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IMPORTANT NOTE:

For sake of simplicity in most cases one-dimensional lattice models and

nearest neighbor interaction are used

Generalization to higher lattice dimensions and larger interaction ranges is

STRAIGHTFORWARD

If results or methods are dimension or interaction range specific, we will inform you!
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A few definitions first, using a simple model class

H =
l

�

1

2
p2

l + V (xl) + W (xl − xl−1)

�

V (0) = W (0) = V ′(0) = W ′(0) = 0

V ”(0), W”(0) ≥ 0

Equations of motion:

ẋl = pl , ṗl = −V
′
(xl) − W

′
l,l−1 + W

′
l+1,l

Small amplitude plane waves:

xl(t) ∼ e
i(ωqt−ql)

, ω
2
q = V ”(0)+4W”(0) sin(

q

2
)
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q
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V’’(0)=1, W’’(0)=0.1

V’’(0)=0, W’’(0)=0.1

Group velocity vg(q):

vg(q) =
dωq

dq

So for N sites we are studying trajectories in a 2N -dimensional phase space!
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A bit on numerics of solving ODEs

ẋ = f(x, t) - Runge-Kutta 4th order, O(h5), 4 f calculations per step

ẍ = f(x) - alternative symplectic Verlet (Leap-Frog) i.e.

x(t + h) − 2x(t) + x(t − h) = h2f(x(t)), O(h4), 1 f calculation per step

Always think hard before choosing an algorithm

Take into account:

• total simulation time

• maximum error

• required overall stability

Thumb rule:

• short simulations: RK4

• long simulations: symplectic
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How do we make finite temperature simulations?

Main tools:

• microcanonical simulation (deterministic)

• Nose-Hoover simulation (deterministic, N + 1)

• Langevin dynamics (stochastic)

• Monte Carlo (stochastic)

H =
l

1

2
ẋ2

l +
1

4
(x2

l − 1)2 +
C

2
(xl − xl−1)

2

Slk(t) = 〈xl(t+τ)xk(τ)〉τ , A(ω) =
∞

0

cos(ωt)A(t)

Thumb rule:

• stochastic for excitations

• deterministic for relaxations

• Nose-Hoover ???

• Boundary conditions !

• Correlation length ξ

ξ2 = −

�

d2

dq2
Sq(t = 0)

�

q=0

2Sq=0(t = 0)
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Sidenotes on spatial and temporal Fourier transforms

Spatial transforms:

Aq =

�

l e
iq(l−k)Alk

Temporal Fourier transforms for correlation functions:

Filon’s integration formula (Abramowitz/Stegun):

t2n

t0

f(t) cos(ωt)dt =

h [α(ωh) (f2n sin(ωt2n) − f0 sin(ωt0)) + β(ωh)C2n + γ(ωh)C2n−1] + O(nh4f (3))

C2n =

� n
i=0 f2i cos(ωt2i) − 1

2 [f2n cos(ωt2n) + f0 cos(ωt0)]

C2n−1 =

� n
i=1 f2i−1 cos(ωt2i−1)

α(z) = 1
z + sin 2z

2z2 − 2 sin2 z
z3 , β(z) = 2

�
1+cos2 z

z2 − sin 2z
z3

�

, γ(z) = 4

�

sin z
z3 − cos z

z2

�
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Temporal Fourier transforms for analytical time-periodic functions:

Simple trapezoidal rule does it with exponential accuracy!

A(t) = A(t + T ) , ω =
2π

T

A(kω) =
T

0

cos(kωt)A(t)dt = h

n=T/h

i=1

cos(kωih)A(ih) + O(e−.../h)
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How to observe breathers in simple numerical runs

• fast workstation, or (even better)

vector computer:

• thermal equilibrium (finite

temperature), interaction not too

large (?),

• observe permanent creation and

annihilation of localized excitations, life

times approx. 10 times the internal

oscillation periods

• Excitation of slightly perturbed

standing wave with λ � 1:

• modulational instability, wave decays

into separate spatial regions(distance

∼ λ) with large amplitude localized

excitations! (Peyrard 1998)
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Targetted initial conditions

• simply all oscillators at rest

(equilibrium)

• local excitations of a few oscillators

• rather arbitrary initial conditions:

• localized exciations exist for large

times (how long?)
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How about simulation entertainment?

