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Abstract

We study a model of a nonlinear lattice with an on-site potential that induces a breather gap, i.e. a frequency interval where
breathers are unstable. The gap is determined numerically and after thermalization of the system we compute power spectra
of local displacements. We find that the gap is clearly manifested at small couplings through a large spectral contribution in
the linearized phonon region that is not shifted strongly with temperature.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Discrete breathers (DBs) exist in several nonlinear
models with or without on-site potentials. One im-
portant condition for the existence of DBs in lattices
with nonlinear on-site potentials is that their frequency
and all its harmonics lies outside the phonon spec-
trum [1–3]. Nevertheless it is known that for some
families of DBs a gap may occur in their energy as a
function of amplitude or frequency [4]. For example,
in three-dimensional lattices there is a spectral gap,
and as a result in order to excite breathers it is nec-
essary to overcome the energy threshold. This aspect
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can be useful in a real experiment for the detection of
breathers. In this study we attempt to find observable
signatures of breathers in a Hamiltonian thermalized
lattice that is a nontrivial task [5,6], especially due to
the fact that breathers are not easily distinguished from
other anharmonic modes. In other studies [7a,7b,8],
where a nonlinear thermalized lattice is connected
to a zero-temperature heat bath through damping in
the boundaries, specific indications of breather modes
where found.

In the present work, we search for the conditions
that must be fulfilled in an experiment in order to be
able to detect breathers. We use a one-dimensional
chain with on-site potentials that may induce a spec-
tral gap, in the sense that lower frequency breathers
may not be stable while at higher frequencies (or cor-
responding amplitudes), breathers become stable. In
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Section 2 we analyze the presence of the spectral gap,
in Section 3 we thermalize the lattice and obtain nu-
merically the spectra, in Section 4 we study the lattice
energy correlations while in Section 5 we conclude.

2. Gap determination

We consider a one-dimensional periodic chain
of coupled nonlinear oscillators with the following
Hamiltonian:

H =

N
∑

i=1

[

p2
i

2
+ V(xi) +

k

2
(xi − xi+1)

2

]

, (1)

where xi and pi are the displacement and the mo-
mentum of the ith site from the equilibrium position,
respectively, and the on-site potential is a nonlinear φ8

hard potential, i.e. V(x) = x2/2 + x8/8. The parame-
ter k determines the strength of the nearest-neighbor
interaction. For the hard φ8 on-site potential and for
coupling k = 0.1, we construct breathers using the an-
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Fig. 1. For coupling k = 0.1 we plot the breather energy as a function of its frequency. The phonon band lies in the frequency range
(ω0, ωπ) = (1, 1.18) while the breather instability gap is in the range (ωπ, ωmin

b ) = (1.18, 1.243). For ω > ωmin
b breathers are stable.

ticontinuous limit method [1,2]. For our choice of pa-
rameters the phonon band lies in the range [ω0, ωπ] =

[1, 1.18] where ω0 ≡ ω(q = 0) = 1, ωπ ≡ ω(q =

π) = 1.18 where q is the dimensionless wavenumber.
We look for breathers with frequency ωb > ωπ and
we find two types of them: those with frequencies in
the interval (ωπ, ωmin

b ) = (1.18, 1.243) are not stable,
while breathers that have frequencies ωb > ωmin

b are
found to be stable. The stability was checked through
time evolutions and as well as the analysis of the DB
Floquet spectrum. Specifically for breathers that have
frequencies belonging to the gap (ωπ, ωmin

b ), one pair
of Floquet eigenvalues lies outside the unit circle in
contrast to those breathers with frequencies ωb >

