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Four years ago, scientists around 
the globe commemorated the cen-

tennial of Albert Einstein’s 1905 annus 
mirabilis, in which he published stun-
ning work on the photoelectric effect, 
Brownian motion and special relativ-
ity—thus reshaping the face of physics 
in one grand swoop. Intriguingly, 2005 
also marked another important anni-
versary for physics, although it passed 
unnoticed by the public at large. Fifty 
years earlier, in May 1955, Los Ala-
mos Scientific Laboratory (as it was 
then known) released technical report 
LA-1940, titled “Studies of Nonlinear 
Problems: I.” Authored by Enrico Fer-
mi, John Pasta and Stanislaw Ulam, 
the results presented in this document 
have since rocked the scientific world. 
Indeed, it is not an exaggeration to say 
that the FPU problem, as the system 
Fermi, Pasta and Ulam studied is now 

universally called, sparked a revolu-
tion in modern science.

Time After Time
In his introduction to the version of 
LA-1940 that was reprinted in Fermi’s 
collected works in 1965, Ulam wrote 
that Fermi had long been fascinated 
by a fundamental mystery of statisti-
cal mechanics that physicists call the 
“arrow of time.” Imagine filming the 
collision of two billiard balls: They 
roll toward each other, collide, and 
shoot off in other directions. Now run 
your film backwards. The motion of 
the balls looks perfectly natural—and 
why not: Newton’s laws, the equa-
tions that govern the motion of the 
balls, work equally well for both posi-
tive and negative times.

Now imagine the beginning of a 
game of billiards—actually, American 
pool—with the 15 balls neatly racked 
up in a triangle and the cue ball hur-
tling in to send them careening all 
over the table. If we film the collision 
and the resulting havoc, no one who 
has ever held a pool cue would mis-
take the film running forward for it 
being run in reverse: The balls will 
never regain their initial triangular ar-
rangement. Yet the laws governing all 
of the collisions are still the same as in 
the case of two colliding billiard balls. 
What then gives the arrow of time its 
direction?

For reasons that we will explore fur-
ther below, Fermi believed that the 
key was nonlinearity—the departure 
from the simple situation in which the 
output of a physical system is linearly 
proportional to the input. He knew 
that it would be far too complicated to 
find solutions to nonlinear equations 
of motion using pencil and paper. For-

tunately, because he was at Los Ala-
mos in the early 1950s, he had access 
to one of the earliest digital comput-
ers. The Los Alamos scientists play-
fully called it the MANIAC (MAth-
ematical Numerical Integrator And 
Computer). It performed brute-force 
numerical computations, allowing 
scientists to solve problems (mostly 
ones involving classified research on 
nuclear weapons) that were otherwise 
inaccessible to analysis. The FPU prob-
lem was one of the first open scientific 
investigations carried out with the 
MANIAC, and it ushered in the age of 
what is sometimes called experimen-
tal mathematics.

The phrase “experimental mathe-
matics” might seem like an oxymoron: 
Everyone knows that the validity of 
mathematics is independent of what 
goes on in the physical world. Nev-
ertheless, FPU’s original investigation 
can very reasonably be described as 
the birth of experimental mathematics, 
by which we mean computer-based 
investigations designed to give insight 
into complex mathematical and physi-
cal problems that are inaccessible, at 
least initially, using more traditional 
forms of analysis.

Today, computational studies of 
complex (typically nonlinear) prob-
lems are as commonplace as they are 
essential, and the computer has taken 
its rightful place alongside physical 
experiment and theoretical analysis 
as a tool to study myriad phenomena 
throughout the sciences, engineering 
and mathematics. Rigorous mathemat-
ical proofs, such as the one for the fa-
mous “four-color problem,” have now 
been carried out with the aid of com-
puters. In fluid dynamics, computer-
generated visualizations of complex, 
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time-dependent flows have been cru-
cial to extracting underlying physical 
mechanisms. Modern experiments in 
condensed-matter physics, observa-
tions in astrophysics and data in bio-
informatics would all be impossible to 
interpret without computers. Things 
have come a long way since FPU’s 
study, and in this light it becomes es-
pecially important to understand how 
their pioneering work unfolded.