A set of useful utilities:

• PGPLOT (Fortran, C)

• JAVA

• MATLAB, etc
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How about numerical runs in higher lattice dimensions?

lattice size 20×20 plus 10 rows on each side with linearly increasing friction ∼ −ẋl

makes 1600 sites!

Zero or infinite friction give perfect transmission or reflection

Optimize numerically for linearized equations with local initial condition,

measure remaining energy after some proper large time (here t = 2000).

How useful are Poincare maps?

A lot if the dynamics is evolving on a low-dimensional manifold

Very instructive for 3-dimensional phase space (3 = 4 − 1)

Deals with projections of a 2d manifold on a 2d manifold embedded in a 3d space

Lots of tricky effects, read the books or try by yourself!
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Obtaining breathers up to machine precision

Time-periodic localized excitations persist

quasi-periodic excitations radiate

Reason: resonances with ωq!

Ansatz: xl(t) =

�

k Akle
ikωbt

Insert into EoM, assume localization, go

into tails, linearize w.r.t. Akl

H =
l

�

1

2
p2

l + V (xl) + W (xl − xl−1)

�

V (z) =
α=2,3,...

vα

α
zα , W (z) =

α=2,3,...

wα

α
zα

ẍl = −v2xl−w2(2xl−xl−1−xl+1)+F nl
l (xl′)

F
(nl)
l = −

α=3,4,...

�

vαxα−1
l + wα((xl − xl−1)

α−1 − (xl+1 − xl)
α−1)

�

, F
(nl)
l (t) =

+∞

k=−∞

F
(nl)
kl eikωbt

k
2
ω

2
bAkl = v2Akl + w2(2Akl − Ak,l−1 − Ak,l+1) + F

(nl)
kl

Thus for kωb 6= ωq linearized equations allow for localization Ak,|l|→∞ → 0

This is generically possible for nonlinear spatially discrete systems, because ωq is bounded,

as opposed to spatially continuous systems.

For the same reasons quasiperiodic excitations will typically radiate even in spatially discrete

systems because k1ωb1 + k2ωb2 = ωq can be realized!
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Designing a map Nr.1 to find solutions

A
(i+1)
kl =

1

k2ω2
b

�

(v2 + 2w2)A
(i)
kl − w2(A

(i)
k,l−1 + A

(i)
k,l+1) + F

(nl)
kl (A

(i)

k′l′
)

�

, λkl =
v2

k2ω2
b

A
(i+1)
kl =

1

v2

�

(k2ω2
b − 2w2)A

(i)
kl + w2(A

(i)
k,l−1 + A

(i)
k,l+1) − F

(nl)
kl (A

(i)

k′l′
)

�

, λkl =
k2ω2

b

v2

So choose λ > 1 for l = 0, k = ±1 and λ < 1 otherwise!

For low order polynomial potential functions e.g.:

F
(nl)
kl =

α=3,4,...

vα

+∞

k1,k2,...,kα−1=−∞

Ak1lAk2l...Akα−1lδk,(k1+k2+...+kα−1)

Otherwise integrate numerically at each step:

F
(nl)
kl =

1

T1

T2

−T/2

F
(nl)
l (t)e−ikω1tdt

Stop the iteration when e.g.

k,l

|A(i)
kl − A

(i−1)
kl | < 10−10
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v2 = 2 , v3 = −3 , v4 = 1 , w2 = 0.1

30 35 40 45 50 55 60 65 70
lattice site l

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

|A
kl
|

k num.result linearization

0 −1.3202 −1.3415

1 −0.6904 −0.6898

2 −1.3796 −1.6588

3 −2.0748 −2.1143

4 −2.3957 −2.3951

5 −2.6018 −2.6026

6 −2.7663 −2.7682
... ... ...

