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Abstract. Discrete breathers - non-topological spatially localized time periodic
excitations - are generic solutions for lattice Hamiltonians independent of the lat-
tice dimension. We give an introduction to the field including such aspects as spatial
tail properties, lattice dimension induced energy thresholds, quantization and ex-
perimental applications. We then present recent results on breather properties in
spin lattices and Josephson junction ladders. In easy plane ferromagnetic spin lat-
tices the breather states are characterized by a local tilt of the magnetization and
nonzero activation energies even in one-dimensional lattices. In Josephson junction
ladders breathers lock to the external dc bias current. Variations of the current
are used to generate switchings between different breather states and to probe the
internal electromagnetic modes of the ladder.

1 Introduction

The study of dynamical non-topological localization in translationary invari-
ant nonlinear Hamiltonian lattices has experienced a considerable develop-
ment during the past decade [1–3]. The discreteness of space - i.e., the usage
of a spatial lattice - is crucial in order to provide structural stability for spa-
tially localized excitations. Spatial discreteness is a very common situation
for various applications from, e.g., solid state physics.

To make things precise, let us consider a d-dimensional hypercubic spatial
lattice with discrete translational invariance. Each lattice site is labeled by
a d-dimensional vector l with integer components. To each lattice site we
associate one pair of canonically conjugated coordinates and momenta Xl, Pl

which are real functions of time t. Let us then define some Hamiltonian H
being a function of all coordinates and momenta and further require that
H has the same symmetries as the lattice. The dynamical evolution of the
system is given by the usual Hamiltonian equations of motion. Without loss of
generality, let us demand that H is a nonnegative function and that H = 0
for Xl = Pl = 0 (for all l’s). We call this state the classical ground state.
Generalizations to other lattices and larger numbers of degrees of freedom
per lattice site are straightforward.

When linearizing the equations of motion around H = 0, we obtain an
eigenvalue problem. Due to translational invariance the eigenvectors will be
spatially extended plane waves, and the eigenvalues Ωq (frequencies) form
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a phonon spectrum, i.e., Ωq is a function of the wave vector q. Due to the
translation symmetry of the Hamiltonian, Ωq will be periodic in q. Moreover,
the phonon spectrum will be bounded, i.e., |Ωq| ≤ Ωmax. Depending on the
presence or absence of Goldstone modes Ωq might be gapless (zero belongs to
the spectrum, spectrum is acoustic) or exhibit a gap (|Ωq| ≥ Ωmin, spectrum
is optical). Increasing the number of degrees of freedom per lattice site induces
several branches in Ωq with possible gaps between them.

Let us search for spatially localized time periodic solutions of the full
nonlinear equations of motion, i.e., X|l|→∞ → 0, and

Xl(t) = Xl(t + Tb) + λkl , Pl(t) = Pl(t + Tb) , (1)

with kl being integers and λ a spatial period (the equations of motion should
be invariant under shifts of Xl by multiples of λ if applicable). These solutions
are coined discrete breathers. If kl 6= 0 for a finite subset of lattice sites, the
solutions are sometimes coined “rotobreathers”.

If a solution exists, we can expand it into a Fourier series in time, i.e.,
Xl(t) =

∑

k Akle
ikωbt (ωb = 2π/Tb). Spatial localization implies Ak,|l|→∞ →

0. Insert these series into the equations of motion. This results in a set of
coupled algebraic equations for the Fourier amplitudes [3]. Consider the spa-
tial tail of the solution where all Fourier amplitudes are small and should
further decay to zero with growing distance from the excitation center. Since
all amplitudes are small, the equations of motion can be linearized. This pro-
cedure decouples the interaction in k-space and we obtain for each k a linear
equation for Akl with coupling over l. This equation will contain kωb as a pa-
rameter. It will in fact be identical to the above discussed equation linearized
around H = 0 and it will contain kωb instead of Ωq [3]. If kωb = Ωq, the
corresponding amplitude Akl will not decay in space, instead it will oscillate.
To obtain localization, we arrive at the non-resonance condition [3]

kωb 6= Ωq . (2)

This condition has to be fulfilled for all integer k. For an optical spectrum
Ωq, frequency ranges for ωb exist which satisfy this condition. For acoustic
spectra, k = 0 poses a problem. We will discuss this case below in more detail.

