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We develop a general mapping from given kink or pulse shaped traveling-wave solutions including their
velocity to the equations of motion on one-dimensional lattices which support these solutions. We apply this
mapping—Dby definition an inverse method—to acoustic solitons in chains with nonlinear intersite interactions,
nonlinear Klein-Gordon chains, reaction-diffusion equations, and discrete nonlineadidgemsystems. Po-
tential functions can be found in a unique way provided the pulse shape is reflection symmetric and pulse and
kink shapes are at lea€t® functions. For kinks we discuss the relation of our results to the problem of a
Peierls-Nabarro potential and continuous symmetries. We then generalize our method to higher dimensional
lattices for reaction-diffusion systems. We find that increasing also the number of components easily allows for
moving solutions[S1063-651X99)14305-9

PACS numbegps): 05.45.Yv, 63.20.Pw, 63.20.Ry

I. INTRODUCTION solutions of the nonlinear Klein-Gordon equation and of
reaction-diffusion-type systems. In Sec. IV we study chains
Finding exact traveling-wave€lr'w) solutions of nonlinear with nonlinear intersite interactions which admit acoustic
lattice systems has been a problem of growing interest ifipulse soliton solutions. We will refer to this type of lattice
recent years. Apart from some integrab|e systems which Su@.S&(?QUQiC chains. In Sec. V we deal with discrete nonlinear
port TW solutions(e.g., Ref[1]), little is known about non- Schralinger-type(DNLS) equation. Section VI is devoted to
integrable discrete systems. It appears to be difficult to provéhe structural stability of solitary waves and Sec. VII gener-
the existence of such waves because one has to deal wi@iizes our method to higher space dimensions. Conclusions
differential equations with advance and delay terfos  are given in Sec. VIII.
some general properties of these equations sed BgfThe
existence of acousti¢pulse solitary waves as traveling- Il. EQUATIONS OF MOTION
wave solutions in lattices with nonlinear intersite interactions
has been proved in Ref3]. However, no proof is available
for other types of solitary waves, for instance, topologica
solitons in nonlinear Klein-GordoitKG) lattices or other
discrete kink-bearing systenfan exception is given in Ref.

We consider a one-dimensional chain with lattice spacing
|equal to unity, which describes a system of interacting par-
ticles of unity mass. Such a system has a direct physical
meaning and can describe, for example, simple quasi-one-

[4]). Stationary breathers have been shown to be generic ngmen§ional molecular crystals. The interp_article intere_lction
lutions for lattice systemgfor a review and further refer- PotentialW,_,.(r) and the on-site potentia¥(u) are, in
ences see Ref5]). Again the question of whether moving 9€neral, nonlinear functions:

breathers on lattices exist has still not been answered, al-

though a number_ of _approaches to th_e subject are known U= —V'(Un)+z W, (Up—Up), 1)
[6—11]. An exception is the case of the integrable Ablowitz- m

Ladik equation12].

Here we approach the TW existence problem from thewhereu, is the displacement of thath particle from its
inverse side—we show that for a given TW profile, corre-equilibrium position andn,n are integers. If the second de-
sponding equations of motion can be generated, so that theg@ative u in Eq. (1) is replaced by the first derivatiue, we
equations of motion yield the chosen TW profile as a solupptain a system of reaction-diffusion equations.
tion. This was done first in Ref13] for the tanh-shaped kink  Another system of interest is the generalized discrete non-

and extended to reaction-diffusion-type systems in Refl.  |inear Schidinger equation

However, in both cases the analysis was performed for a

specific class of profiles, whereas we will approach this prob- b +C —2d+

lem from a general point of view. This in turn will allow us ot Cldnra=2nt dn-a)

to obtain general information about the properties of the TW +F(|nl®) (Dn_1+ b)) +G(|dn|P) dn=0 (2)
solutions.

The structure of the paper is as follows. In Sec. Il wewhich appears in various fields. Hetk,(t) is a complex-
introduce the equations of motion. Section Ill is devoted tovalued function and andG are general nonlinear functions.
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We are not aware of any systematic approach whiciNow we see that there exists a unique correspondence be-
shows the existence or even obtains analytical expression®een the functioru(z) and the force functiori(u). Since
for TW solutions of the equations from above. Therefore weu(z) is analytic, we can always rewritgz*1) in terms of
approach the problem from the opposite side. We formulatei(z). Therefore for eachu(z) with the conditions listed
an inverse method of creating the potentisll®r W or the  above the functiori(u) can be uniquely defined. The poten-
pair of functions £,G) for a given TW solution. tial V is then obtained by integratinffu) once. This result
does not change if we consider a more complicated interac-
I11. SOLUTIONS OF THE NONLINEAR KLEIN-GORDON tion potential W which incorporates anharmonic terms and
EQUATION long range interactions. Thus, we showed here, that for a
o ] given interaction potentialV, a given pulse profileu(z)
For the sake of simplicity let us consider the case of haryhich satisfies the above conditions and a given velocity of

monic intersite interactionWy_ (r)=(Cr?2)8, m«1)-  the pulse we always generate a unique on-site potewtial
Then the equation of motiofd) becomes the well-known \yhich supports this TW profile as an exact solution of the
nonlinear Klein-Gordon equation equations of motion.
. What would happen if we lose the symmetry condition on
Un=C(Up41—2Up+Up—1) = V' (Uy). (3 u(z)? Consider two valueg;,z, at which u(z;)=u(z,).

