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We study directed diffusion of a particle in a periodic symmetric potential under the influence of a time-
periodic external field. The field lowers the symmetry of the phase space flow which results in directed
diffusion even if the potential and the field are reflection symmetric. We analyze the interplay between broken
symmetry and dynamical chaos.
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Nonlinear transport processes in a spatially periodic po-
tential U(x12p)5U(x) are of interest for such topics as
stochastic diffusion in nonlinear systems@1#, transport in
randomly driven systems@2#, and in solid state physics@3#,
to name a few.Chaotic transport in a nonlinear dynamical
system implies the possibility to travel in phase space if the
initial conditions of the particle belong to the chaotic layer of
the system. The chaotic layer can appear in some vicinity of
the separatrix of the unperturbed motion when a perturbation
is applied to an integrable system. A weak time-periodic
field E(t) can serve as such a perturbation generating a va-
riety of stochastic diffusive regimes in spatially periodic sys-
tems @4,5#. A prominent example for directed transport in
such systems isratchet transport, i.e., a ~colored! noise-
induced macroscopic current in a periodic potential with or
without space reflection symmetry. Ratchet transport was ex-
tensively studied for different situations, including chaotic
dissipative systems and overdamped regimes@6#. Possible
experimental manifestations of ratchet diffusion can be ex-
pected, e.g., for the phase diffusion in Josephson junctions
and the motion of proteins along biopolymers. Recently, the
effect of an ac field on directed diffusion in reflection sym-
metric and nonsymmetric periodic potentials was also stud-
ied in Ref.@7#. There it has been shown that the breaking of
the time reflection symmetry of the forceE(t) plays the
same role as the breaking of the space reflection symmetry of
the potentialU(x) leading to directed diffusion controlled by
an ac field.

In this paper we study phase-dependent directed transport
in systems without breaking reflection symmetries in time or
space. This transport mechanism results from the specific
symmetry of the equations of motion combined with the
presence of nonlinear processes. We investigate the simplest
case of the harmonically driven mathematical pendulum with
the Hamiltonian

H5p2/21U~x !2xE~ t !, U~x !5sin~x !,
~1!

E~ t !5e sin~vt1f !.

Here (x,p) are canonically conjugated dimensionless vari-
ables,e,v,f are, respectively, the amplitude, frequency, and
phase of the time-dependent field, which we consider to be a
~strong! perturbation of the unperturbed motion of the par-
ticle in the potentialU(x). Eq. ~1! corresponds to a dipole
interaction between an oscillator and an external perturbation

field @1# in the long wave length limit. The combined action
of the ac fieldE(t) and periodic potentialU(x) results in a
nonintegrable type of dynamics with either quasiperiodic or
stochastic trajectories. Using the model Hamiltonian~1! we
show that the ac field lowers the symmetry of the dynamical
system. This results in a phase-dependent directed diffusion,
even if the potentialU(x) and the fieldE(t) are reflection
symmetric. We will analyze the interplay between broken
symmetry and dynamical chaos.

Let us start with some unexpected results of numerical
studies of Eq.~1!. Simulations were performed in the follow-
ing way: take a large ensemble of initial conditions (N
;104) at t50 with energies randomly chosen in a thin layer
beyond the unperturbed separatrix, 12D,E(t50),1;D
!1, and coordinates uniformly distributed over the unit cell
of the potential23p/2,x(t50),p/2. Thus all particles
would be trapped in the chosen cell for the unperturbed dy-
namics. The ac field induces dynamical chaos allowing for
an escape of the particles. The small value ofD must satisfy
the Chirikov overlap criterion so that~almost! all particles in
the ensemble perform stochastic motion@8#. Such a choice of
the initial positions presents a~quasi! microcanonical distri-
bution for the unperturbed dynamical system. Nonzero val-
ues of D ensure better averaging. By means of numerical
integration of the equations of motion we obtain the average
escape timestr andt l of a particle to the neighboring right
and left cells of the potential. The averaging is performed
over the full ensemble with integration times being of the
order of 103 time units, which is much larger than the maxi-
mum time to reach the neighboring cell. The results are
shown in Fig. 1. We observe a substantial asymmetry of the
particle flux to the right and to the left, respectively. This
asymmetry indicates the existence of directed diffusion in
the system. The asymmetry vanishes only for some specific
values of the phasef5fs1kp, wherek is an integer. For
small amplitudese,0.05 or for large frequenciesv.3, i.e.,
in the limit of a very narrow layer of the stochastic motion,
we find fs→p/2.

To understand these results we start with the consider-
ation of the limit of large energies, and neglect the potential
in zeroth order:U(x)50. The velocity of a particle in the ac
field then reads

V~ t !5C02e/v cos~vt1f !, C05^V~ t !& t , V~0!5V0 .
~2!
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Here ^•••& t means time averaging. It follows from Eq.~2!
that

C05V01e/v cos~f !. ~3!

Given a distribution of initial conditionsr(X0 ,V0) with
symmetryr(X,V)5r(X,2V), the mean time-averaged ve-
locity per particle is not equal to zero:

V̄5e/v cos~f !. ~4!