ωmin
b for which all eigenvalues lie on the unit circle;

we thus found that the lower limit for a breather to be
stable is ωmin

b . Also we performed time evolutions for
several breathers constructed using the anticontinu-
ous method. For example, we observe that a breather
with frequency ωb = 1.207 starts to lose its shape in
approximately 115 breather periods (Tb) with random
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Table 1
In the first column is the coupling k, in the second and third are
the frequencies of the lower limit (wavenumber q = 0) and the
upper limit (wavenumber q = π) of the phonon band, respectively,
and in the last two columns we place the frequency (ωmin

b ) and the
corresponding energy (Emin

b ) that mark the onset of the breather
stability regimea

k ω0 ωπ ωmin
b Emin

b

0.1 1 1.18 1.243 0.7036
0.2 1 1.34 1.42 1.147
0.3 1 1.48 1.59 1.6136
0.4 1 1.612 1.754 2.1098
0.5 1 1.732 1.881 2.62
1 1 2.236 2.47 5.55

a For each value of the coupling the breather frequency gap is
located between ωπ and ωmin

b .

perturbation of the order of 10−12, while a breather
with frequency ωb = 1.374 remains stable at time t ≥

1093Tb with a perturbation of the order of 10−3.
In Fig. 1 two branches appear in the plot of en-

ergy as a function of the frequency. In the first branch
where the energy decreases with increasing frequency
(or amplitude), breathers are unstable. For larger fre-
quencies a second branch of stable breathers appears
with energy being an increasing function of frequency.
We also note that for a breather with coupling k = 0.1
and frequency ωmin

b = 1.243 (that is the upper limit
of the gap) its energy is Emin

b = 0.7036 the breather is
mainly localized on three sites. Thus the minimum sta-
ble breather energy per degree of freedom is Emin

b /3 =

0.234 in this particular model. Analogous results are
found for higher values of coupling such as k = 0.2
and further, i.e. breathers are not stable in a specific in-
terval of frequencies while higher frequency breathers
are stable; these features are tabulated in Table 1. The
gaps have been determined through evaluation of Flo-
quet spectra of the linearized modes around the DBs.

3. Thermalization and Fourier spectra

After having examined the breather regimes in the
Hamiltonian case we now bring the system in contact
with a bath of temperature T . This is done by intro-
ducing stochastic forces and damping in each oscilla-
tor and following the time evolution of the resulting

coupled Langevin equations. The dissipation value we
use is γ = 0.01 and this value controls the time scale
for relaxation. When the system reaches equilibrium
defined through equipartition and obtained when the
kinetic energy per particle is approximately equal to
kBT/2, we remove completely the heat bath and study
the evolving initially thermalized Hamiltonian system.
We compute the time correlation of the local displace-
ments as well as their Fourier transforms. We treat a
lattice of N = 100 sites and present our results for
different couplings in Fig. 2 (k = 0.1) and in Fig. 3
(k = 0.5, 1); as we will see below the coupling plays
a crucial role. For each temperature we run n different
realizations (typically n = 50) and compute the aver-
age in the correlation of displacements that are taken
after a long transient of time to ensure thermal equi-
librium. The quantity we evaluate is

S(t) =
1

N

[

1

tfin− tin

N
∑

i=1

∫ tfin

tin

〈xi(t + t′)xi(t
′)〉 dt′

]

,

(2)

where tin = 2000 and tfin = 2500 while the integral in
Eq. (2) is actually a sum with dt′ = 0.1. The Fourier
transform of S(t) is

S(ωm) = �t

(tfin/�t)−1
∑

j=0

e−(2πi/tfin)m�tj S(�tj), (3)

where ωm = 2πm/tfin, m = 0, 1, . . . , (1/2)(tfin/�t)−

1. Finally the power spectrum of the correlation S(t)

is given by

P(ω) = (Re(S(ω)))2 + (Im(S(ω)))2, (4)

where Re(S(ω)) and Im(S(ω)) denote the real and
imaginary part, respectively.