With Pasta and Ulam, Fermi pro-
posed to investigate what he assumed 
would be a very simple nonlinear dy-
namical system—a chain of masses 

connected by springs for which motion 
was allowed only along the line of the 
chain. FPU’s idealized set of masses and 
springs experienced no friction or inter-
nal heating, so they could oscillate for-
ever without losing energy. The springs 
of this theoretical system were, howev-
er, not the kind studied in introductory 
physics courses: The restoring force they 
produced was not linearly proportional 
to the amount of compression or exten-
sion. Instead, FPU included nonlinear 
components in the mathematical rela-
tion between amount of deformation 
and the resulting restoring force.

The key question FPU wanted to 
study was how long it would take the 
oscillations of the string of masses and 
nonlinear springs to come to equilib-
rium. The equilibrium they expected is 
analogous to the state of thermal equi-
librium in a gas. In a monatomic gas, 
such as helium, the thermal (kinetic) 
energy of the molecules at equilibrium 
is equally partitioned among the three 
possible components of motion they 
can have: along the x, y or z axes. For 
example, there won’t be more atoms 
bouncing up and down than bouncing 
to the left and right.

Figure 1. It’s possible to surf England’s Severn River because the Severn’s broad estuary periodically funnels exceptionally high flood tides up 
river, forming what’s known as a tidal bore. The waves that follow the initial onrush maintain their form for many kilometers, allowing record-
breaking surfing runs. Such nondispersive waves arise in many physical systems, including a seemingly simple system of masses and springs 
that Enrico Fermi, John Pasta and Stanislaw Ulam studied using computational experiments at Los Alamos Scientific Laboratory in 1955. Their 
pioneering research ushered in the era of computer-aided discovery, deeply influencing many fields of science and mathematics.

Mark Humpage
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.
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mass and the spring constant (the fac-
tor that relates the amount of exten-
sion or compression to the restoring 
force). With a nonlinear spring, how-
ever, things become much messier. For 
example, the frequency of oscillation 
depends on the amplitude. Give it a 
gentle nudge, and it will oscillate at 
one frequency; kick it hard and it will 
oscillate at another.

When one first studies physics, it’s 
easy to get the impression that nonlin-
ear systems are anomalous. But nonlin-
ear interactions are actually much more 
characteristic of the real world than are 
linear ones. For this reason, physicists 
have been known to quip that the term 
“nonlinear science” makes about as 
much sense as saying “non-elephant 
zoology” (a joke that is sometimes, in-
correctly, attributed to Ulam).

How do nonlinear systems differ 
from linear ones, aside from having 
amplitude-dependent oscillation fre-
quencies? With a linear system, dou-
bling the input will yield a doubling 
of the output, as we have discussed. 
Suppose someone sings twice as loud-
ly into the microphone at a karaoke 
club—the amplified crooning will be 
twice as loud when it comes out of the 
speakers. Similarly, if two people sing 
a duet, the output will be just the sum 
(or “superposition”) of what would 
have come out had each one sung his 
part separately. Also, if everything is 
truly linear, voices won’t become dis-
torted. The frequencies that come out 
(that is, the notes that are heard) will 
be just the ones the duet put in, regard-
less of amplitude.

With nonlinear systems, things are 
far more complicated. For example, 
the superposition principle doesn’t ap-
ply. Additionally, the output frequen-
cies aren’t limited to the input frequen-
cies. Screaming into a karaoke mic, 
for example, can overload the ampli-
fier, forcing it into a nonlinear regime. 
What comes out of the speakers is then 
highly distorted, containing frequen-
cies that were never sung. Much more 
subtle effects can also take place.

One of the subtle effects of nonlin-
ear physics was first observed in the 
1830s, when a young engineer named 
John Scott Russell was hired to investi-
gate how to improve the efficiency of 
designs for canal barges of the Union 
Canal near Edinburgh, Scotland. In 
a fortuitous accident, a rope pulling 
a barge gave way. Russell described 
what ensued:

I was observing the motion of a 
boat which was rapidly drawn 
along a narrow channel by a pair 
of horses, when the boat sud-
denly stopped—not so the mass 
of water in the channel which it 
had put in motion; it accumulated 
round the prow of the vessel in 
a state of violent agitation, then 
suddenly leaving it behind, rolled 
forward with great velocity, as-
suming the form of a large soli-
tary elevation, a rounded, smooth 
and well-defined heap of water, 
which continued its course along 
the channel apparently without 
change of form or diminution of 
speed. I followed it on horseback, 
and overtook it still rolling on at 
a rate of some eight or nine miles 
(14 km) an hour, preserving its 
original figure some thirty feet 
long and a foot to a foot and a half 
in height. Its height gradually di-

minished, and after a chase of one 
or two miles (3 km) I lost it in the 
windings of the channel.