The non-resonance condition is only a necessary condition for generic
occurrence of discrete breathers. More detailed analysis shows that breathers
being periodic orbits bifurcate from band edge plane waves [4]. The condition
for this bifurcation is an inequality involving parameters of expansion of H
around H = 0 [4].

Discrete breathers (periodic orbits) appear generically as one-parameter
families of periodic orbits. The parameter of the family can be, e.g., the
frequency (or energy, action, etc.). Note that we do not need any topological
requirement on H (no energy barriers). Indeed, breather families possess
limits where the breather delocalizes and its amplitude becomes zero.
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With the help of the non-resonance condition we can exclude the generic
existence of spatially localized solutions which are quasi-periodic in time. In-
deed, in the simplest case we would have to satisfy a non-resonance condition
k1ω1 +k2ω2 6= Ωq for ω1/ω2 being irrational and all possible pairs of integers
k1, k2. This is impossible [5].

Note that in many cases breathers can be easily excited by choosing some
localized perturbation of the lattice system. Integrating numerically the equa-
tions of motion, we find that the energy distribution is not delocalizing, but
stays essentially localized over several orders of magnitude of the character-
istic phonon periods. These numerical results clearly show that breathers are
not only interesting solutions, but can be rather typical and robust depending
on the system’s parameters.

Note that breathers can exist for autonomous forced damped systems
as well [6]. In these systems, contrary to the Hamiltonian ones, breather
periodic orbits do not come in one-parameter families of the frequency ωb,
but correspond to limit cycle attractors which are isolated in the system’s
phase space.

2 Spatial Decay Properties of Discrete Breathers

Consider the Hamiltonian

H =
∑

l





1

2
P 2

l + V (Xl) +
∑

l′ 6=l

Wl−l′ (Xl − Xl′)



 (3)

with V (z), Wl(z) being nonnegative functions and V (0) = Wl(0) = 0. If
∂2V/∂z2 is nonzero for z = 0, then Ωq is optical. In the opposite case, the
phonon spectrum is acoustic. If Ωq is optical and Ω2

q an analytical function in
q (this is realized for any finite range interaction Wl>lc = 0, but also, e.g., for
Wl(z) exponentially decaying in l), the interaction part of H is called short-
ranged. To compute the spatial decay of a breather solution, we use the above
mentioned linearized equations for its Fourier amplitudes Akl. With the help
of Green’s function method we find that [7]

Akl ∼

∫

Ξ

cos(ql)

(kωb)2 − Ω2
q

ddq . (4)

Here the integration extends over Ξ - the first Brillouin zone. Due to general
properties of convergence of Fourier series [8] we conclude that for short-range
interactions Akl decay exponentially in l, where the exponents depend on k
[5]. The exponent of Akl tends to zero whenever kωb approaches an edge of
Ωq. Note that in such a limit the linearization of the algebraic equations in
the tails of the breather ceases to be correct for a finite number of selected
k′ 6= k and nonlinear corrections to (4) apply (see [9]). Still, the spatial decay
is exponential.
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2.1 Algebraically Decaying Interactions

Consider a one-dimensional lattice with algebraically decaying interactions
Wl(z) ∼ 1/ls and ∂2V/∂z2|z=0 6= 0. Since Ω2

q is non-analytical in q, for this
case, (4) implies that for large distances l the spatial decay of a breather will
be algebraic [7]: Akl ∼ 1/ls. However, for s → ∞ the spatial decay becomes
short-ranged (nearest-neighbor interactions). To understand the crossover to
exponential decay in this limit, consider (4) for the case when kωb is very
close to the edge of Ωq which is characterized by some wave vector qc. Since
the integrand nearly diverges near qc, we may use a stationary phase approx-
imation and expand Ω2

q around qc taking into account only the leading order
term. For s > 3 the leading order dependence of Ω2

q on q will be proportional
to (q − qc)