In Fig. 2 we plot the power spectra for the hard
φ8 potential and compare them to the hard φ4 on-site
potential V(x) = x2/2 + x4/4 using the same cou-
pling k = 0.1. At low temperatures, in both cases,
only phonons are excited since essentially all modes
excited in this temperature regime are linear phonon
modes inside the phonon band (Fig. 2(a)). On the
other hand when the temperature is increased, in addi-
tion to phonons nonlinear modes are also excited, and
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Fig. 2. Power spectra as a function of frequency for k = 0.1 and different temperatures. The range between the two dashed lines denotes
the phonon band while the breather gap is located between the upper dashed line and the dotted line. Dark intense lines correspond to the
hard φ8 and lighter lines to the hard φ4 cases. In subgraphs (a)–(d) temperatures for hard φ8 and hard φ4 cases are not exactly equal due
to the fact that temperature is calculated for each run from the equipartition theorem. Position–position correlations S(t)’s are normalized
to unity in all the cases and also the integral below the curve of P(ω) is normalized in such a way that is a unity in all the cases as well.

as a result the Fourier spectra become broader (Fig. 2
(b)–(d)). Analysis of the spectra changes as a function
of temperature shows a clear deviation in the behavior
of the two systems in the spectral region where the φ8
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Fig. 3. Power spectrum P(ω) as a function of frequency. Left panel: k = 0.5 for different temperatures in (a)–(c); right panel: k = 1 in
(d) and (e). Other notations are as in Fig. 2.

breather gap is located. Specifically, as the tempera-
ture grows (T ≥ 1) we observe that in the region of the
breather gap the spectral intensity of the φ8 potential
drops while the intensity in the linear region increases.
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This is marked contrast to the φ4 system where we
observe a continuous depletion of the linearized vibra-
tional region accompanied by a global shift to higher
frequencies. For instance, we observe in Fig. 2(b) that
for energy kBT = 0.2027 (kB = 1) that is near the
critical value Emin

b (k = 0.1)/3 = 0.234 the two spec-
tra already exhibit the different trend. We thus observe
that the hard φ4 on-site potential exhibits a continuous
spectral displacement to larger frequencies induced by
the increased presence of breather modes in the lattice
while in the hard φ8 case the breather gap acts as a
spectral barrier, a feature that is understood as follows:
as temperature increases there is increased tendency
for breather formation. However, since breathers in the
gap region are unstable, they quickly break up after
formation and most of them become phonons. As a re-
sult, there is a decrease in the intensity in the breather
gap region that is moved partially in the phonon range.
This feature is clearly manifested in Fig. 2(c) and (d)
where the excess intensity in the phonon region is ac-
companied by a drastic drop in the breather gap region.
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Fig. 4. Power spectra as a function of frequency for various couplings and the hard φ8 on-site potential. The temperature is T ≈ 1, and
the coupling is indicated in each subgraph.

We attribute this asymmetry precisely to the transfer
of spectral intensity from the breather gap region to
smaller frequencies.

For larger values of coupling, i.e. k = 0.5 and 1,
respectively, the phenomenon of intensity increase in
the phonon region is not observed. For instance, for
k = 0.5 (Fig. 3) and using Table 1 we expect the gap to
be located in the range ωπ = 1.732 to ωmin

b = 1.881.
As can be readily seen in Fig. 3 where this range is
delimited by a dashed (upper) and dotted lines no sub-
stantial reduction of intensity is observed in this range
with a simultaneous increase of the intensity in the
phonon range. A similar behavior is seen also at the
even larger coupling k = 1. As a result, the spectral
analysis that preceded marks two different tenden-
cies. While the system is close to the anticontinuous
limit (small coupling) breathers are indeed generated
in both φ4 and φ8 models. In the latter case however
breathers are unstable in the gap region and as a result
there is a depletion of intensity in this region mak-
ing the gap discernible in contrast to the gapless φ4
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case. As the coupling increases however the nonlinear
modes generated become broad and as a result the
existence of a breather gap in the φ8 model becomes
moat. Both models have compatible behavior. We
thus conclude that the distinct spectral signature of the
breather gap of intensity accumulation in the phonon
range is only observable at small couplings close to
the anticontinuous limit. This aspect is further exem-
plified in Fig. 4, where power spectra for different
values of coupling are presented and show a different
change as coupling increases. For k = 0.4 and larger
coupling values the gap is not visible anymore.