This strange wave did not act like 
an ordinary wave on the surface of the 
ocean. Water waves on the sea (and 
many other familiar kinds of waves) 
travel at speeds that depend on their 
wavelengths. This phenomenon is 
called dispersion. A disturbance like 
the one created in front of Russell’s 
barge can be envisioned as the super-
position of purely sinusoidal waves, 
each with a different wavelength. 
However, if a compact disturbance 
forms on the surface of the open ocean, 
each of the component waves will 
travel at a different speed. As a result, 
the initial disturbance won’t maintain 
its shape. Instead, such a wave will 
become stretched and distorted. 

Having an inquiring mind, Russell 
pursued his serendipitous discovery 

Figure 4. Fermi, Pasta and Ulam initialized their system with all energy in the lowest mode of 
vibration (1) and calculated what would ensue. They expected that energy would eventually 
become shared equally among all possible modes. Instead they found that after being shared 
among a few low-order modes, a very large fraction of the energy later returned to the mode 
they had used to initialize the system. (Colors correspond to the analogous modes shown in 
Figure 3.) This observation, which they modestly dubbed “a little discovery,” marked the birth 
of experimental mathematics. (Adapted from Fermi, Pasta and Ulam 1955.)
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with controlled laboratory experiments 
and quantified the phenomenon that 
he had discovered in an 1844 publica-
tion. There he showed, for example, 
that large-amplitude solitary waves 
in a channel move faster than small 
ones—a nonlinear effect.

In 1895, Dutch physicist Dieder-
ick Korteweg and his student Gustav 
de Vries derived a nonlinear partial 
differential equation, now known as 
the Korteweg-de Vries (KdV) equa-
tion, that, they argued, could describe 
the results of Russell’s experiments. 
This equation shows that the rate of 
change in time of the wave’s height 
is governed by the sum of two terms: 
a nonlinear one (which gives rise to 
amplitude-dependent velocities) and a 
linear one (which causes wavelength-
dependent dispersion). In particular, 
Korteweg and de Vries found a soli-
tary-wave solution that matched the 

strange wave Russell had followed on 
horseback. This solution arises as a re-
sult of a balance between nonlinearity 
and dispersion. The Dutch physicists 
also found a periodic solution to their 
equation, but they were unable to pro-
duce general solutions.

Their work and Russell’s observa-
tions both fell into obscurity and were 
ignored by the mathematicians, phys-
icists and engineers studying water 
waves until the early 1960s when one 
of us (Zabusky) and the late Martin 
Kruskal of Princeton University be-
gan studying FPU chains. They started 
from FPU’s model but used, in essence, 
infinitesimally small springs and mass-
es to represent a continuous line of de-
formable material rather than a series 
of discrete masses. This approach al-
lowed them to examine situations with 
long wavelengths and yielded a par-
tial differential equation that matched 

the usual one describing linear waves 
except for its modified dispersion. To 
represent progressive waves in the sys-
tem, Kruskal derived from this equa-
tion what he and Zabusky later real-
ized was the KdV equation. It seemed 
intractable analytically, so they (with 
the assistance of Gary Deem, who was 
then at Bell Telephone Laboratories) 
used numerical simulations to observe 
a near-recurrence to initial conditions. 
To describe their solutions to the KdV 
equation, they invented what has be-
come a widely used term for the soli-
tary-wave phenomenon: soliton. 

They discovered that solitons would 
evolve from an initial state and then 
travel to the left and right until they 
exchanged their relative positions and 
refocused almost exactly at another lo-
cation in space. This work (and the 
work of many subsequent investiga-
tors) has contributed a huge number 
of analytical, theoretical and experi-
mental advances in myriad areas of 
mathematics and physics.