2. The non-analytic behavior is then hidden in higher order terms
in (q − qc) and does not contribute within the approximation [7]. Since we
approximate Ω2

q by an analytical function, we will obtain exponential de-
cay in space. However, we know that the asymptotic dependence of Akl on
l is algebraic. We thus conclude that in the mentioned case of kωb being
close to the edge of Ωq, the spatial decay will be exponential for intermediate
distances, but becomes algebraic for distances larger than some crossover dis-
tance lc. High-precision numerical computations confirm this prediction [7].
The crossover distance can be estimated as

lnlc
lc

≈
ν

s
(5)

where ν is the exponent of the spatial decay obtained within the stationary
phase approximation [7]. It follows from the result (5) that lc → ∞ as s →
∞. This is an expected result, since in this short-range interaction limit we
recover exponential decay in the whole space. More surprising is also that the
limit ν → 0 (i.e. kωb → Ωqc

) yields lc → ∞. The exponential decay is thus
also obtained in the whole space whenever the frequency (or its multiple) of
the breather solution comes close to the edge of Ωq .

2.2 Presence of Goldstone Modes - Acoustic Breathers

When Ωq contains zero, i.e., when the linearized equations around H = 0
contain Golstone modes as solutions, the dc component of a breather solution
Akl with k = 0 deserves special attention. All ac components (k 6= 0) can
be analyzed similar to the case of an optical spectrum. If the Hamiltonian is
invariant under the transformation Xl → −Xl, then time-periodic solutions
being invariant under this transformation will have Akl = 0 for even k which
includes k = 0. However if such a parity symmetry is broken, all the Fourier
components become nonzero.

Assume that Ω2
q is analytical in q. Since the k = 0 component cannot

decay exponentially in space, at large distances from the breather, the leading
order part of the solution will be given by its slowly decaying dc part, the
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static lattice distortion. Its corresponding linearized equation will be similar
to the equation for a strain in continuum mechanics, which is induced by
some local deformation (the breather center) of the system [10]. The strain
will decay algebraically in space. The constraint of finite energies leads to the
requirement that the monopole contribution to the local deformation is zero
for d = 1, 2. The resulting algebraic decay A0l ∼ 1/|l|d−1 induced by a dipole
has been confirmed numerically for d = 2 [10].

3 Energy Thresholds for Discrete Breathers

A direct consequence of the spatial decay properties of discrete breathers
is the possible appearance of nonzero energy thresholds. We remind that
breathers show up as one-parameter families of time-periodic solutions in
phase space. When sliding along such a family, all the parameters character-
izing the breather continuously change. The presence or absence of an energy
gap is of physical importance. First we observe that the only limit, where the
breather energy could vanish, is the limit of zero amplitudes, i.e., the limit
when ωb approaches the edge of Ωq . Let us estimate the far field energy part
of a breather Eb,

Eb ∼

∫ ∞

1

rd−1F 2
d (δr)dr (6)

where the energy density is proportional to A2
1r ∼ F 2

d (δr). Since in the con-
sidered limit the spatial decay is weakly exponential (no matter whether Ω2

q

is analytical or not), the function Fd(δr) is bounded by an exponential func-
tion with exponent δ. Assuming that the dispersion near the band edge in
Ωq is in the leading order quadratic in (q− qc), we find δ ∼ |ωb−Ωqc

|. In the
same limit, using the perturbation theory for weakly nonlinear plane waves
with amplitude A and frequency ωb, we can estimate |ωb − Ωqc

| ∼ A2. Since
the breather in the considered limit is a slightly distorted (localized) plane
wave, we finally arrive at [11]

Eb ∼ |ωb − Ωqc
|1−d/2 . (7)

This result implies that the breather energy cannot assume arbitrary small
values for d ≥ 2. Consequently, in such a case, breathers have nonzero lower
bounds on their energy (and similarly on their action). In some special cases,
nonzero energy gaps may occur even for one-dimensional systems [11]. Also,
non-analytical dispersion Ω2

q may lower the critical lattice dimension [7].