) ) ) ) Consequently, the argument of the force function is also the
First, let us study the dispersion law for small-amplitudegame. But the right-hand sid&HS) of Eq. (8) will be dif-
waves oscillating around some minimuwig,, of the poten-  ferent forz, andz, in general, which implies that we obtain
tial V(u). After linearizing the on-site potential around the o different values for the force function at the same
abovementioned minimum the dispersion law can be writterg.irgumem_a circumstance impossible for standard func-
as tions. Thus, we have to require the symmetryu¢z) which

5 guarantees that the force function is defined in a unique way.

wg=y+2C(1-cosq), (4 This is also the reason why we can exclude the existence of

more complicated pulse forms such as antisymmetric pulses,
symmetric pulses with several maxima, etc.

Let us investigate some properties \bf Since forz— o«
u—0 andu”—0, we find thatf(0)=0 which was to be
expected. To get more information about the dependence of
f(u) for smallu (which tells us about the stability of the TW
) solution we need the leading order dependencea of z for

largez which is given by the ansatz of the TW profile. Let us
We are interested in TW solutions, i.e., solutions that propa@ssume that our ansatz yields an exponential decayf
gate with a permanent shape and velocity for large distances, i.e.,

whereq is a wave number angi=V"(u,,). The group ve-
locity sp=dwq/dq attains its maximal valuesy,, when
dSy/9q=0:

2
Vy +4yC—vy
Smax— \/C— f

un(t)=u(n—st)=u(z), z=n-st, (6) u(z—+w)~e 44 4>0, 9

wheres s the velocity of the traveling wave. As a result, we I . .
obtain a differential equation with delay and advance terms.'o‘ﬁer substituting Eq(9) into Eq. (8) we obtain

s?u"(z)=C[u(z+1)—2u(z)+u(z—1)]-V'[u(2)]. f(u)=—u[ u?s®—2C(coshu—1)]. (10)
(7
The slope of the forcé(u) for smallu changes its sign when
A. Moving pulses C crosses the valu€, given by
First we consider solutions of a bell-shaped localized
form, i.e., pulses. Given the profile(z) and its velocitys, 7%
we can generate the on-site potentalThe functionu(z) C1_2(cosh,u—1)' (12)
should satisfy the following conditions:
u(z— +»)—0, This means that the potenti&l(u) has maxima au=0
u(—2z)=u(2), when C<C; and minima if C>C;. Consequently, the
u(z) is monotonic in[0,+ o[, asymptotic statau(z— +©)=0 is a dynamically unstable
u(z) is analytic in[0,+ o] . one forC<C; and a stable one fa€>C;. There is another

critical value[see again Eq8)] of C given by
To show that the potentiad can be generated in a unique

way, we rewrite Eq(7) in the following form: s2u"(0)
Co=o———.
V'[u(2)]=f[u(2)] 27 2[u(1)-u(0)]

=—5%u"(2)+Clu(z+1)—2u(z)+u(z—1)].

(12

If C>C,, an additional extremunimaximum in V(u) ap-
(8) pears betweem=0 andu(0). The possible scenario€,
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FIG. 1. The potentiaV(u) for a fixed pulse solution(a) for

C1<C, and (1) C<C;1<Cy, (2) C1<C<Cy () C1<Cy<(; u(z) u
(b) for C;>C, and (1) C<C,<C4, (2) C,<C<Cy, (3) Cy<Cy
<C. The potential is obtained for positivevalues and continued FIG. 2. The schematic representation of the pulse solution in the
to negative values for the sake of transparency. anticontinuum limit.
C;<C, andC;>C, are shown in Figs. (B and Xb), re- u2s?
spectively. The above statements about stability hold for any y=C(coshu—1)— 5 (16)
exponentially decaying pulse. If the decay is nonexponential,
the on-site potential can become nonanalytiauatO. For
example, for a Gaussian tail we compares with Sy, Defining so=Sna=S we find that
the pulse can be both subsonic and supersonic since in this
u(z— =) ~e H (13 ~ case
the on-site potential for smallgets dressed with logarithmic , _coshu+1- J(coshu+1)2=2(2+ 12
corrections, e.g., fop=1 sg=C 5 . a7
2+u
—_\/! _ 2
fw=V'(W=u -s(2+4Inu)+2C Consequently for fixe€€ andu, shas to be small enough to

satisfyC>C, [see Eq.11)], whens(C;)>s,. Thus fors,
<s<s(C;) the solutions are supersonic, while fers,
they are subsonic.

Let us consider an explicit example of the sech-type pro-
Note that the solution also exists in the “anticontinuum” file. Suppose the profile is described by the function
limit C=0. This seems to be surprising, since the oscillators
are not interacting with each other. Still in this case we have
a simple equation

—%COSKZ\/—“’] u|. (14

u(z)=ugsectiuz), (18

flu(z)]=s%u"(z). (15) where u, is the amplitude of the pulse and its inverse
width. Using the expressions
It can be easily noticed from the bell-shaped formugk)
that the functionf (u) is anti-symmetric and has two zeroes, u”(z)=ugu?[sectiuz)— 2 sech(uz)]
one of which is atu=0. Thus, the potentia¥/(u) has a
maximum atu=0 and a minimum at some value<u u3(z)l
us |’

u(z)—2 (19

<u(0) (see Fig. 2 The separatrix trajectory corresponds to =u?
the motion of each particle from the maximum of the poten-
tial V(u) to the right wall and back. This motion needs infi-
nite time. N _ o cosh{ 12)
It follows that it is possible to prepare the initial phases of u(z—1)+u(z+1)=2ug—
all particles on this separatrix such that their uncorrelated sink? u + cosif(uz)
motion resembles the motion of a pulse solution through the
system. This solution is dynamically unstable because —2u2cosh u(2
" 0 L 2 . 2 ’
V"(0)<0. ug+ sink? uu?(z)
Finally, we consider possible velocities for exponentially
decaying pulse$9). We want to check whether our pulses
can be subsonicsK S,,,) OF supersonic $<Sgya,)- Taking
into account thafsee Eq.(10)] we reconstruct the on-site potenti{u):