While Zabusky, Kruskal and Deem 
were busy with the FPU problem, Japa-
nese mathematical physicist Morikazu 
Toda investigated a similar nonlinear 
system and proved mathematically 
that it could never show any chaos. 
There was clearly something especially 
subtle about the FPU chain.

Minions of Chaos?
Solitary waves can indeed produce 
some surprisingly regular behavior, 
but the motion of an FPU system can 
also be quite chaotic. Indeed, even very 
simple dynamical systems typically 
support intricate mixtures of regular 
and chaotic behavior. 

Here we are using the word chaotic 
in its scientific sense. We do not mean 
randomness. The outcome in the FPU 
problem is governed by Newton’s 
laws, which exactly determine all fu-
ture motion—there are no random 
events. Yet after a while, the motions 
can indeed seem very jumbled and er-
ratic. Moreover, the state of FPU’s sys-
tem of springs and masses after a given 
amount of time is very sensitive to its 
initial setup: Change the initial condi-
tions ever so slightly, and the outcome 
some time later will be completely dif-
ferent. Many systems—including the 
atmospheric variations that give rise 
to the changing weather—show this 
property and are thus considered cha-
otic, even though their motion over 
a short period of time might appear 

Figure 5. In the 1830s, the engineer John Scott Russell observed a strange wave on the Union 
Canal in Scotland that didn’t disperse in the normal fashion but instead held its form as it 
traveled down the canal. It took more than a century for this phenomenon to be understood as 
a result of nonlinear effects that compensated for the expected dispersion. One of the authors 
(Zabusky) and the late Martin Kruskal coined the term soliton to describe such a wave, which 
can arise in varied physical systems. This 1995 photograph shows a partially successful at-
tempt to recreate Russell’s wave on the Union Canal. (Photograph courtesy of Chris Eilbeck, 
Heriot-Watt University.)
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reasonably regular. In fact, as the FPU 
problem itself shows, the motion over 
even exceedingly long periods of time 
can be quite regular!

To determine whether the motion 
of a given system is regular or chaotic 
(given particular initial conditions) over 
the long term, it is helpful to plot chang-
es in the configureation of the system 
over time. The problem is that even a 
seemingly simple dynamical system—
consisting of only a single mass—has 
six variables to plot: both the positions 
and velocities of the mass in x, y and z.

 Plotting all six values for the mass 
as it undergoes its trajectory typically 

leads to a visual jumble that can be 
very difficult to interpret. However, 
plotting an intelligently chosen sub-
set of points (that satisfy a specific, 
physically motivated condition such as 
whenever a specific one of the veloc-
ity variables is zero) makes it easier to 
interpret what is going on. Such plots 
are called Poincaré sections, in honor 
of the French physicist and mathemati-
cian Jules Henri Poincaré.

Regular trajectories are as predictable 
as the orbits of planets around the Sun 
or a suburbanite’s daily routine. They 
can be tracked in time with a great deal 
of precision. On the other hand, cha-

otic trajectories are extremely irregu-
lar. They tend to wander like drunken 
sailors and are constrained only by the 
amount of energy available to them.

Chaos is important to the FPU prob-
lem because if it is sufficiently strong, it 
will mix energy between modes of os-
cillation. That is, chaos can bring about 
the partitioning of energy in such as sys-
tem. Although neither FPU nor Tuck and 
Menzel had found equipartition, in their 
1967 study Zabusky and Deem did, af-
ter performing simulations of an FPU 
system for which the initial motions of 
the masses had a short wavelength of 
large amplitude. By 2006, others had con-

Figure 6. A system like the one Fermi, Pasta and Ulam modeled but with 256 masses (left) readily gives rise to solitons, which can propagate in 
either direction, exchange positions and eventually return the system to something that resembles its initial configuration. The motion of the 
solitons can be seen here by following the lines of hot colors, which denote large displacements of the masses. The horizontal axis corresponds 
to position along the series of springs and masses. The vertical axis corresponds to time, which begins at the bottom and progresses upward. The 
emergence of propagating solitons does not require that the masses be discrete: They also occur in a continuous analog of the Fermi-Pasta-Ulam 
system (right). (Image at left from Zabusky, Sun and Peng 2006, courtesy of Chaos. Image at right courtesy of Zabusky.)