ωb = 1.3

v2 = 1 , v4 = 1 , w2 = 0.1

30 35 40 45 50 55 60 65 70
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−20
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−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

|A
kl
|

k num.result linearization

1 −0.6722 −0.6709

3 −1.9910 −2.1464

5 −2.6103 −2.6133

7 −2.9114 −2.9117

9 −3.1324 −3.1325
... ... ...
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Why do we compute with double precision the localized tails pretty exact down to 10−307,

by just using a standard Fortran compiler?

Because double precision does not mean 10−16 but a cutoff after 16 digits. So if

we start with initial guesses exactly zero and localize around zero, then the only obstacle to

be perfect is the maximum power the compiler reserves for the exponential representation

of floating point numbers :-)))

Rotating Wave Approximation:

cutoff in k-space!

Example: ẍ = −V ′(x) , V (x) = 1
2mx2m

ω =
1

2

√
2π(2m)1−1/2m·Γ(1/2m + 1/2)

Γ(1/2m)
·E1/2−1/2m

RWA with k = ±1 only:

ω1 = 21−m·(2m)1/2−1/2m· (2m − 1)!

m!(m − 1)!
·E1/2−1/2m

m = 2 : 2.3% error!

V (x) = 1
4(x

2 − 1)2:

0 1 2
ENERGY

0

0.5

1

1.5

FR
EQ

U
EN

CY

black solid − exact

red dashed − k=(0),1

blue circles − k=1,3

brown circles − k=0,1,2
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A special case of (nearly) homogeneous potential functions

H =
l

�

1

2
p2

l +
v2

2
x2

l

�

+POT , POT =
l

�

v2m

2m
x2m

l +
w2m

2m
(xl − xl−1)

2m

�

, m = 2, 3, 4, ...

ẍl + v2xl = −v2mx
2m−1
l − w2m(xl − xl−1)

2m−1
+ w2m(xl+1 − xl)

2m−1

Time space separation: xl(t) = AlG(t)

G̈ + v2G

G2m−1
= −κ =

1

Al

�

−v2mA2m−1
l − w2m(Al − Al−1)

2m−1 + w2m(Al+1 − Al)
2m−1

�

κ > 0 is a separation parameter, can be choosen freely.

Time dependence G̈ = −v2G − κG2m−1: single anharmonic oscillator

Spatial profile:

κAl =
∂POT

∂xl

|{xl′≡Al′}
,

∂S

∂Al

= 0 , S =
1

2
κ

l

A2
l − POT ({x′

l ≡ A′
l})

Breathers are saddles of S!
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Method Nr.2: Saddles on the rim!

choose direction in N -dimensional space of all Al, e.g. (...0001000...) , (...0001001000...)

Start from space origin P0 Al = 0, depart with small steps in chosen direction,

compute S

It will first increase and then pass through a maximum P1

Now we are on the rim

Compute the gradient of S here and make a small step in opposite direction to P2

Maximise S on the line P0-P2 to be on the rim again.

Repeat until you reach a saddle!

A very simple and efficient way to compute different types of breathers,

multibreathers etc in arbitrary dimensional lattices
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Method Nr.3: Homoclinic orbits (only in d = 1 and with short range interaction)!

Al+1 =

Al +

�

v2mA2m−1
l + w2m(Al − Al−1)

2m−1 − κAl

� 1
2m−1

2d map with ~Rl = (xl, yl) = (Al−1, Al):

xl+1 = yl

yl+1 = yl +

�

v2my2m−1
l + w2m(yl − xl)

2m−1 − κyl

� 1
2m−1

Fixpoint: ~RF = (0, 0)

(un)stable 1d manifold:

(backward) iteration converges to ~RF

Manifold intersections:

homoclinic points!

Iterated for- or backward yield

homoclinic orbits. i.e. breathers!

Reflection symmetry:

one homoclinic point on x = y

depends parametrically on κ

Simple numerical search by e.g. fixing

x0 = y0 and varying κ

Can be used for a formal

existence proof!