4 Quantization and Applications

Quantizing the actions on a given family of classical breather solutions will
select a set of eigenenergies. However, each of them will be highly degenerated,
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with a multiplicity of at least the number of sites in the lattice. We expect
that these degeneracies will be lifted. The corresponding band width may
be responsible for a finite probability of breather tunneling [12]. In other
words, the expectation is that the quantum analogues of classical breathers
are many phonon bound states. Numerical studies on lattices are severely
restricted by the number of states per lattice site and the number of lattice
sites. So far, the studies on six sites have been done with a restriction to
the low energy domain of two phonon bound states [13]. Another way of
approaching the problem is to study small systems with two or three sites
where the tunneling of energy from an excited bond to a non-excited one is
considered [14].

The discrete breather concept has been recently used for different exper-
imental situations. Light injected into a narrow waveguide which is weakly
coupled to parallel waveguides (characteristic diameter and distances of order
of micrometers, nonlinear optical medium based on GaAs materials) disperses
to the neighboring channels for small field intensities, but localizes in the ini-
tially injected wave guide for large field intensities [15].

Bound phonon states (up to seven participating phonons) have been ob-
served by overtone resonance Raman spectroscopy in PtCl mixed valence
metal compounds [16]. The bound states are quantum versions of classical
discrete breather solutions.

Spatially localized voltage drops in Nb-based Josephson junction ladders
have been recently observed and characterized [17] (typical size of junction
is a few micrometers). These states correspond to generalizations of discrete
breathers to dissipative systems.

5 Breathers in Classical Spin Lattices

Due to spatial periodicity, lattices of interacting spins are ideal systems to
observe discrete breathers as well. Here, we will focus on large spins, which
may be described classically. Consider a ferromagnetic lattice of classical spins
with the Hamiltonian containing the Heisenberg XYZ exchange interaction
and single-ion anisotropy:

H = −
1

2

∑

l6=l′

∑

α=(x,y,z)

J ll′

α Sα
l Sα

l′ − D
∑

l

Sz
l
2 , (8)

with Sx
l , Sy

l , Sz
l being the lth spin components which satisfy the normalisa-

tion condition Sx
l

2 + Sy
l

2
+ Sz

l
2 = 1 (l labels lattice sites). The constants

Jx, Jy, Jz > 0 are the exchange integrals and D is the on-site anisotropy
constant. The equations of motion for the spin components in the 1D ferro-
magnetic spin chain with nearest-neighbor interactions are the well known
Landau-Lifshitz equations:

Ṡl = −Sl ×∇Sl
H . (9)
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Three cases will be discussed below: (i) strongly anisotropic exchange Jx 6=
Jy ≪ Jz; (ii) isotropic exchange (Jx = Jy = Jz ≡ J) and strong single-ion
anisotropy of the easy axis type - D > 0; (iii) isotropic exchange and strong
easy plane anisotropy - D < 0. The ground states of the spin lattices for cases
(i) and (ii) are identical - Sz

l = 1 or Sz
l = −1 for all sites, while the ground

state for (iii) is continuously degenerate and corresponds to all spins lying in
the easy plane XY and being parallel to each other.