Figure 7. Chaotic interactions would have helped bring about the partitioning of energy that Fermi, Pasta and Ulam expected to see. But these 
investigators did not invest their system with enough energy to bring about equipartition. The connection with chaos can be illustrated using a 
system—mathematically equivalent to a three-mass Fermi-Pasta-Ulam chain—that astronomers Michel Hénon and Carl Heiles studies in 1963. 
The behavior of the Hénon-Heiles system is best viewed using Poincaré plots, which show the points where the multidimensional trajectories 
of the system intersect one chosen plane. Increasing the amount of energy in the system gives a progression from regular trajectories (left), to 
ones that reflect both regular and chaotic behavior (middle) to ones that are mostly chaotic (right). (Adapted from J. S. Kole 1999.)
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firmed this equipartition with more com-
prehensive simulations and analysis. 

Building from late-1960s research 
on chaos and equipartition by the late 
Boris Chirikov, Eddie Cohen of the 
Rockefeller University and several col-
laborators recently investigated the 
FPU system at high energy. Exploring 
this issue systematically, they demon-
strated the existence of two thresholds 
(as a function of energy per oscillator) 
in the dynamics of the FPU system. At 
the first threshold, the motion transi-
tions from being completely regular 
to weakly chaotic—there is some cha-
otic behavior, but things are still very 
regular the overwhelming majority 
of the time. Above a second, higher 
threshold, strong chaos sets in, allow-
ing energy to be quickly distributed 
between modes.

Cohen and his collaborators also 
found that equipartition occurs fast-
er when there are more masses. As 
the number of nonlinear oscillators 
becomes infinite (that is, in the real-
life situations that FPU were trying 
to model), equipartition does indeed 
arise for any level of energy input. 
The initial conditions that FPU used 
in their numerical simulations were, 
however, below the threshold for cha-
os, which prevented them from see-
ing the equipartition of energy among 
the different modes of oscillation. FPU 
would have observed that equipar-
tition had they used either stronger 
nonlinearities (yielding stronger in-
teractions between different modes) 
or initial pulses with more energy. We 
should be thankful that they did not, 
given how much interest and under-
standing has arisen as a result.

One example can be seen in stud-
ies of heat conduction. (The subject 

of heat conduction was a key motiva-
tion for FPU’s study.) Early in the 19th 
century, the French mathematician J. 
B. Joseph Fourier introduced a simple 
phenomenological law to describe 
the flow of heat in solids. Yet in the 
two centuries that have since elapsed, 
scientists have been unable to derive 
that law directly using first principles. 
Attempts to do so date at least as far 
back as Peter Debye’s 1914 studies 
of heat conduction in dielectric crys-
tals. He suggested that the finite con-
ductivity of such crystals arises from 
nonlinear interactions in their lattice 
vibrations—exactly the sort of phe-
nomenon that FPU’s approach was 
designed to probe.

Much work on heat conduction has 
since been done using FPU-like models 
with each end of the chain soaked in a 
“heat bath” (one end hot and the other 
cold) and with each mass experiencing 
forces in addition to those that come 
from its neighbors. For example, these 
models have been used to examine 
the way heat conductivity depends on 
both the number of masses and how 
much chaos there is in the system. Al-
though many important insights have 
been obtained, the complete set of nec-
essary and sufficient conditions for the 
validity of the Fourier law remains un-
known. Physicists would dearly love 
to resolve this embarrassing situation. 

Every Breath You Take
Decades later, the FPU problem con-
tinues to inspire studies of many other 
fascinating nonlinear systems, such as 
the atomic lattices of solid-state phys-
ics. Until the late 1980s, it was taken 
for granted that the vibrations of those 
lattices had to extend over distances 
that are very large compared with the 

spacing of atoms. The only recognized 
exceptions were those that came from 
defects that destroyed the regular ar-
rangement of atoms in the lattice—say, 
from contaminants or disruptions in 
an otherwise pure crystal. The ac-
cepted wisdom was that only such ir-
regularities could cause vibrations to 
become localized (although Zabusky 
and Deem’s earlier work had hinted 
otherwise).