(20
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+ 21) \\——\ 1
It is easy to check that its shape will change w@rexactly 1
as described above. We can rewrite this potential in the fol- ! !
lowing form: : )

1 SZ 2
V(u)= = S[8%u?+2C 7+ —-uf
2up
2
, coshu Ug

+u?|.

OsinfEu | sini? u

V(u)

1 Kk,—2C
V(U)=—§K2U2+ 22 s—ut+Cya?+ugin(a®+u?),
Uop
(22)
where the parameters of the solutisand u are given by -1 0 !
U
Vkp—2C FIG. 3. The potentiaV(u) for a kink solution: (1) C<C,

u=arcsintliup/a), s= (23

<C,, (2) C;<C<C,, and (3) C;<C,<C. The potential is ob-
tained for positivau values and continued to negative values for the
sake of transparency.

arcsinifug/a)

After proper rescaling constan®andug can be eliminated

and, consequently, we can reduce the number of system pa-

rameters to two. However, we are not able to rewrite the u(z— *tw)—=*u,

potential V(u) as a function independent from the param-  u(z) is monotonic in }-o,+ o[,

eters of the solutiofil8): s,uy, . This means that we cannot u(z) is analytic in o0, +oo[.

yet answer whether the solutigii8) comes as a family of

solutions of Eq.22) or is a unique solution of the obtained

equations of motion. Contrary to the case of pulse solutions, we do not need to

require the functionu(z) to have certain symmetries, so that

we can restrict ourselves to monotonicity only. A nonsym-

) ) . , . metric u(z) profile will simply imply a nonsymmetric func-
Klnl_<s_ or topological §0I|t0ns are solutions which connecty;,, V(u). If the abovementioned conditions are satisfied, we

two minima of the on-site potential(u). If V(u) has sev- again can uniquely map the functiarfz) onto the potential

eral equivalent minima, a countable infinite set of stationar A ) .
(time-independentkink solutions of the Klein-Gordon equa- ﬁgui.inio\:vi(sjltrﬁﬂl(gw, L\J/\(/;:)/rﬁnormallze the variable(z) by

tion (3) exists (in contrast to the space-continuous case,
where the continuum groups of translation symmetry pro- If
vides a smooth family of stationary kink solutionSome of
these solutions will be local minima of the total energy, and
some will correspond to saddles. The question whether mov-
ing kinks as TW solution§b) exist is still open. Some results
(see, e.g., Ref[15]) suggest that kinks in discrete lattices
experience a so-called Peierls-Nabarro barrier. One interpréve can perform the asymptotic analysis similar to the case of
tation of this barrier is that it is the energy difference be-the pulse solution. IE<C, [whereC, comes from Eq(11)]
tween stable stationary kinks and unstable stationary kinkst follows thatV”(=1)<0. Therefore the extremal points
Indeed it is clear, that to unpin a stable stationary kink, one= £1 are maxima and, consequently, the asymptotic ground
needs at least this amount of energy. Another more sophiststatesu= +1 are unstable. The sign &”(=1) changes at
cated approach—the collective coordinate approach—is &= C, so that forC>C, these ground states are stable. An-
projection technique which aims at accounting for the dy-other criticalC, value is given by

namics of a kinklike object boosted to move along the lattice.

By coupling the kinks center of mass coordinates to

B. Moving kinks

U(z— = 0)~+(1—e ), (24)

phonons, one arrives at the result that a moving kink will s2u”(0)
radiate, lose kinetic energy, and finally be trapgpohned Cop=—————. (25)
by the lattice. Here the barrier appears as a height of maxima 2[u’(1)—u’(0)]

in a potential which is used to describe the kink motion.

Nevertheless, the analytical result of REt3] suggests
that it is possible to construct an exact moving kink solution.lf C<C, the stateu=0 is a minimum and ilC>C, it is a
This result can be generalized for any profilez) that sat- maximum and we have the standard double-well potential.
isfies the following conditions: For details see Fig. 3.
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For C. Reaction-diffusion systems
Let us also consider dissipative systems described by the
u(z)=tanh uz) (26) discrete analog of reaction-diffusion equation of the form
o _ S Uy=C(Ups1—2Uy+U,_ 1)+ F(Up). (29)
the explicit form of the potentia¥/(u) was obtained in Refs. " et ntontt "
[13] and[14] and can be written as follows: The physical background of this equation differs from the
above considered nonlinear Klein-Gordon chains but it also
2,2 admits localized traveling-wave solutions. These systems are
V(u)=(s’u?—C)u’— _’U“u4 dissipative because we have a first order time derivative in-

2 stead of the inertia term. Here the functib(u) can have

different meanings, for example, an ion current for nerve
: In(cosu—u? sinh?u). 27y  fibers(see Ref[18]). . . .
sintr u These systems lack time reversibility. The equation for
TW solutions reads

The existence of such a solution does not imply the absence _gy’(z)=C[u(z+1)-2u(z)+u(z—1)]+f[u(z)].

of Peierls-Nabarro barrier for stationary kink solutions. We

demonstrate this for the particular case of the solutiZs).