The dispersion relations for small amplitude excitations above the clas-
sical ground state for cases (i) and (ii) are similar to each other (Fig. 1a)
and they are characterized by a gap. It has been shown in [20] that the
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Fig. 1. Dispersion laws for (a)
easy-axis and (b) easy-plane
ferromagnets. Thick lines in-
dicate possible locations of
breather frequencies and their
harmonics.

frequency of a discrete breather is located in the gap of Ωq. For the case
(iii) the plane wave spectrum is acoustic (gapless) (see Fig. 1b) and discrete
breathers should have frequencies located above the spectrum. A rigorous
proof of the existence of discrete breathers based on the implementation of
the anti-continuous (AC) limit (see [2,19]) is given in [20].

5.1 Easy axis anisotropy

In the particular case of strong exchange anisotropy, the AC limit has been
implemented by setting Jx,y = 0 and using the coding sequence σ = (...01110...)
(here σl = 1 means that the lth spin is turned out of its ground state po-
sition). In the case of isotropic exchange and on-site anisotropy D > 0, we
may choose σ = (...010...) and J = 0. Breathers in these types of lattices can
be viewed as localized spin excitations with spins precessing around one of
the ground states of the system (e.g.,Sz = 1), so that the effective radius of
this precession decreases to zero as l → ±∞ (for more details on this type of
breathers see [21]).

If the exchange is isotropic in XY - Jx = Jy - the spin component Sz
l

is conserved on the solution, and therefore the separation of the time and
space variables is possible: S±

l = Sx
l ± iSy

l = Al exp (±iωbt). This implies
that the Fourier series expansion of a breather periodic orbit with respect to
time consists of only one term. Contrary, for Jx 6= Jy the Sz

l -component is
not conserved on the solution and the spin dynamics is not anymore given
by a precession around the Z-axis only. At the same time higher order terms
appear in the above mentioned Fourier series expansion. Consequently, for
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such a case of broken symmetry in the XY plane, breathers do not persist in
the limit of large exchange (continuum limit). The reason is that the spectrum
Ωq in this limit still has a gap, but it is unbounded from above. Consequently,
there will be unavoidable resonances of higher harmonics of the breather with
Ωq.

5.2 Easy plane anisotropy

The ground state of the lattice, without loss of generality, can be assumed
to be Sx

l = 1, Sy
l = Sz

l = 0 for all l’s. The implementation of the AC limit
can be achieved by setting J = 0 and exciting one or several spins, so that
they should start to precess around the hard axis with a frequency ωb =
2|D|Sz. For non-zero J , initially non-excited spins start to precess with small
amplitudes around the X-axis, while the plane of precession of the “out-of-
plane” spin is no longer parallel to the easy plane, being slightly tilted, as
shown in Fig. 2. When the breather frequency approaches the upper edge of

Y

Z

X

Fig. 2. Schematic representation of the dis-
crete breather with two parallel out-of-plane
spins in an easy plane ferromagnet.

Ωq at q = π, the breather becomes less localized. Surprisingly, this does not
qualitatively influence its core structure, i.e., the effective precessing axis of
out-of-plane central spin(s) is not continuously tilted towards the X-axis in
this limit. The central spin dynamics can be viewed as periodic (closed) orbits
of a point confined to the unit sphere. Let the XY plane be an equatorial one.
Then, for large breather frequencies, the point performs small circles around
the north (or south) pole. When lowering the breather frequency, the loop
still encircles the Z-axis. Thus, the breather solution does not deform into
a slightly perturbed and weakly localized excitation above the ground state.
Again, we conclude that such breather states do not persist in corresponding
continuum theories.

Moreover, we have investigated the dependence of the breather energy on
the breather frequency (see Fig. 3). We observe an energy threshold, since
the breather energy attains a non-zero minimum, when its frequency is still
not equal to the edge of the linear spin wave spectrum. This result being
independent of the spin lattice dimension differs from the results of Sec. 3.
The reason for the appearance of a non-zero lower bound is hidden in the
topology of the central spin dynamics - the central spins are always precessing
around the Z-axis, no matter what their frequency is. Therefore the breather
cannot be deformed into a perturbed band edge linear wave, which was a key
ingredient of the argumentation in Sec. 3.

