Interlayer excitons in twist-controlled van der Waals heterostructures Tobias Korn

22.05.2019 © 2009 UNIVERSITÄT ROSTOCK | INSTITUT FÜR PHYSIK

Overview

Introduction

- van der Waals heterostructures
- Stacking TMDC monolayers
- Interlayer excitons

Results: our two sets of Lego

- MoS₂-WSe₂
 - \circ $\,$ Interlayer exciton character revealed by interlayer twist
- MoSe₂-WSe₂
 - Exciton-exciton interaction
 - o Interlayer excitons in large magnetic fields

Summary

Artificial 2D crystals & heterostructures

- Geim & Grigorieva, Nature 2013
- 2D LEGO: combining different materials with monolayer precision
- Limits of LEGO analogy:
 - Relative orientation of layers not limited to 90° angles
 - Lattice parameters and symmetry are different for different materials

Universität Rostock Traditio et Innovatio

Our favorite LEGO: TMDC monolayers

- Direct band gap in the monolayer limit
- Gap located at K points (corners of Brillouin zone)
- Large (150-500 meV) and opposite valence-band spin splitting at $K_{\scriptscriptstyle +\!/\!-}$
- Spin and valley degrees of freedom are coupled
- Direct access to individual valleys via circularly polarized light

Universität Rostock Traditio et Innovatio

Stacking TMDC monolayers

- Many TMDC combinations lead to staggered band alignment
- > Separation of electron-hole pairs into different layers
- Relevant for device applications, e.g., photovoltaics
- Formation of interlayer excitons

Interlayer excitons in TMDC heterostructures

• Attractive properties:

Universität Rostock

Long exciton and valley lifetime

Traditio et Innovatio

- Permanent electric dipole moment (manipulation by electric fields)
- High binding energies (stability at high temperature & density)

Material		MoS ₂	WSe ₂
Lattice vector a ₀ (nm)		0.316 ¹	0.329 ¹
Rel. CB offset (eV)		0.67 ²	
Rel. VB offset (eV) 1.0 ²			
¹ Kormanyos et al., 2D Mat. 2015			

²Kang et al., APL 2013

- Staggered band alignment
- 4 % lattice mismatch:moiré pattern even for aligned layers

Twist angle and k space alignment

- Twist angle determines interlayer *k* space alignment
- Lattice mismatch corresponds to Brillouin zone size mismatch
- K-K transition only (almost) direct for 0 and 60 degree alignment

A typical MoS₂-WSe₂ heterostructure

MoS₂ flake (bottom layer) covered with WSe₂ flake (top layer)

Improving interlayer contact

- Annealing (150°C in vacuum) increases mobility of adsorbates trapped between layers
- Formation of bubbles, good contact in between bubbles

Second harmonic generation microscopy of TMDs

*Top view of MoS*₂ *monolayer*

Polar plot of SHG intensity

c.f. Li et al., Nanoletters (2013)

- No inversion center in monolayer and odd-layered TMDs
- Second harmonic generation allowed
- Angular dependence of SHG intensity:
 - SHG with parallel polarization maximum for armchair directions
 - Crystal orientation can be determined

Universität Rostock Traditio et Innovatio

Checking for (anti-)alignment

- SHG with circularly polarized excitation: interference between adjacent layers
- Aligned layers: constructive interference
- Anti-Aligned (60°) layers: destructive interference

Heterostructure characterization

• Drastic drop of intralayer exciton PL intensity for both materials in HS region

Heterostructure characterization

• New (interlayer exciton) PL peak observed in HS region

Interlayer excitons in MoS₂-WSe₂ HS

- Strong ILE PL emission for all twist angles how?
- Systematic 50 meV shift of IEX PL position with twist angle –why?