We consider a chain with the on-site potentia¥) with pa-  To generate a system for a moving pulse, let us consider a

rametersC=1, s=0.5, u=1. Then we calculate two sta- Symmetric pulse with one maximum as described in the

tionary kink solutions, one of which is stable, and the otherpulse section of the Klein-Gordon chains. Due to the first

one being a saddle in the energy landscape. Their energi@sder derivative in Eq(30) the left-hand side is antisymmet-

are E;=0.991796 andE,=0.992153, respectivelymea- ric, while the RHS is symmetric. Consequently, we cannot

sured relatively to the absolute energy minimuifhe non-  definef(u) in a unique way. Any further complication of the

zero difference is the Peierls-Nabarro barrier. In fact, thesymmetry of the pulse will not help either. Thus, we con-

existence of a Peierls-Nabarro barrier already follows fronclude that there exist no moving pulse solutions in &4).

the stability of one of the stationary kink solutions, which ~ However, reaction-diffusion system80) support kink

implies that a finite amount of energy is needed to get out oolutions. The nonuniqueness problems disappear as long as

the minimum. the kink shapeu(z) is a monotonous function. Due to the
Furthermore, we are now in possession of a very effectivdirst order derivative in Eq(30) a kink shape moving to the

method to generate equations of motion which support staight with some given velocity will generate a functidp

tionary kinkswithout a Peierls-Nabarro potential, i.e., where different from the functionf, generated by the same kink

a stationary kink exists which can be placed anywhere in th&oving with the same velocity but to the left.

chain. Such a system has a degenerated ground state underAs an example, let us consider a profil¢z) =tanh(u2).

the constraint of existence of one kink. It can be easily genPerforming the abovementioned computations we obtain

erated by putting=0 in the above inverse method, and that

is also true for pulse solutions. Indeed, in the ligit0 we )= — 1—u2)—2C u LoC
generate systems which support kinksr pulse$ which (u)==su(1-u%) 1+(1—u?)sint? u.
move with infinitesimally slow velocity. As the system is (31)

energy conserving and the kinetic energy becomes negligible

in this limit, the ground state becomes nearly degenerate, anthis result coincides with result of Bressloff and Rowlands

a Goldstone mode appears o= 0. We tested these predic- (see Ref[14]).

tions numerically and obtained excellent agreement. A par- Finally, let us show that we can also obtain moving pulses
ticular example of a potential supporting kinks with zero provided we increase the number of components per site.
Peierls-Nabarro potential is Indeed consider

Unzc(un+1_2un+un—l)+ f(un,vn),
V(u)=—Cu?-

| K u—uZsini? u), (28 .
Sintf o " COSIT TSI ), (28) b= Clomsa—20n+ v )+ 0(Un o). (32

. ] ] ) Assumingu,(t)=u(n—st), v,(t)=v(n—st) we find
which was obtained for a kink solutian(z) =tanh(uz) from

Eq. (27) by puttings=0. It is interesting to note that Ward —su’(z)=C[u(z+1)—2u(z)+u(z—1)]+f[u(z),v(z)],

and Speigh{16] also proposed a scheme which generates (33)
systems supporting kink solutions with zero Peierls-Nabarro

potential. This scheme uses Bogomolnyi's inequa|ity]. —sv'(2)=Clv(z+1)—2v(z)+v(z—1)]+glu(2),v(2)].
The structure of the potential functions was fixed, but the (34)

difference operators were chosen in an appropriate way. This

method then generates equations of motion which are rathés€t us choose a certain profile for(z). Fixing a value of
hard to justify physically. This is not the case when using ouru=x we obtain a countable set of poing” such that
inverse method scheme. u(z)=~«. Herei is an integer and counts all points. This
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defines a countable set of functiom§’(u). Similarly we
proceed withv (z). In order to solve the inverse problem, i.e.,
for given functionsu(z) andv(z) we have only to require
Wir )
v(Z)#u (Y)W i#), uE)#uE) i i#]. 0
(35)

This is a weak condition satisfied by most choicesuatnd 3
v. For instance we can even choose symmetric functions &
having just one maximum and decaying to zero at infinities.
The only restriction would be to shift the centers of the two
functions apart, e.gy(z) =u(z—zy) for a givenu(z). But

also asymmetric functions with even several maxima are al-
lowed. Also possible is a symmetric function fofz) having

one maximum and decaying at infinities, and an asymmetric
function forv(z) having the same other properties—with the
maxima of both functions coincidingz¢=0). It is a tedious

work to calculate examples, so in most cases it will be ap-
propriate to obtain the functionsand g numerically. The 0 1
reason for the easy construction of two-component moving r

pulses is that we introduce two functiofig of two vari- FIG. 4. The schematic representation of the creation of the po-
ables, but determine them only on a line in their phase spac@ntialw(r) for acoustic chains. Different initial value choices will
{u,v}. That means that we do not completely define thesgenerate different potentials for one and the same TW profile.
functions.

Adding a third component to the problem clearly further potential. This implies that acoustic chains admit at the best
relaxes the conditions on the_pulse forms. The existence ahoving kink solutions(nontopological in the original vari-
two component pulses is partially known for space continuablesu,(t), and even these kink solutions have to have re-
ous systemg19]. Note that our inverse method works as flection symmetry.
well in the space continuous case, i.e., where differences of Suppose the function(z) satisfies the conditions for the

the formu,,;—2u,+u,-; are replaced by second deriva- pulses given in Sec. lll A. Then due to the symmetry @),
tives.