If we consider the opposite limit of increasing frequency, we find a decrease
of the precession radius of the central spin(s). In the AC limit, the upper



Discrete Breathers in Condensed Matter 9

0 0.1 0.2 0.3 0.4
0.3

0.4

0.5

0.6

 ν

 E

 1

 2
Fig. 3. Normalized energy E = H + JN/2
as a function of the detuning frequency ν =
ωb −Ω(π) = ωb −

√

4J(|D|+ J) for a discrete
breather with one out-of-plane spin (curve 1)
and with two out-of-plane spins (curve 2) for
J = 0.1 . The size of the system is N = 30
spins. For N = 50, spins the curves do not dif-
fer significantly.

bound for the breather frequency is determined by ω = 2D which corresponds
to the central (precessing) spin(s) being parallel to the Z-axis. This bound
continues to exist when the exchange is switched on. After reaching this
frequency threshold, the breather becomes a stationary (time-independent)
solution.

6 Breathers in Josephson Junction Ladders

Arrays of Josephson junctions are a perfect laboratory object to study various
nonlinear phenomena. An anisotropic ladder of dc-biased Josephson junctions
as shown in Fig. 4 is perhaps the simplest structure which supports discrete
breathers. The dynamics of a single Josephson junction is described by the

γ

γγγγ γ γ γ γ γ

γ γ γ γ γ γ γ γ

Fig. 4. A schematic view of the Josephson
junction ladder. Crosses indicate the locations
of junctions, the arrows show the direction of
external current flow γ.

time evolution of the difference of the phases of the wave function between
adjacent superconduncting islands. It may support two stable states: a su-
perconducting state and a resistive state.

6.1 The model and equations of motion

Denote by φv
l , φh

l , φ̃h
l the phase differences across the lth vertical junction

and its right upper and lower horizontal neighbors. Then the dimensionless
equations of motion for each junction with current Il, flowing through it, are
given by the Josephson equation on its phase difference φl:

φ̈l + αφ̇l + sinφl = Il . (10)

The time is normalized to t0 =
√

CΦ0/(2πIc) with Φ0 being a magnetic flux
quantum, C the capacitance and Ic the critical current of the corresponding
junction. The dimensionless damping parameter is α =

√

Φ0/(2πIcCR2
N)

(RN is the junction resistance) and η = IcH/IcV is the anisotropy constant -
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the ratio of the critical horizontal and vertical currents. Using the Kirchhof
laws and the self-inductance relation for one elementary cell of the ladder
(see [18]), one arrives at the following set of equations:

φ̈v
l + αφ̇v

l + sinφv
l = γ + (∆φv

l −∇φ̃h
l−1 + ∇φh

l−1)/βL ,

φ̈h
l + αφ̇h

l + sinφh
l = −(φh

l − φ̃h
l +∇φv

l )/(ηβL) , (11)

¨̃
φh

l + α
˙̃

φh
l + sin φ̃h

l = (φh
l − φ̃h

l +∇φv
l )/(ηβL) ,

where γ is the dimensionless dc bias in units of IcV, βL = 2πLIcV /Φ0 the
dimensionless discreteness parameter and L the self-inductance of the el-
ementary cell of the ladder. The discrete operators are given by ∇φl =
φl+1 −φl, ∆φl = φl+1 − 2φl +φl−1 . The dispersion law for the plasmons for
the weakly damped case (α ≪ 1) can be obtained by linearizing the system
(11):

Ω2
0 = 1 , Ω2

± =

[

1 + ξ ±

√

(1 − ξ)2 + 8(1 −
√

1 − γ2)/(ηβL)

]

/2 , (12)

where ξ =
√

1 − γ2 + 2[1 + η(1 − cos q)]/(ηβL). The branch Ω0 corresponds
to non-active vertical junctions and in-phase (symmetric) oscillations of the
phases of upper and lower horizontal junctions. The branch Ω+ > Ω0 is
characterized by anti-symmetric oscillations of the horizontal phases for all
q’s. For q = 0 only the horizontal junctions are excited. The branch Ω− < Ω0

becomes dispersionless for γ = 0. For q = 0 it corresponds to only the vertical
junctions being excited, while the horizontal ones are not active.

