

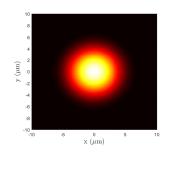
Theoretical mode

DDGP equation

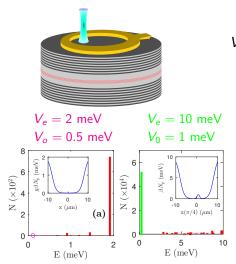

Quasinormal mode theory

Rate-equation

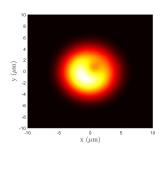

Numerical calculation and result



Electrical pumping with rotational symmetry



$$V_{\rm e}^p = g \beta N_p = rac{V_e}{1 + \exp\left(-(\sqrt{x^2 + y^2} - r_0)/L
ight)} \ {
m Im}[{
m E}_lpha]$$
 is "minimum" for ground state



With additional optical pumping

$$V=V_e^p+V_o^p$$
 with $V_o^p=V_o\exp(-rac{(x-x_0)^2+(y-y_0)^2}{2\Delta})$

Motivation

Energy relaxation

Acoustic Phonon — it could be important

Theoretical mode

DDGP equation

Quasinormal mode theory

Rate-equation

Numerical calculation and result

Conclusion

- Phonon effect could be important for non-equilibrium condensation
- We developed a QNM theory to take the effect of the phonon into account intuitively

Ref. "Phonon induced reconfiguration of exciton-polariton condensates in ring traps", R.C. Ge, C. Schneider, and T. C. H. Liew, in review.

acknowledgement

We thank S. Mandal for the useful discussion and some of the numerical calculation.