Interlayer excitons in MoS₂-WSe₂ HS

J. Kunstmann, F. Mooshammer, P. Nagler, TK et al., Nature Physics 2018

- Calculation of twist-dependent joint band structure for large supercells
- Calculation of twist-dependent interband transition energy change for K-K, K-Q, Γ -K etc.
- Only Γ -K transition matches experimentally observed shift of ILE energy

"Interlayer" excitons in MoS₂-WSe₂ HS

- DFT reveals state hybridization within band structure
- hole strongly delocalized at Γ
- Γ -K ILE has larger wave function overlap and binding energy than K-K ILE
- Momentum-indirect ILE dominates PL emission
- Transition has only partial interlayer character

Limits of ILE in MoS₂-WSe₂ HS

- ILE linewidth and intensity do not improve wth decreasing temperature
- Defect emission in WSe₂ overlaps ILE
- > Study of subtle effects like exciton-exciton interaction and valley physics difficult

Alignment matters in MoSe₂-WSe₂ HS

A better set of LEGO blocks? MoSe₂-WSe₂

- (almost) no lattice mismatch between MoSe₂ and WSe₂
- Crystallographic alignment allows k-space alignment
- Our structure: 54° alignment between layers (destr. SHG)

Low-temperature ILE PL

PL energy (eV)

Traditio et Innovatio

Universität Rostock

- ILE PL yield increases at low T, linewidth improves (≈25 meV)
- Large spectral separation between ILE and monolayer peaks
- Strong power dependence of ILE-monolayer ratio
- Monolayer absorption resonances identified in PLE

Exciton-exciton interactions (1)

- Blueshift of ILE PL emission with increasing excitation power
- Dipole-dipole interaction between ILE
- Why near-logarithmic power dependence of blueshift?

Exciton-exciton interactions (2)

- TRPL shows strong ILE lifetime dependence on excitation power
- TRPL slices extracted after ILE relaxation allow direct intensity comparison
- Assumption: PL intensity within slice proportional to ILE density
- Linear dependence on ILE peak shift on ILE density
- ► Estimated lower boundary for ILE density: $n_{ILE} \ge 4 \cdot 10^{10} cm^{-2}$

Energetic shifts of monolayer states with B

Valley degeneracy is broken by magnetic field, 3 contributions to shifts

- **Spin**: no net effect, CB and VB shift by same amount
- **Orbital magnetic moment**: valley-contrasting shift of valence band, $m_V = \pm 2$
- **Valley magnetic moment**: small net effect, CB and VB shift by similar amounts

g factor of 4 expected, deviation due to CB/VB valley magnetic moment difference

Magneto-PL of interlayer excitons

- Giant Zeeman splitting of interlayer exciton PL emission
- g factor about 4x larger than for monolayer excitons
- > Near-unity valley polarization in sufficiently large fields

g factor engineering in heterostructures

- > Anti-alignment: transitions between $MoSe_2 K+$ and $WSe_2 K-$ valleys (almost) direct in k space
- > ILE transition between **opposite** K valleys
- CB and VB shift in opposite directions with B
- sum of CB and VB valley magnetic moments yields giant splitting

Valley dynamics in large magnetic fields

- Valley polarization shows complex dynamics
- Fast process yields initial, finite value
- Slow saturation process on 100 ns timescale, speeds up with B field

Universität Rostock Traditio et Innovatio

Outlook: signatures of moiré effects

MoSe₂-WSe₂ HS encapsulated in hBN

- Multiple peaks observable in interlayer exciton energy range
- Interlayer excitons trapped in moiré potential?

Acknowledgements

Regensburg

P. Nagler F. Mooshammer J. Holler M. Kempf Schüller group Huber group Chernikov group

Madrid

A. Castellanos-Gomez

Dresden

J. Kunstmann G. Seifert

KO3612-4/1

Nijmegen

- M. Ballottin
- A. Granados
- A. Mitioglu
- P. Christianen

Funding

KO3612-3/1

Universität Rostock Traditio et Innovatio

KO3612-1/1

You like stacking things on top of things?

We're looking for several PhD candidates

- + Beautiful beaches
- Beautiful, windowless labs
- Contact tobias.korn@uni-rostock.de for details

Summary

TDMC heterostructures host interlayer excitons

✓ ILE character depends on specific material combination

ILE show interactions and complex dynamics

Traditio et Innovatio

Interlayer twist allows to control energy and valley-related properties