The ac field lowers the previous symmetry of the phase space
flow $1V0→2V0% into $1V0→2V0 ;f→2f1p% ~this is
one reason for the macroscopic transport observed in the
short-time simulations in Fig. 1; we come back to the case of
transport in a potential below!.

Next we study the case when the initial energy is large
compared to the potentialU(x):E05V0

2/21sin(X0).1. To
simplify the analytical calculations we putv@1 and assume
that the initial distribution is uniform in space:r(X,V)
5d(uVu2V0). After averaging we obtain

V̄.
p sgn@V01~e/v !cosf#uku
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$V̄~1V0 ,X0!1V̄~2V0 ,X0!%dX0 .

~6!

HereK is the elliptic integral of first type. Avoiding cumber-
some analytical formulas, numerically calculated average ve-
locities V̂ for microcanonical ensemble with different initial
energiesE0 are presented in Fig. 2. The estimated upper
boundary of the stochastic layer isEst.1.1. ForE0@Est the
function V̂(f) approaches the form of cosf. With decreas-

ing E0, the maximum value ofV̂max increases~see upper
inset!. It passes through a maximum and subsequently de-
creases with further loweringE0. This behavior is connected
to the sticking of a trajectory to the vicinity of the unper-
turbed hyperbolic fixed point. The numerically obtained
symmetric phasefs defined through the equalityV̂(fs)
50, is p/2 at E0>Est ~see lower inset!.

The situation drastically changes whenE0 is crossing the
boundary of the chaotic part in phase space (E0,Est). After
crossing there is a nonzero probability for a trajectory to be
trapped by partly destroyed KAM tori@1# as well as to travel
in arbitrary direction in the manner of Le´vy flights @4,11#.
These processes reduce the amplitudeV̂max. In addition, as
shown in the lower inset for a finite realization lengthT ~i.e.,
the time of averaging!, the symmetric pointfs is abruptly
shifted fromp/2:fsuE0<Est

5p/21df(E0). With increasing

time T one findsV̂max;1/T and the mean velocity tends to
zero for infiniteT. This is shown in Fig. 3. The power law

FIG. 1. Average escape timestr ,t l ~in scaled units! for the
hopping of a particle to the neighboring right and left cells of the
potentialU(x) as a function of the phasef of the ac field fore
50.175, v51.

FIG. 2. Dependence of the mean velocityV̂ ~of the directed
current! on the phasef for different initial energiesE0 for e
50.15, v51. The insets show the alternation of the maximum

value of V̂ and of the symmetric phasefs while decreasingE0

toward the boundary of the stochastic layer atEst.1.1 for T
5150p.

FIG. 3. An example of the power law decay of the mean veloc-

ity ^V̄&x0
inside the stochastic layer (E0.1) with increasing the

time intervalT at fÞfs ;e50.15;v51.

7216 PRE 61BRIEF REPORTS



behavior reflects the superdiffusive nature of the motion in-
side the stochastic layers, i.e., it results from the fast anoma-
lous stochastic diffusion, which is analogous to the quasibal-
listic regime and does not obey usual laws of diffusive
motion @9#. Such a regime is possible in any time-dependent
system having regions of bounded and unbounded motion at
different sides of the unperturbed separatrix@4,10#. Simulta-
neously, a power law decay always implies the absence of
localization and the notion of a localization length is mean-
ingless. The functionV̂max(T) tends slowly to zero with in-
creasingT; therefore the directed diffusion predicted can be
detected for finite values ofT. Note that there are two com-
petitive mechanisms of the long-time self-averaging ofV̂max
in the stochastic layer. The first one is connected to the er-
godicity and mixing of chaotic dynamics itself while the sec-
ond one results from the weak noise of numerical and real
experiments. The role of noise is discussed below.

It is interesting to note that for a fixed value of the phase
f the escape time to the right or to the left is practically
independent on the amplitude of perturbation for 0.1,e
,0.4, implying that the probability for a trajectory to cross
the unperturbed separatrix is almost constant. This fact was
mentioned in Ref.@10# and was attributed to the anomalous
diffusion in phase space. A detailed analysis of this phenom-
enon is beyond the scope of the present paper.

The observed directed diffusion depends periodically on
the phasef of the driving field. After additional averaging
over f the effect of a macroscopic current vanishes:

^V̂&f[0. ~7!

Here we discuss three important situations when this averag-
ing occurs.

The first one corresponds to an average over initial times,
i.e., when we inject given particle distributions at random
initial times. Averaging over initial times equals averaging
over the phase. However, if the injection times are correlated
~e.g., the injection times are triggered and spaced by a mul-
tiple of the period of the field! then directed current will be
reinforced. Since even quasiperiodic injection time-
sequences will ultimately average over the phase, in reality
we simply need finite samples where traveling along the
sample takes finite time.

The second example is a spatially inhomogeneous wave
@11#, for instance,

E~ t !5e sin~kx2vt1f !. ~8!

If we consider two particles with same initial positions and
opposite velocities, the average velocity will still be nonzero.
However, if we consider a distribution of initial positions,
averaging over the initial positions equals averaging over the
phase of the individual particle pairs:̂•••&x[^•••&f .
Again the specific asymmetry in the chaotic regime can be
detected only for finite samples when the long wave limit is
valid.