Existence of multibreathers follows from

generic intersection structure
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Using the phase space

So far: periodic orbits as solutions of algebraic equations

Variables: Fourier coefficients or simply amplitudes

Of course we can use more general methods of solving

algebraic equations, e.g. various gradient methods or Newton

routines

We need always a good initial guess (start close to a case

where you know the solution!)

Gradient methods: more sophisticated in programming

Newton routines: may suffer from long times needed to invert

matrices, danger when close to a noninvertable case (bifurcations!)

(recall: f(x = s) = 0 , f(x) = f(x0)+f ′(x0)(x−x0)+hot

xn+1 = xn − f(xn)/f ′(xn))

If besides the Hamiltonian H we have another conserved

quantity B, then the manifolds of some isolated periodic orbits

may satisfy the parallelity of gradients, i.e. grad(H) ‖ grad(B)

Periodic orbit:

loop in phase space

Isolated periodic orbit (PO):

neighbourhood in phase space

free of POs with identical

conserved quantities (as

opposed to POs on resonant

tori)
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Method Nr.4: NEWTON in phase space

Integrate a given initial condition ~̃R with

xl(t = 0) ≡ Xl , pl(t = 0) ≡ Pl

over a certain time T :

xl(T ) ≡ Ix
l ({Xl′, Pl′}, T )

pl(T ) ≡ I
p
l ({Xl′, Pl′}, T )

Consider the functions

F x
l = Ix

l − Xl , F p
l = Ip

l − Pl

If ~̃R belongs to a PO with period T then

F x
l = F p

l = 0

For a Newton routine to converge:

remove all degeneracies!

If ~̃R belongs to the PO, then a 1d manifold of

points belong to the PO

Degeneracy removed by one additional

condition, e.g. PM = 0

So for N degrees of freedom zeroes of 2N − 1

coupled equations of 2N − 1 variables!

Make sure that a zero of these 2N−1 equations

with the additional initial condition PM = 0

uniqely fixes pM(T ) = 0, e.g. through energy

conservation.
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Define

~R = (X1, X2, ..., XM, ..., XN, P1, ..., PM−2, PM−1, PM+1, PM+2, ..., PN)
~F = (F x

1 , F x
2 , ..., F x

M , ..., F x
N , F p

1 , ..., F p
M−2, F p

M−1, F p
M+1, F p

M+2, ..., F p
N)

~F = ~R(T ) − ~R

Given an initial guess ~R(0) expand

Fn(~R) = Fn(~R(0))+
m

∂Fn

∂Rm

|~R(0)(Rm−R(0)
m )

~F (~R) = ~F (~R(0)) + M(~R − ~R(0))

Mnm =
∂Fn

∂Rm

|~R(0) =
∂Rn(T )

∂Rm

|~R(0) − δnm

One Newton step: ~R such that ~F = 0:

~R = ~R(0) − M−1 ~F (~R(0))

Repeat until |~F | or max|Fn| < ε

How to compute M:

~R(0,m) = ~R(0) + ∆~em

Mnm =
1

∆

�

Fn(~R(0,m)) − Fn(~R(0))

�

Mnm =
1

∆

�

R
(0,m)
n (T ) − R

(0)
n (T )

�

− δnm
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Advantages of Newton:

exponential convergence |~F |nit+1 ∼ |~F |nit

easy to program

we may use one Newton matrix for several

iterations

Disadvantages of Newton:

computational time ∼ N2

matrix inversion sensitive to bifuractions

may need subtle routines (singular value

decomposition, dealing with sparse matrices

etc)

Blake’s representation of Newton:

Method Nr.5:

STEEPEST DESCENT in phase space

g(~̃R) =
l

�

F x
l F x

l + F p
l F p

l

�

(∇g)n =
∂g

∂R̃n

Start in phase space, go in direction

opposite to the gradient!