This perspective was turned in-
side out by the discovery of localized 
modes of vibration in perfect lattices. 
Such modes, known as intrinsic local-
ized modes (ILMs) or discrete breathers, 
can arise in strongly nonlinear, spa-
tially extended lattices and (roughly 
speaking) play a role similar to that 
of solitons in continuous physical sys-
tems. Unlike solitons, though, ILMs 
don’t have to propagate: They can 
just vibrate in place. Physicists have 
now observed ILMs experimentally 
in a diverse collection of physical sys-
tems, including charge-transfer solids, 
Josephson-junction arrays, photonic 
crystals, micromechanical-oscillator ar-
rays and Bose-Einstein condensates.

How can nonlinearity produce a 
localized mode of oscillation in a lat-
tice? To get a feel for this, consider two 
nonlinear oscillators that can interact 
weakly. Recall that because these os-
cillators are nonlinear, the frequency 
of their vibrations depends on their 
energy. Imagine starting one oscillator 
off with a strong excitation and the 
other with a weak one, so that most 
of the system’s energy starts in the 
first oscillator. In principle, one can 
choose those initial excitations so that 
their oscillations are incommensurate 
(making the ratio of their oscillation 
frequencies an irrational number). 

Figure 8. For many years physicists believed that vibrations of a regular lattice, say, the atoms in a perfect crystal, had to be distributed in space. 
But in the late 1980s, physicists and mathematicians realized that nonlinear systems can support spatially localized vibrations. Such intrinsic 
localized modes or discrete breathers have since been observed experimentally in a number of physical systems. One such system is made up of 
a series of micro-mechanical beams (left). The vibration of a beam causes a decrease in the light it reflects, as can be seen in the image (right), 
which traces the evolution of the system. After a few tens of milliseconds, the vibration becomes localized in the array of beams, resulting in a 
dark horizontal line. (Image at right from Sato et al. 2005, courtesy of the American Physical Society.)
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Consequently, after starting both os-
cillators at their maximum amplitude, 
they will never again get back in sync. 
This prevents the vibrations of the 
first oscillator (or any of its harmon-
ics) from resonating with any of the 
modes of the second oscillator, which 
makes it very difficult to transfer en-
ergy between the two oscillators.

Now consider a chain with a large 
number of oscillators. Set one of them 
vibrating with relatively large am-
plitude and at a frequency that is in-
commensurate with the frequency of 
the smaller vibrations that the other 
oscillators are undergoing. That one 
special oscillator now has a difficult 
time transferring any of its energy to 
its neighbors. So this oscillator, and 
perhaps a small number of neighbors, 
maintains a large-amplitude oscillation 
for a long time, yielding an ILM.

In 1988, Albert Sievers (Cornell 
University) and Shozo Takeno (Kyo-
to Technical University) showed that 
ILMs can arise in an FPU lattice. This 
idea continues to be pursued actively 
and has led to exciting new develop-
ments. In particular, in a series of pa-
pers starting in 2005, Sergej Flach of the 
Max Planck Institute for the Physics of 
Complex Systems and his collabora-
tors used this perspective to provide 
a new take on the FPU recurrences, 
which they view as resulting from the 
existence of objects called q-breathers. 
One of the most active research prob-
lems in nonlinear science is to recon-
cile Flach’s approach to understanding 
FPU dynamics with the earlier soliton 
perspective.

Somewhere, Over the Rainbow…
As we’ve discussed in gory detail, a 
lot of very smart people have covered 
considerable ground in myriad investi-
gations of the FPU problem and related 
systems over the past half-century. Dur-
ing this process, concepts like chaos, 
solitons and breathers have been in-
vented, developed, refined and applied 
to a number of real-world systems. 

The FPU problem touches on a re-
markably broad range of topics in non-
linear dynamics, statistical mechanics 
and computational physics. Yet these 
broad categories represent only a small 
fraction of the research literature that 
the original FPU paper has spawned. 
New studies of the FPU problem are 
still being published today, 54 years 
after the original Los Alamos report. 
We fully expect that work of this kind 

will keep researchers busy long after 
scientists celebrate the centennial of 
the FPU problem in 2055. 
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