
Supplemental Material for “Flat Bands Under Correlated Perturbations”

This Supplemental Material presents derivations of the
localization length Eq.(6), the density of states Eqs.(7,8),
and the profiles of the low energy eigenstates appearing
in the main text.

Localization Length — For ε+n = 0, fn can be elimi-
nated from the eigenmode equations Eq.(3), leaving(

(ε−n )2

E
−E − 2t

)
pn = 2(pn−1 + pn+1). (S1)

When E � W 2/4 is small, the first term on the left
hand side is resonantly enhanced and dominates. The
ratio Rn = pn+1/pn is approximated by

Rn ≈
(ε−n )2

2E
− 1

Rn−1
, (S2)

The decaying solution for small E is Rn−1(ε−n ) ≈
2E/(ε−n )2, thus applying Eq.(5) we obtain

ξ−1 = lim
M→∞

1

M

M∑
n=1

ln

∣∣∣∣ 2E
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∣∣∣∣ ,
= 〈ln

∣∣∣∣ 2E
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∣∣∣∣〉. (S3)

ε−n are uncorrelated random variables with a uniform
probability distribution function (PDF),

fε(x) =

{
1
W , if |x| ≤ W

2

0, otherwise
(S4)

thus the disorder average is

ξ−1 =
1
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∫ W/2
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which reproduces Eq.(6) (noting that E/W 2 � 1 and
taking ξ to be positive).

Curiously, Eq.(6) incorrectly predicts ξ−1 = 0 at
E/W 2 = 1/(8e2) ≈ 0.02, well within the validity of the
approximation E/W 2 � 1/4. To explain this anomaly,
we note that the perturbative result Eq.(S2) is only valid
when E/(ε−n )2 � 1 ⇒ ε−n �

√
E. Thus, the integral in

Eq.(S5) requires a finite cutoff a ∼
√
E

ξ−1 =
2

W

(∫ a

0

ln |R(x)| dx+

∫ W/2

a

ln

∣∣∣∣2Ex2
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)
, (S6)

and we require a � W/2 for the first term to be neg-
ligible. Thus, Eq.(6) is only a good approximation un-
der the stricter condition

√
E/W � 1, which excludes

the divergence of the localization length, ξ−1 = 0, at√
E/W ≈ 0.13.
Density of States — To obtain the density of states

Eq.(7), we evaluate the PDF of the random variable z =
ε−0 ε
−
1 . The product distribution fz(x) is given by

fz(x) =

∫
fε(y)fε(x/y)

1

|y|
dy,

=
1

W

∫ W/2

−W/2

1

|y|
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=
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2|x|/W

dy

y
,

=
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2
W 2

[
ln W

2 − ln 2|x|
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]
, if |x| ≤ W 2

4 ,

0, otherwise
(S7)

Eq.(7) follows by making the change of variables E =
z/2, with ρ(E) = 2fz(2E).

Similarly, we obtain Eq.(8) from the PDF of z = ε20 =
g(ε0) via

fz(x) = 2|∂xg−1(x)|fε(g−1(x)), (S8)

where g−1(x) =
√
x. This yields

fz(x) =

{
1

W
√
x
, if 0 < x < W 2

4 ,

0, otherwise
(S9)

which gives Eq.(8) after the change of variables E =
z/(2t).

By the same arguments as above, the incorrectly pre-
dicted vanishing of ρ(E) at E = W 2/4 occurs due to
realizations of the potential outside the range of validity
of the perturbative expansion, and instead the stricter
condition

√
E/W � 1 is again required.

Low Energy Eigenstates — The initial conditions f0,1
uniquely determine the eigenmode amplitude along the
rest of the lattice. The eigenmode equations for sites p0,1
read (

ε−0
2
− E

2

2ε−0
− tE

ε−0

)
f0 = p−1 +

Ef1

ε−1
, (S10)(

ε−1
2
− E

2

2ε−1
− tE

ε−1

)
f1 = p2 +

Ef0

ε−0
. (S11)

Without loss of generality, we can set f0 = 1. When E is
small, from the calculation of the localization length we
have p−1,2 ≈ 2E p0,1/(ε

−
−1,2)2 ≈ 0. Under this approxi-

mation, the above equations are solved to leading order
in E to obtain, for t = 0,

E = ±ε−0 ε
−
1 /2, f1 = ±1, (S12)
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and when t 6= 0

E = ε20/(2t), f1 = ε−0 /(tε
−
1 ), (S13)

which yield the eigenmode profiles appearing in the main
text. To verify this result we also obtained eigenstates

numerically for various realizations of disorder. The
small E eigenstates indeed display a single strong max-
imum, with energy determined by disorder potential at
this maximum according to the above equations.