Why not do the same for conservative systems? Then the
functionsf,g will be the components of the gradient of some
generating functiorfe.g., a potential Thus, we have to im-
pose this gradient condition, which will restrict the choice ofwhere ro=r(0), r;=r(1). In order to find the unknown
functionsu,v. function W’ (r) we have to solve the initial value problem

(37) where the initial condition should be the functidvi (r)
IV. ACOUSTIC CHAINS on the intervalry<r<r,. If W'(r) is defined on this inter-
val, using Eqs(37) and(38), one can construct the function

Now let us study systems which support acougpiglse ~ W'(r) for r>r; which will be uniquely definedsee Fig. 4
solitary waves. In these systems the on-site potential is agor eachW’(r). This means that we can choo®¢ (r) in
sent[V(u)=0] and the solitary waves appear due to thello,r1] arbitrarily.

wr,)

W (1) =W (rg) + 38%(0), (38

nonlinearity of the interaction potenti#(r). First of all, we Therefore we find that for give{r(z),s} a countable in-
introduce the relative displacements=u,.,—u,. Inthese finite dimension of the space of solutiolg(r) € C* exists.
terms the equations of motion take the form Each function from this set supports one and the safap
as an exact solution with one and the same velocity. How-
=W’ (rpy 1) = 2W' (1) + W (r,_y). (36)  ever, the function constructed in this way from an arbitrary
initial value will be nonanalytic in generéi is easy to show
For TW solutionsr ,(t) =r(n—st)=r(z) one can write that all functions will be twice differentiabje
, o , , To avoid the problem of generating nonanalytic potential
W'[r(z+1)]=sr"(z)+2W'[r(2)]-W'[r(z—1)]. functions, we found another way of constructing the poten-

(37) tial. Suppose (z) is a pulse. TheW'[r(z)]=p(2) is also a
As shown in Ref[3], in such a lattice localized bell-shaped Pulse. Let us rewrite Eq37) as
traveling-wave solutions can exist\i¥(r) has a hard anhar-
monicity in the regiorr <0. Note that the acoustic solitons r(2)= p(z+1)—2p(2)+p(z—1) _
correspond to a localized contraction of the chain and there- 52
fore the functionr (z) should be completely negative.

It is evident by following the above line of argumentation Now instead of defining (z) we definep(z) (symmetric
for Klein-Gordon chains, that the puls¢z) has to be sym- bell-shaped pulge If this function is analytic, the RHS of
metric and must have only one maximum. Any deviationEg. (39) is also analytic. Then simply integrating this rhs
from this leads to a nonuniqueness in the definition of thewice, we find an analytic function(z) which is also of a

(39
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bell-shaped form providepl(z) decays for large faster than ~ We cannot express the force functiovl (r) explicitly from

1/z2. Havingr as a function ofp (on a half axisz) we can the above formula, but we have the inverse relati¢n)

invert this dependence and consigeas a function of. This = D[p(2)], whereD is a function inverse t&V'. The poten-
gives us the force functiow” (r). Notice that by that we can tial W(r) can be calculated numerically.

avoid generating nonanalytic potentials.

Finally, let us take a look at the asymptotic behavior of V. BREATHERS OF THE DNLSTYPE EQUATIONS

th? solitary solution. Supposg(z) ~e #* for z—x and Here we study a general nonlinear chain governed by Eq.
W' (r)=Cr for r—0. Linearizing Eq.(6), we obtain (2). It is already known that these systems have standing
) breather solutionésee, e.g., Ref20]). The standing breather
s® _coshu—1 is defined as a spatially localized solution which is periodic
S b ol (409) 'S Solutic
C w? in time. The general breather solution with frequegye-

locity s, and wave numbeg can be chosen to be

Thus, each moving acoustic soliton is supersonic.
dn(t)y=d(n—st,Qt), &O(x—+x,y)—0,

In the following example we will illustrate how to con-

struct the interaction potential from a given solution profile. _ n
Suppose(z) = po sech(uz). We substitute it into the RHS POy) =Xy +2m). (43
of Eqg. (39 and integrate it twice. Using the formula Periodicity of ®(x,y) in y allows us to expand it into a
Fourier series:
1
sec(pz)dzdz=— ————— _
f f (u 61 costt(uz) d)(x,y)z}k: D (x)ek, (44)
T iln[cosh,uz)]+ Kiz+K, For DNLS systems these solutions may have only one non-
2

zero Fourier harmonic with respect to time. Since the DNLS
equation has a gauge symmeiy(t) —e'“'y,(t), we can
(41 N .
actually always transform a breather solution into a station-
we calculate the function(z). In order to satisfy the bound- ary pulse solutiorinote that this is not possible for breather

ary conditions, we puk,=0, K,=0. As a result, we obtain solutions of, e.g., KIein-Gordon or acoustic chainAs a
result Eq.(2) can be rewritten as

r(z)= Po Iné&(z)+ @ il—ﬂn""’“ﬂn""c(‘ﬂnﬁ—l"}_‘ﬂn—l)
3s?u? Po
i +F(|¢n|2)(¢nfl+¢n+1)+G(|‘//n|2)¢n:01 (45)
><<1— 2(sin 'uz_l)_g(z)ﬂ, where k=—w—2C. Then we can definey,(t)=R(2)
&(2) +il(z), z=n—st, where the function®R and | are real.