The third example of complete averaging is a noisy driv-
ing force:

E~ t !5e sin~vt1f !1e1j~ t !, ~9!

wherej(t) is a white noise with intensitye1 @12#. The noise
also induces an averaging over the phasef. The largere1
the faster is the averaging due to the noise. To avoid that, the
characteristic time of the directed diffusiontD must be much
smaller than the time scale of the thermal diffusiontj . In a
sample of sizeL the simplest estimate thus reads

tD.L/V̂!tj . ~10!

Consequently,phase-dependent directed diffusion manifests
itself only for finite samples on finite times.

To refine our explanation of the property~7!, let us return
to the question of the symmetry in the equations of motion.
Given a trajectory

X~ t,X0 ,V0!, P~ t,X0 ,V0! ~11!

of system~1!, one more trajectory can be successively gen-
erated by the transformations

t→2t: X~2t22f/v,X0 ,V0!, 2P~2t22f/v,X0 ,V0!.
~12!

The absolute value of the time-averaged velocity is the same
for both trajectories. Forf5fs these trajectories@‘‘origi-
nal’’ ~11! and ‘‘generated’’~12!# would belong to the above
described microcanonical distribution and would cancel each
other. ForfÞfs the compensation of contributions from
different trajectories no longer takes place and we detect di-
rected transport. This is the main reason for the effects de-
scribed. We need further averaging overf in order to ensure
cancellation of the contributions coming from Eqs.~11! and
~12!. If we wish to overcome Eq.~7!, we have to break the
corresponding symmetry, e.g., by taking either an ac field
without reflection symmetry:

E~ t !asym~x !5e$sin~vt1f !1besin~2@vt1f#1ne!%,

be,1; neÞ6pk/2 ~13!

or combining it with a potential without reflection symmetry
@7#

U~x !asym5sin~x !1busin~2x1nu!,

bu,1, nuÞ6pk/2. ~14!

The case of the ac field and the potential without reflection
symmetry represents a deterministic counterpart to the sto-
chastic ratchets@6,7#, where directed transport is not zero in
spite of self-averaging over the phase due to the action of a
noisy force. A detailed study of the properties of the field
~13! and of the potential~14! can be found in@13#.

There exist also examples of quantum particles in tight-
binding potentials, for which directed currents do not vanish
after averaging over infinitely long time. Consider a tight-
binding Hamiltonian in semiclassical approximation

H tb52cos~p !2xE~ t !, ~15!

with the same fieldE(t) as in Eq.~1!. Equation~15! ac-
counts for a periodic potentialU(x) via the periodic disper-
sion relation of quasiparticles«(p)52cos(p) @3#. Since the
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Hamiltonian~15! corresponds to a nonlinear but completely
integrable system, we have an explicit expression for the
velocity

ẋ[V~ t ![]H tb /]p5sin$p01e/v@cos~f !2cos~vt1f !#%,
~16!

^V~ t,1p0!1V~ t,2p0!& t /2

5J0~e/v !cos~p0!sin$e/v cos~f !%. ~17!

Assuming a Boltzmann distribution for the particlesFB
5const3exp@2«(p0)b# and integrating overp0, the aver-
aged current in the ballistic regime reads@3#

^ j& t52@nI1~b !/I0~b !#J0~e/v !sin$e/vcos~f !%,

^^ j& t&f50. ~18!

Here b is the dimensionless inverse temperature,n is the
particles density,I0,1 are the modified Bessel functions and
J0 is the Bessel function of zeroth order. Atf5p/2 we have
^ j& t50 as expected@3#. Note that directed currents in similar
systems~for fixed f5fs) have been also found due to dy-
namical chaos in the selfconsistent evolution or due to mix-
ing of different harmonics of the driving field@14,15#, while
the current in Eq.~18! is supported by regular dynamics
under the action of the one-harmonic field.

To summarize, we have studied directed diffusion in a
spatially periodic symmetric potential under the action of a

symmetric time-periodic external field. We have shown that
the ac field leads to phase-dependent macroscopic transport
in finite samples by lowering the dynamical symmetry, even
if the potential and the field themselves are reflection sym-
metric. This flux is fully controlled by the phase of the ac
field. For a given amplitude of the ac field the amplitude of
the flux is maximized for particle energies closely above the
unperturbed separatrix. We have also demonstrated that in
sufficiently short samples the dynamical asymmetry is am-
plified due to chaos, leading to a shift in the phase values
where zero current occurs. The maximum of the mean veloc-
ity decays as inverse time.

An additionally applied~white! noise gives rise to aver-
aging over the phase resulting in zero currents in the long
time limit. However, for a finite sample@see Eq.~10!# one
can construct a source of colored noise, which would peri-
odically inject particles into the system. If the injection is in
phase with the driving field, it would allow for an experi-
mental observation. Moreover, additional breaking of space-
and/or time-reflection symmetry may counteract the self-
averaging which otherwise leads to a vanishing mean veloc-
ity.
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