Advantages of Descent

computational time ∼ N

insensitive to bifurcations

Disadvantages of Descent

more clumsy to program

slower convergence

distinguish zero minimima from nearly zero

minima?
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Some aspects of symmetries

Equations of motion are invariant under some symmetry operations:

continuous time-shift symmetry t → t + τ

time reversal symmetry t → −t , pl → −pl

Parity symmetry xl → −xl , pl → −pl

discrete translational symmetry on the lattice

other discrete permutational lattice symmetries which leave the lattice invariant

(spatial reflections etc)

Each discrete symmetry implies that given a trajectory in phase space,

a new trajectory is generated by applying the symmetry operation

If the new manifold equals the original one, then the trajectory is invariant under the

symmetry

Otherwise it is not invariant

Note that the symmetry operation on the phase space does not involve time!

In linear equation systems symmetry breaking is possible only in the presence of degeneracies

In nonlinear equation systems symmetry breaking is common
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Example: a plane wave in a harmonic chain is not invariant under time reversal, because

of degeneracy

A breather is per definition not invariant under discrete translational symmetry

If it is invariant under other symmetries, this can be used to substantially lower the

numerical effort!

For time-reversal breathers it is possible to find an origin in time when

xl(t) = xl(−t) , pl(t) = −pl(−t), saves 50% computational time!

Time-reversal parity-invariant breathers:

xl(t + T/2) = −xl(t) , pl(t + T/2) = −pl(t), saves 75% computational time!

Computing lattice permutational invariant breathers may substantially lower the

computational effort by finding the irreducible breather section, especially in higher lattice

dimensions!

Breathers which are not invariant under time reversal posess a nonzero energy flux:

possible in d=2 and larger!
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Perturbing breathers

Suppose we found a breather solution xl(t).

Now we add a small perturbation εl(t) to it and

linearize the resulting equations for εl(t):

ε̈l = −
m

∂2H

∂xl∂xm

|{xl′(t)}
εm

This problem corresponds to a time-dependent

Hamiltonian H̃(t)

H̃(t) =
l

�

1

2
π2

l +
1

2
m

∂2H

∂xl∂xm

|{xl′(t)}
εlεm

�
ε̇l =

∂H̃

∂πl

, π̇l = −∂H̃

∂εl

There is a conservation law İ = 0

I =
l

�

π′
l(t)εl(t) − πl(t)ε

′
l(t)

�

For simplicity we drop the lattice index here.

Define the matrix J

J =
0 1

−1 0

and the evolution matrix U(t)

π(t)

ε(t)
= U(t)

π(0)

ε(0)

It follows

I = (π(t), ε(t))J π′(t)

ε′(t)

I = (π(0), ε(0))UT
(t)JU(t)

π′(0)

ε′(0)

→ UT (t)JU(t) = J
Thus U(t) is symplectic!
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Uy = λy , UT
y = λy

Uy′ =
1

λ
y′ , y′ = J−1y = −J y

If U is real and (λ, y) are an eigenvalue and

eigenvector, so are

(λ∗, y∗) , (
1

λ
,J y) , (

1

λ∗
,J y∗)

Consider now the mapping over one period for

a breather, which defines the Floquet Matrix F

U(t) = U(t + Tb) , U(Tb) ≡ F

Bloch’s Theorem: all Floquet eigenstates with

λ = eiωνTb when taken as initial conditions

correspond to

εl(t) = eiωνt∆
(ν)
l (t) , ∆

(ν)
l (t) = ∆

(ν)
l (t+Tb)

A breather is linearly stable when all Floquet

eigenvalues reside on the unit circle, i.e. have

absolute value 1

One Floquet eigenvalue is always located at

λ = +1

Its eigenvector is tangent to the periodic orbit

As eigenvalues come in pairs, there are two

eigenvalues at λ = +1.