(42)  unknown nonlinear functions andG expressed in terms of

(D) Separating real and imaginary parts of E4p) we obtain the
E&(z2)=1+ \/——sinl? u.
0 breather envelop® and| and breather parameters

[R¥(2)+1%(2)]'

PR +1%(2)]= = Ct 5 D T 1 D= TR DR D]} (46)
S |y [R%(2)+1%(2)]’
IR +1D]==r= gy |V (D~ 5 =D 1 (z+ DIRZ-D+ R+ DR} “7
|
We are interested in symmetric profiles, i.aiz) Clearly moving solutions seem to have more complicated

=R%(2) +1%(z2)=u(—2) in order to ensure single value internal structures, as known from the solutions of the
properties of the functions,G. It is easy see that the profile Ablowitz-Ladik system[12]. These solutions can be repre-
is symmetric and bell-shaped if, e.g., bafz) andR(z) are ~ sented in the following form:

symmetric or one of these functions is symmetric and an- _ i(Gn—ot) _ i(qn— ot _

other one is antisymmetric. The |hs of E¢6) is symmetric. (D) =Up(De I O=u(2)e@ D, z=n-st, 49)

If Randl are symmetric, the functionR(z—1)+R(z+1)

andl(z—1)+I1(z+1) are also symmetric and the derivative whereu(z) is a real envelope amplitudejs breather veloc-
of R(z) +12(z) is antisymmetric. Consequently, the RHS of ity, q its wave number, and its frequency. Substituting this
this equation is antisymmetric. Obviously, this is possibleansatz into Eq(2), we obtain two equations for real and
only for a trivial solution,(t)=0. complex parts:



6112

(w—2C)u(z)+cosq{C+F[u?(2)]}

X[u(z—1)+u(z+1)]+G[u?(z)Ju(z)=0, (49

—su’(z)+sing{C+F[u?(z)]}[u(z+1)—u(z—1)]=0.
(50)
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After straightforward calculations the unknown nonlinear Equation(55) yields

functionsF and G can be expressed in terms ofand the
system parameters

S u'(z)

Flu(z)]=-C- sinq u(z+1)—u(z—1)’

(59)

Gl[u?(z)]=—(w—2C)—cosq{C+F[u%(2)]}

u(z—1)+u(z+1)
u(z)

s u'(z)u(z-1)+u(z+1)
tanq u(z) u(z+1)—u(z—1)"
(52)

=—(w—2C)—

If the envelope functiom(z) satisfies the conditions

u(z— £x)—0,
u(—2)=u(2),

u(z) is monotonic in[0,+ o[,
u(z) is analytic in[0,+ o[,

we can postulate agaisimilarly to Secs. Il and IV that for

any envelopei(z) defined as above and the set of parameter
(s,q,w) one can uniquely define the nonlinearity for the

equation given by functions and G.

Examples. Let us consider the particular case whe(z)
=upsecH(uz). Substituting this expression into Eq&1)
and(52), we obtain function$ and G:

Su sinff ]2
F(u’)=-C+ sinqsinhZ,J u} , (53
2su sint?
2 _ _ _ —
G(u9)=—(w—20C) —tanqsinhzﬂ(COSh% ™ uj.
(54)

(1) The Ablowitz-Ladik equation. Let us look at the par-

ticular case wher=0. In this case we have only one un-

known nonlinear functionF. After simplifying the ansatz
(51), (52) we obtain

u'(z) B (2C—w)tanq u(z+1)—u(z—1)
uz) s u(z—1)+u(z+1)’

(59

(2C—w)u(z)
cosqlu(z—1)+u(z+1)]"

Fl[u’(z)]=—C+ (56)

In the particular casel(z)=ugsechuz) we obtain the
guadratic function

2C—w

. sink? u
2 cosg coshu

2

F(u’)=-C u (57)

2
Ug
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We assume
2C-w 2C—w sinffu A
—=C, ==, \>0.
2 cosq coshu 2 cosq coshu u% 2
(58)
Sp
2C- 0= tanq tanhu * (59

We can rewrite these equations in more common way, ex-
pressing the parameters of the solutinw, andug through
gandu:

2C
Up= "\ /Tsinh,u, w=2C[1-coshu cosq],

sinhu

s=2C sing. (60)

This corresponds to the well-known integrable Ablowitz-
Ladik equation.

(2) DNLS with local nonlinearity. Now let us look at a
well-known equation of the DNLS family. In the case of
F(u?)=0, we have

i bt Cbns1—2hn+ dn_1)+G(|dp|?) ¢,=0. (61)

We substitute the ansaf48) and consider Eq(49) that for

this particular case takes the following form:

Csing
u(z)=alu(z+1)—u(z—-1)], a= .