6.2 Rotobreather solutions and their current-voltage

dependencies

The breather states (rotobreathers in this case) correspond to a few junctions
being in the resistive state [kl 6= 0 in (1)] with all other junctions oscillating
around the superconducting state (kl = 0). Experiments [17] have revealed
different breather structures, as depicted in Fig. 5: (a) up-down symmetry, (b)

d)

 

a) b) c)

Fig. 5. Possible realizations of discrete
breathers in a linear ladder. Black spots
indicate the positions of resistive junctions.
Ladders with periodic boundary conditions do
not support (c) or (d) states.

left-right symmetry, (c) inversion symmetry, (d) no symmetry. Each group of
breathers can also have an arbitrary number nr of vertical resistive junctions.

Experimentally, each discrete breather is characterized by its current-
voltage dependence (see Fig. 6). The average voltage drop on the lth vertical
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Fig. 6. Current-voltage dependence for
breathers of type (a) in an annular ladder
of N=30 vertical Josephson junctions with
nr = 1, 2, 3, 4 (from top to bottom). The
system parameters are: α = 0.07, η = 0.44,
βL = 2.7. Dashed lines correspond to unstable
breathers. The thick lines correspond to the
γ-dependent band edges of Ω±(q).

junction equals V = (1/Tb)
∫ Tb

0 φ̇v
l dt. For type (a,d) breathers V = 2ωb and

for type (b,c) ones V = ωb.
The stability of rotobreather solutions has been studied by diagonaliz-

ing the corresponding monodromy (Floquet) matrix (see Fig. 7). The figure

0.3 0.4 0.5 0.6 0.7
 0 

π/2

 π 

 γ

 a
rg

 λ
 

0.3 0.4 0.5 0.6 0.7
0.5

0.75

1

1.25

1.5

 γ

 |λ
| 

Fig. 7. Dynamics of the eigenvalues λ of
the monodromy (Floquet) matrix for the top
current-voltage line of Fig. 6 (nr = 1). The
monodromy matrix is obtained by lineariz-
ing the phase space flow around a breather
periodic orbit: φn(t) = φ

(b)
n (t) + ǫn(t) and

computing the map

[

ǫn(T)
ǫ̇n(T)

]

= M̂

[

ǫn(0)
ǫ̇n(0)

]

.

Stability of the breather solution is given only
if all Floquet eigenvalues reside inside the
unit circle.

reveals an important collision of Floquet eigenvalues around γ ≈ 0.5. As a
result, one of the eigenvalues crosses the unit circle upon further current de-
crease at γ ≈ 0.45 (see the inset). The eigenvalues which participate in the
collision correspond to a Floquet mode localized around the breather and
the other one which corresponds to the delocalized Ω+ branch of the plane
wave spectrum. This scenario can be translated into a combination resonance
criterion when the breather frequency mediates some resonant interaction be-
tween the two Floquet modes - a localized and a delocalized one [18].
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7 Instead of a Conclusion

Discrete breathers are generic solutions of nonlinear lattice equations, they
are localized in space and periodic in time. Their existence is not confined
to certain lattice dimensions. The necessary existence condition for discrete
breathers is the absence of resonances of all multiples of the breather fre-
quency with the linear plane wave spectrum of the system. Spin lattices and
arrays of Josephson junctions, which have been discussed above, are not the
only systems which support discrete breathers. Other applications include
polaron (Davydov’s soliton) formation in biomolecules (see [22,23]), diluted
Bose-Einstein condensates [24], light localization in weakly coupled optical
waveguides [15], many phonon bound states in solids [16], to name a few.
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