Upon changing a control parameter the

Floquet eigenvalues may move on the unit

circle, collide and leave the circle

Then a breather turns from linearly stable to

linearly unstable

Aubry’s Band Theory does just that (helps to

find Krein signatures, relate pairs or quadruplets

of eigenvalues etc):

ε̈l = −
m

∂2H

∂xl∂xm

|{xl′(t)}
εm + Eεl
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The different kinds of Floquet eigenvectors

Eigenvectors (simply the perturbations at time

t = 0: ~F = (ε1, ε2, ..., εN , π1, π2, ..., πN)

can be localized or delocalized in the lattice

space

Finite number of localized states

Large number ∼ 2N of delocalized states

Delocalized states are just plane waves far from

the breather

Obtaining the Floquet matrix: similar to

the Newton matrix!

Before diagonalizing: make sure to use

all possible symmetries to reduce the Floquet

matrix to its noninteracting irreducible parts!

What is it useful for?

Characterizing breathers: can be stable,

unstable

Eigenvalue collisions mark bifurcations (of new

periodic orbits!)

Bifurcations correspond to resonances!

Search for bifuractions which may yield

’moving breathers’

By choosing proper boundary conditions

study scattering of plane waves by breathers!

Relate the eigenvalue structure of the Floquet

matrix to the scattering results

Understand as much as possible what is lost by

linearizing the phase space flow
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Scattering of plane waves by discrete breathers in 1d

Simulation using full equations

Initial condition: breather plus plane wave

packet

Packet: either gaussian or

half chain plane wave with sharp cuts (better!)

Wait until stationary pattern around breather

appears

But not longer than N
2max(vg)

Choose amplitude of plane wave not too large

(nonlinear corrections) and not too small (as

compared to the breather solution errors)

KG chain with q = 0.2π:

1400 1450 1500 1550 1600
LATTICE SITE NUMBER l

10
−8

10
−6

10
−4

10
−2

10
0

e l

10
−4

10
−3

10
−2

10
−1

10
0

q/π

10
−8

10
−6

10
−4

10
−2

10
0

|t|
2
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Computing transmission up to machine precision

Scattering goes through the extended Floquet

states:

εl(t) =
∞

k=−∞

elke
i(ωq+kΩb)t

b
ω ωq

ωq

q

ω −2Ωq

ω −3Ωq

ω −Ωq

ω +3Ωq

ω +2Ωq

ω +Ωq b

b

b

b

b

Scattering by exact breather solutions:

elastic one-channel or

inelastic f -channel scattering (number of open

channels less or equal to the number of DOF

per lattice site)

Minimum lattice size: check the localization

length of all closed channels (can be quite

different from the localization length of the

breather!)

Numerical Scheme for one-channel scattering:

zeroes of G:

G(~ε(0), ~̇ε(0)) =
~ε(0)

~̇ε(0)
− e

iωqTb
~ε(Tb)

~̇ε(Tb)
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Lattice:

−N, (−N + 1), ...,−1, 0, 1, ...(N − 1), N

Boundary conditions:

εN+1 = e
−iωqt

, ε−N−1 = (A + iB)e
−iωqt

Step Nr.1:

Fixing for the moment A, B, use standard

Newton to find zeroes of G.

Step Nr.2:

find values for A, B such that εN = e−iq−iωqt

Use the notation εl(t) = ζl(t)e
−iωqt .

Then the transmission coefficient is given by

tq =
4 sin2 q

|(A + iB)e−iq − ζ−N |2

FPU chains:

0 0.5 1 1.5 2 2.5 π
q

0

0.2

0.4

0.6

0.8

1

t
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Instead of a closing

Dissipative systems:

Breather families get ’quantized’ into attractors which are surrounded by basins of attraction

Phonons are damped out, thus possible quasiperiodic and even chaotic in time ’breathers’,

and even moving breathers

Possible hysteresis between different breather states upon looping control parameters

Quantum systems

Eigenvalue problems plus eigenfunctions

Provide with information on breather tunneling

Eigenfunction can be ’mapped’ onto classical phase space to observe correspondence with

classical trajectories

What all this could be good for in the future:

Everything concerning nonequilibrium processes

Relaxation in quantum systems

Energy concentration via relaxation

Description of chemical processes
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