(62

The absence of a to be defined function in this equation
makes this equation an equation for the pulse shape. Let us
show that a pulse shaped functioKiz) cannot satisfy Eq.
(62). Suppose first that our solutiom(z) is periodic with
some large periodl. In this case we can expand the solution
into Fourier series
+ o
uz)= >, umex;{iszW ) (63)

m=—o

Substituting this expansion into E¢2) we obtain the alge-
braic equation

27 ) ( 277)
m—=2a sin m—|, (64)
L L

wherem is unknown integer. The equatiot=2a sinx al-
ways has a finite number of roots for any nonzerd&sincem
is integer, we can actually solve E@4) only for some spe-
cific values of @. This does not depend o, so we can
consider the limitL—. A pulse solutionu(z) would re-
quire an infinite number of nonzero harmonics in E8Q).
Therefore it is impossible to satisfy E¢62) with a pulse
shapedu(z). Consequently, Eq61) does not admit moving
breathers.
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It appears not to be possible to extend this method to 0.005
systems such as acoustic or KG chains. Note, that the spec-
trum of a DNLS breather consists only of one frequency and 0.025}

therefore can be transformed into two differential delay-
advance equations while acoustic-KG breathers will have an <«

infinite number of harmonics and obviously cannot be re- 0.0

written as a countable number of retarded and advanced

ODE'’s. -0.025}
-0.005

VI. CONTINUATION OF MOVING SOLUTIONS 0.801 0802 0803 0804 0805

FOR CONSERVATIVE SYSTEMS s

Let us discuss the question, whether a conservative sys-
tem which allows for a certain moving solution and has beern,, |
generated by our inverse method, has this solution as an
isolated one, or as a part of a smooth family of solutions. In . . _ .
other words, we consider a given moving solution, generatéOtICS (."e" the kink has osc'lllatlng tails ¢z|_>oc)'_ Some
the equations of motion, and search in the phase space vicil'%'—umer'c"’lI V?S“'ts_ that confirm the abovementioned argu-
ity of our solution for other moving solutions. That calls for ments are given in Re[2_1]. :

a linear stability analysis of the phase space flow around the To further analyze this, we performed a numerical con-

given moving solution. Since our solution has some uniformfinuation of a moving solution using the pseudospectral

asymptotic ground stat@ve assume that the parameters arememOd which is essentially a Newton metho_dq'rspacg
ymp g tov P ee, e.g., Ref$22,23). We chose the moving kink solution

such that the uniform asymptotic state is a ground state, s _ _ . .

discussions aboyewe know that a part of the linear stability 29 Wh'ﬁh yﬁlds the poterfltle;]427). The nfumerlca_l methlod_

analysis spectrum will be given by just solving the eigen-traces the phase space of the system for moving solutions

value problem of linearized fluctuations around the ground'€arPy the starting one with slightly changed velocities and
shapes. In Fig. 5 we show the dependence of the amplaAude

state. The eigenvectors will be plane wae¥§"~“d") (they ; ) ) .
will be deformed in the center of our moving solutjcand of the asymptotics versus velocisy We indeed find that our
chosen solution (26) (with C=1, u=In(1+2), s

their spectrum is given by some dispersion relatign Note ) i )
that due to space discretenesg is periodic ing. Let us =12 In(1+2)]=0.802278 in this particular casean

search for values for which the plane wave can be cast intoP® continued, but it thus gets dressed with plane wave as-
the form ymptotics. The change of sign in the amplitude implies a

phase change from O to. A slightly changed potential will
exhibit similar solutions but with slightly shifted curves in

FIG. 5. Dependence of the amplitude in the asymptotics of a
ving kink on the velocity for a given equatigeee texk

e!(er wqt):hq(n_sﬂ' (65 Fig. 5. Thus, it follows that the moving solution with uni-

form asymptotics is structurally stable, i.e., has a similar so-

This is possible if lution with uniform asymptotics for slightly changed equa-
tions of motion. This follows from the fact that the crossing

gs=wy. (66) qf the A(s) curve in Fig. 5 withA=0 is a generic intersec-

tion.

Consider first the case of an acoustic chain. For sopalke

have wq=vq with v<s (because all moving solutions will VIl. MOVING PULSES IN HIGHER LATTICE

be supersonic, see discussions abho@ensequently, there is DIMENSIONS

only the trivial solutionq=0 of Eq. (66), which simply cor- . ] ] .
responds to a shift of the center of mass of the acoustic SO far we have been discussing moving pulses and kinks
chain. We can always work in the frame where the center ofn one-dimensional lattices. In this chapter we will show that
mass is resting at zero. Consequently, for acoustic chains w&e inverse method can be easily generalized to higher space
do not find plane waves which move with the same velocitydimensions for reaction-diffusion equations, provided we
as the original solution. That implies that there are no smalfake into account two or more components. _
perturbations of our solution which have plane wave asymp- Let us consider a two-dimensional lattice. The function
totics and yield again a moving solution. Thus, we concludein(t) Will now depend on two lattice indicesn (t). The
that if moving solutions are coming in families, all solutions differences @1+ up.;—2uy) will now turn into some
on the family will be localized in space. general discrete Laplacialyup, ,). Assuming a moving so-
Consider now the case of an optical ch&iG case.  lution in the form
Since wq-o#0, we will always find at least one nonzego
value(in general it will be a finite number af values which U n(t) =U(M—s,t,n—st)=u(x,y) (67)
tends to infinity as— 0) which solves Eq(66). In that case '
we do know that there will exist perturbations with plane
wave asymptotics which deform our original localized mov-
ing solution into a partly delocalized one, which is now in
addition characterized by a nonzero amplitude in the asymp- —S,u—syu ,+Dlu(x,y)]=f(u). (68)

we arrive at the equations
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Fixing a value ofu we obtain a line in théx,y} space and to that in a countable set of poings. Still we need a sym-
since the RHS should not change, the LHS should be comnetry to ensure invariance of LHS's in the poimts This is
stant on this line—a very restrictive condition. If we insteadeasily achieved in the case when we have only two pgipts
consider two components moving in the same directions withhy demanding two symmetries. First we need all three com-