4. Energy correlations

In order to substantiate the regimes where breathers
are important in the previous observations we perform
a series of numerical experiments in the time domain.
Specifically we compute time dependent local energy
correlation functions for both φ4 and φ8 models us-
ing various coupling values. In particular we evalu-
ate time dependent local energy correlation functions
for the linear φ2 model, viz., V(x) = x2/2, hard φ4

and hard φ8 on-site potentials. We use a lattice with
N = 100 sites and perform n = 100 realizations for
each temperature (the dissipation for the thermaliza-
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Fig. 5. The energy correlation function C(t, 0) (normalized to unity) as a function of time for the three different on-site potentials. V1 is
the linear, V2 the hard φ4 and V3 the hard φ8 potentials as indicated in the labels. For (a) and (b) the coupling is k = 0.1 and for (c) and
(d) k = 0.5.

tion was set again γ = 0.01). We introduce the local
energy at each site as

Ei = 1
2p2

i + V(xi) + 1
4k(xi − xi+1)

2

+ 1
4k(xi−1 − xi)

2. (5)

In Fig. 5 we plot the time correlation function:

C(t, 0) =
1

N

〈

N
∑

i=1

Ei(t)Ei(0)

〉

−

〈

1

N

N
∑

i=1

Ei

〉2

(6)

that is normalized to unity.
The time dependent energy correlation function

contains the information of how the energy is trans-
ferred between the sites. As we can see from Fig. 5
in the case of a purely linear on-site potential it ap-
proaches zero while the two nonlinear hard on-site
potentials give a slower decay [7a,7b]. In nonlinear
lattices, energy spreads out on a slower time scale as
compared to the corresponding linear one because of
the formation of localized structures, at least in the
case of small couplings as in Fig. 5(a) and (b) that
contribute to the energy trapping.

From the numerical determination of the correlation
function in Fig. 5 we note that as the nonlinearity in the
potential grows the decay features change in the small
coupling (k = 0.1) case (Fig. 5(a) and (b)). Indeed
temperature fluctuations induce breather modes that
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are clearly more persistent in the φ8 case compared
to the φ4 model (Fig. 5(b)). In these time resolved
simulations the presence or absence of the breather
gap does not play an important role. The slow de-
cay of the correlation function however demonstrates
that breathers are indeed present in the corresponding
regime, and, as a result, the spectral phenomena ex-
plained in the previous section are directly attributed
to them. In the high coupling case on the other hand,
no correlations persist and as a result breather modes
are statistically absent in both low and higher temper-
ature regimes (Fig. 5(c) and (d)). The evaluation thus
of the correlation function augments the analysis of
the previous section showing that only at small cou-
plings the peculiar spectral behavior of the φ8 model
can be attributed to breathers.

5. Conclusions

In the present work we performed numerically a
spectral analysis of a nonlinear thermalized lattice
constituted of a one-dimensional chain of coupled
nonlinear oscillators. We used for each oscillator an
on-site potential that depends on the eighth power of
the oscillator displacement, i.e. a hard φ8 potential
and compared our results with the standard hard φ4

potential. The specific choice of theφ8 potential was
dictated by the fact that in this case a breather spec-
tral gap appears just above the phonon band where
breather modes are unstable. In this work we focused
on the possible manifestation of this frequency gap
at finite temperatures. Our analysis demonstrates that
there are two regimes depending on the value of the
nearest-neighboring coupling k. For small k-values
close to the anticontinuous limit we observe from
the displacement correlation function a reduced spec-
tral weight in the breather gap region accompanied

by a drastic increase of the spectral contribution from
the phonon region. This effect that persists to high
temperatures is attributed to the decay of DBs of the
gap region into phonon modes. This feature is clearly
absent in the gapless φ4 on-site potential. The second
regime is that of large k-values where the system is far
from the anticontinuous limit and resulting nonlinear
modes are not DBs. In this last case and in the high
temperature regime the correlation spectrum becomes
less structured and the breather gap is not manifested.
Energy correlation results corroborate the existence of
these two distinct regimes at finite temperatures. The
fact that increased nonlinearity in the on-site potential
leaves a clear signature in the position–position corre-
lation spectrum at weak couplings is attributed directly
to breather modes and their properties. As a result this
aspect may be manifested also in more complex, real
materials that necessarily contain potentials with high
nonlinearities.
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