same velocities, the equations become ponentsu,v,w to be invariant under reflection at a plane
which contains the direction of motion. Secondly this plane
—Su—syu +D[u(x,y)]=f(u,v), (69 has to be parallel to any mirror reflection symmetry plane of
the lattice. Again the initial condition of having just count-
—S0 xSy y+D[v(X,Y)]=g(u,v). (700 able sets of pointp; with coinciding valuequ,v,w} can be

achieved by shifting the centers of the three pulse compo-

Again fixing a value foru we obtain some line igx,y}. If ~ nents apart while staying on one line—the direction of mo-
we consider functions,v decaying to zero at infinities, this tion. For instance, for a cubic lattice with lattice pointsxat

line will be a closed loop. Let us assume thats not con- =I, y=m, z=n and |,m,n integer reflection symmetry
stant on the loops of constamt That helps, but still if we fix ~planes are{x,y,0}, {0y.z}, {x,0z}, {x,*x,z}, {x,*z,z},
some point on the loop with some given valuevahere will  {X,y, %X} among possible others. Any vector embedded in

be a countable number of other poiqison the loop where these planes is an allowed moving direction.
v takes the same value. Then the LHS'’s of H§S) and(70)

have to be equal in these points. We can satisfy this condi-

tion by demanding two symmetries but only in the case when VIIl. CONCLUSIONS

we have onlytwo points p;. First our pulse functionsi,v

should be invariant under reflections at a line parallel to th In this paper we have studied several types of nonlinear
L . X ne p Mattice systems. Contrary to most papers on nonlinear lattices
direction of motion. This ensures that the first order deriva-

where authors try to find a solutiofeither analytically or
numerically of the given system, we approach the problem

T o from the opposite side—we look for the systéim fact, for
have to demand that the chosen direction of motifined the interaction and/or on-site potentjaighich admits some

atice. For nstance,for a sduare latice these will be ony ngPecc soluton.
: ’ q y We have studied kinks and pulses in the Klein-Gordon

majo.rllatnce axes _and the diagonals. The initially assumegystem, acoustic solitons in chains with nonlinear intersite
condition thaty varies along the loop of constautcan be, interactions and discrete breathers in the nonlinear

e.g., easily safisfied by considering pulses which are SymSchr"ajinger-type systems. In all these cases the method en-

metnc_under point reﬂectlons a_nd whose symmetry Centeripes us to generate a unigue on-site or interaction potential
are shifted along the line of motion. Note that contrary to thefor a given pulse or kink and its velocity if this solution

?ne?dlm(:-nsm()jr_]al case thle mvter?(:hm_ethﬁd yields the funCt'O@atisfies certain conditions. As a particular result, we have
.9 in a two-dimensional part of their phase spqogv}. shown that the acoustic solitons are always supersonic. We

i i ? iti . .
What if we add a third component? The Condltlonsals:o conclude that nonzero Peierls-Nabarro barrier does not

weakgn agam, S|m|Ia}rIy o th‘?‘ case of two components in th revent discrete kinks from propagating with constant ve-
one-dimensional lattice. For instance, one can.de5|gn pyls Gcities. In the case of discrete moving breathers in DNLS-
where two components are invariant under point reflectlon§ype systems we create nonlinear terms in €4 .for given

with centers ghlfted along the line of motion, and th_e th'rdenvelope profile and breather frequency, wave number, and
component will be off-centered from the line connecting the,

. velocity.
bwo first centers. . . . Our method is equally well suited for dissipative systems.
Let us consider a three-dimensional lattice and two comyg

ts. Fixi btai losed surf ystems of coupled reaction-diffusion equations do not pos-
ponents. Fixingl we now obtain a closed sur aceﬁ)p,y,z}. sess one important property which is time reversibility and
Requiringv to generally vary on this surface, we find that

i I | bedded h ; therefore despite being closely related to the Klein-Gordon
will stay constant at least on loops embedded on the sur aC'ﬁ]pe equations, do not have pulse traveling-wave solutions in

Since the lattice is invariant only under discrete symmetriesthe one-dimensional case for one component. We generalize
we cannot satisfy invariance of the LHS's of equations SiMi-pe gearch for pulses to higher lattice dimensions and find

Iar_ to Egs.(69) _and (70) on this loop. Conseqqently, there that moving pulses can be easily obtained provided we also
exist no moving two-component pulses in a three-...oca the number of components
dimensional lattice(and straightforwardly in any higher- All presented results can be easily extended to systems

dimensional lattice This is in contrast to the space- ,un jonger range interactions, and to space continuous sys-

continuous C_?f]e’ where space IS r']”".a”a”_t underf Cr?ntL";USO,Lf@ms(i.e., to partial differential equationsNote that the con-
symmetries. Then we can satisfy the invariance of the Sinuum limit of the considered difference equations is easily

along the loop dtrlv:glly i _bqth pulshes d‘f’“e |.nvar|far;]t _under recovered by choosing solitary wave profiles which vary
rotations around a line pointing in the direction of their mo- slowly along the lattice.

tion. The initial condition thawv is constant only on loops
(not on the whole surfages easily obtained by considering
pulses u,v with shifted centers, just as in the two-
dimensional case.

Adding a third componenw to the three-dimensional lat- It is a pleasure to thank M. BaM. Or-Guil, and A. A.
tice case reduces the problem of consta@indw on a loop  Ovchinnikov for helpful discussions.

tives on the LHS’s of Eq969) and(70) will be the same in
all p;. To ensure invariance of the Laplacianspinwe only
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